Shallow convolutional network excel for classifying motor imagery EEG in BCI applications
Many studies applying Brain-Computer Interfaces (BCIs) based on Motor Imagery (MI) tasks for rehabilitation have demonstrated the important role of detecting the Event-Related Desynchronization (ERD) to recognize the