On the hereditary character of new strong variations of weyl type theorems

Berkani and Kachad [18], [19], and Sanabria et al. [32], introduced and studied strong variations of Weyl type Theorems. In this paper, we study the behavior of these strong variations of Weyl type theorems for an operator T on a proper closed and Tinvariant subspace W ⊆ X such that T n (X) ⊆ W for...

Full description

Autores:
Carpintero, C.
Malaver, A.
Rosas, E.
Sanabria, J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3021
Acceso en línea:
https://hdl.handle.net/11323/3021
https://repositorio.cuc.edu.co/
Palabra clave:
new Weyl-type theorems
strong variations of Weyl type theorems
restrictions of operators
spectral properties
multiplication operators
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_53c8f2df72d2d740a15b2d2e084e270e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3021
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv On the hereditary character of new strong variations of weyl type theorems
title On the hereditary character of new strong variations of weyl type theorems
spellingShingle On the hereditary character of new strong variations of weyl type theorems
new Weyl-type theorems
strong variations of Weyl type theorems
restrictions of operators
spectral properties
multiplication operators
title_short On the hereditary character of new strong variations of weyl type theorems
title_full On the hereditary character of new strong variations of weyl type theorems
title_fullStr On the hereditary character of new strong variations of weyl type theorems
title_full_unstemmed On the hereditary character of new strong variations of weyl type theorems
title_sort On the hereditary character of new strong variations of weyl type theorems
dc.creator.fl_str_mv Carpintero, C.
Malaver, A.
Rosas, E.
Sanabria, J.
dc.contributor.author.spa.fl_str_mv Carpintero, C.
Malaver, A.
Rosas, E.
Sanabria, J.
dc.subject.spa.fl_str_mv new Weyl-type theorems
strong variations of Weyl type theorems
restrictions of operators
spectral properties
multiplication operators
topic new Weyl-type theorems
strong variations of Weyl type theorems
restrictions of operators
spectral properties
multiplication operators
description Berkani and Kachad [18], [19], and Sanabria et al. [32], introduced and studied strong variations of Weyl type Theorems. In this paper, we study the behavior of these strong variations of Weyl type theorems for an operator T on a proper closed and Tinvariant subspace W ⊆ X such that T n (X) ⊆ W for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. The main purpose of this paper is to prove that for these subspaces (which generalize the case T n (X) closed for some n ≥ 0), these strong variations of Weyl type theorems are preserved from T to its restriction on W and vice-versa. As consequence of our results, we give sufficient conditions for which these strong variations of Weyl type Theorems are equivalent for two given operators. Also, some applications to multiplication operators acting on the boundary variation space BV [0, 1] are given.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-04-09T19:25:15Z
dc.date.available.none.fl_str_mv 2019-04-09T19:25:15Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2344-4967
1221-8421
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3021
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2344-4967
1221-8421
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/3021
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Acad. Publishers (2004). [2] P. Aiena, Classes of Operators Satisfying a-Weyl’s theorem, Studia Math. 169 (2005), 105- 122. [3] P. Aiena, Quasi-Fredholm operators and localized SVEP. Acta Sci. Math. (Szeged) 73 (2007), 251-263. [4] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Int. Equa. Oper. Theory. 136 (2010), 2839-2848. [5] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848. [6] M. Amouch and M. Berkani On the property (gw), Mediterr. J. Math 5(3)(2008), 371-378. [7] F. Astudillo-Villalba and J. Ramos-Fern´andez Multiplication operators on the space of functions of bounded variation, Demonstr. Math. 50(1) (2017), 105-115. [8] B. Barnes, The spectral and Fredholm theory of extensions of bounded linear operators, Proc. Amer. Math. Soc. 105(4) (1989), 941-949. [9] B. Barnes, Restrictions of bounded linear operators: closed range, Proc. Amer. Math. Soc. 135(6) (2007), 1735-1740. [10] S. K. Berberian, An extension of Weyl’s theorem to a class of non necessarily normal operators, Michigan Math. J. 16(1969), 273-279. [11] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140(2) (2000), 163-175. [12] M. Berkani, On a class of quasi-Fredholm operators, Int. Equa. Oper. Theory 34 (1) (1999), 244-249. [13] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465. [14] M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica. 134(4) (2009), 369-378. [15] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. [16] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik. 62 (2010), 145-154. [17] M. Berkani, M. Sarih and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399-409. [18] M. Berkani and M. Kachad, New Weyl-type Theorems-I, Funct. Anal. Approx. Comput. 4(2) (2012), 41-47. [19] M. Berkani and M. Kachad, New Browder and Weyl-type theorems, Bull. Korean Math. Soc. 52(2) (2015), 439-452. [20] C. Carpintero, D. Mu˜noz, E. Rosas, O. Garc´ıa and J. Sanabria, Weyl type theorems and restrictions, Mediterr. J. Math. 11 (2014), 1215-1228, DOI 10.1007/s00009-013-0369-7. [21] L. A. Coburn, Weyl’s Theorem for Nonnormal Operators, Research Notes in Mathematics. 51 (1966). [22] L. Chen and W. Su, A note on Weyl-type theorems and restrictions, Ann. Funct. Anal. 8(2) (2017), 190-198. [23] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. [24] A. Gupta and K. Mamtani, Weyl-type theorems for restrictions of closed linear unbounded operators, Acta Univ. M. Belli Ser. Math. 2015, 72-79. [25] R. E. Harte and W. Y. Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124. [26] H. Heuser, Functional Analysis, Marcel Dekker, New York 1982. [27] M. Mbekhta and V. M¨uller, On the axiomatic theory of the spectrum II, Studia Math. 119 (1996), 129-147. [28] J. P. Labrousse, Les op´erateurs quasi Fredholm: une g´en´eralization des op´erateurs semi Fredholm, Rend. Circ. Mat. Palermo. 29(2) (1980), 161-258. [29] V. Rakoˇcevi´c, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34(10) (1989), 915-919. [30] V. Rakoˇcevi´c, On the essential approximate point spectrum II, Math. Vesnik. 36 (1984), 89-97. [31] J. Sanabria, C. Carpintero, E. Rosas and O. Garc´ıa, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141-154. [32] J. Sanabria, L. V´asquez, C. Carpintero, E. Rosas and O. Garc´ıa, On Strong Variations of Weyl Type Theorems, Acta Math. Univ. Comenianae. 86(2) (2017), 129-147. [33] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik. 65(1) (2013), 94-103 [34] H. Zariouh, New version of property (az), Mat. Vesnik. 66(3) (2014), 317-322 [35] H. Weyl, Uber beschrankte quadratiche Formen, deren Differenz vollsteigist, Rend. Circ. Mat. Palermo, 27 (1909), 373-392.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/fe126455-71c5-456c-958b-5c968c537765/download
https://repositorio.cuc.edu.co/bitstreams/637e5054-2828-4e8b-8b23-8dad577f997c/download
https://repositorio.cuc.edu.co/bitstreams/c1d97646-e11b-4b9f-9789-5f3d483ec4d9/download
https://repositorio.cuc.edu.co/bitstreams/529bab21-ad07-4919-800b-d0897d800dc9/download
bitstream.checksum.fl_str_mv db68e8a3b670056bcdc0d018797b0108
8a4605be74aa9ea9d79846c1fba20a33
84e3d6ebc1b1dc331a45e938bc149d49
4023f46486e1b2c022f2b45ba72d70a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760801583726592
spelling Carpintero, C.Malaver, A.Rosas, E.Sanabria, J.2019-04-09T19:25:15Z2019-04-09T19:25:15Z20192344-49671221-8421https://hdl.handle.net/11323/3021Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Berkani and Kachad [18], [19], and Sanabria et al. [32], introduced and studied strong variations of Weyl type Theorems. In this paper, we study the behavior of these strong variations of Weyl type theorems for an operator T on a proper closed and Tinvariant subspace W ⊆ X such that T n (X) ⊆ W for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. The main purpose of this paper is to prove that for these subspaces (which generalize the case T n (X) closed for some n ≥ 0), these strong variations of Weyl type theorems are preserved from T to its restriction on W and vice-versa. As consequence of our results, we give sufficient conditions for which these strong variations of Weyl type Theorems are equivalent for two given operators. Also, some applications to multiplication operators acting on the boundary variation space BV [0, 1] are given.Carpintero, C.-123dd2ec-abe0-436e-89d9-7cab6b66f31e-600Malaver, A.-7b2d50b9-ce58-430c-873a-c2b0c224d330-600Rosas, E.-5fc10f5b-9f96-4b5a-ad14-b9e5ffe33ed4-600Sanabria, J.-83af4f85-486c-4d16-997f-b742c5929f24-600engAnalele Stiintifice ale Universitatii Al I Cuza din Iasi - MatematicaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2new Weyl-type theoremsstrong variations of Weyl type theoremsrestrictions of operatorsspectral propertiesmultiplication operatorsOn the hereditary character of new strong variations of weyl type theoremsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Acad. Publishers (2004). [2] P. Aiena, Classes of Operators Satisfying a-Weyl’s theorem, Studia Math. 169 (2005), 105- 122. [3] P. Aiena, Quasi-Fredholm operators and localized SVEP. Acta Sci. Math. (Szeged) 73 (2007), 251-263. [4] P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Int. Equa. Oper. Theory. 136 (2010), 2839-2848. [5] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848. [6] M. Amouch and M. Berkani On the property (gw), Mediterr. J. Math 5(3)(2008), 371-378. [7] F. Astudillo-Villalba and J. Ramos-Fern´andez Multiplication operators on the space of functions of bounded variation, Demonstr. Math. 50(1) (2017), 105-115. [8] B. Barnes, The spectral and Fredholm theory of extensions of bounded linear operators, Proc. Amer. Math. Soc. 105(4) (1989), 941-949. [9] B. Barnes, Restrictions of bounded linear operators: closed range, Proc. Amer. Math. Soc. 135(6) (2007), 1735-1740. [10] S. K. Berberian, An extension of Weyl’s theorem to a class of non necessarily normal operators, Michigan Math. J. 16(1969), 273-279. [11] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140(2) (2000), 163-175. [12] M. Berkani, On a class of quasi-Fredholm operators, Int. Equa. Oper. Theory 34 (1) (1999), 244-249. [13] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465. [14] M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica. 134(4) (2009), 369-378. [15] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. [16] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik. 62 (2010), 145-154. [17] M. Berkani, M. Sarih and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399-409. [18] M. Berkani and M. Kachad, New Weyl-type Theorems-I, Funct. Anal. Approx. Comput. 4(2) (2012), 41-47. [19] M. Berkani and M. Kachad, New Browder and Weyl-type theorems, Bull. Korean Math. Soc. 52(2) (2015), 439-452. [20] C. Carpintero, D. Mu˜noz, E. Rosas, O. Garc´ıa and J. Sanabria, Weyl type theorems and restrictions, Mediterr. J. Math. 11 (2014), 1215-1228, DOI 10.1007/s00009-013-0369-7. [21] L. A. Coburn, Weyl’s Theorem for Nonnormal Operators, Research Notes in Mathematics. 51 (1966). [22] L. Chen and W. Su, A note on Weyl-type theorems and restrictions, Ann. Funct. Anal. 8(2) (2017), 190-198. [23] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. [24] A. Gupta and K. Mamtani, Weyl-type theorems for restrictions of closed linear unbounded operators, Acta Univ. M. Belli Ser. Math. 2015, 72-79. [25] R. E. Harte and W. Y. Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124. [26] H. Heuser, Functional Analysis, Marcel Dekker, New York 1982. [27] M. Mbekhta and V. M¨uller, On the axiomatic theory of the spectrum II, Studia Math. 119 (1996), 129-147. [28] J. P. Labrousse, Les op´erateurs quasi Fredholm: une g´en´eralization des op´erateurs semi Fredholm, Rend. Circ. Mat. Palermo. 29(2) (1980), 161-258. [29] V. Rakoˇcevi´c, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34(10) (1989), 915-919. [30] V. Rakoˇcevi´c, On the essential approximate point spectrum II, Math. Vesnik. 36 (1984), 89-97. [31] J. Sanabria, C. Carpintero, E. Rosas and O. Garc´ıa, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141-154. [32] J. Sanabria, L. V´asquez, C. Carpintero, E. Rosas and O. Garc´ıa, On Strong Variations of Weyl Type Theorems, Acta Math. Univ. Comenianae. 86(2) (2017), 129-147. [33] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik. 65(1) (2013), 94-103 [34] H. Zariouh, New version of property (az), Mat. Vesnik. 66(3) (2014), 317-322 [35] H. Weyl, Uber beschrankte quadratiche Formen, deren Differenz vollsteigist, Rend. Circ. Mat. Palermo, 27 (1909), 373-392.PublicationORIGINALOn the hereditary character of new strong variations of weyl type theorems.pdfOn the hereditary character of new strong variations of weyl type theorems.pdfapplication/pdf923812https://repositorio.cuc.edu.co/bitstreams/fe126455-71c5-456c-958b-5c968c537765/downloaddb68e8a3b670056bcdc0d018797b0108MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/637e5054-2828-4e8b-8b23-8dad577f997c/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn the hereditary character of new strong variations of weyl type theorems.pdf.jpgOn the hereditary character of new strong variations of weyl type theorems.pdf.jpgimage/jpeg50009https://repositorio.cuc.edu.co/bitstreams/c1d97646-e11b-4b9f-9789-5f3d483ec4d9/download84e3d6ebc1b1dc331a45e938bc149d49MD54TEXTOn the hereditary character of new strong variations of weyl type theorems.pdf.txtOn the hereditary character of new strong variations of weyl type theorems.pdf.txttext/plain38960https://repositorio.cuc.edu.co/bitstreams/529bab21-ad07-4919-800b-d0897d800dc9/download4023f46486e1b2c022f2b45ba72d70a9MD5511323/3021oai:repositorio.cuc.edu.co:11323/30212024-09-17 12:45:59.92open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=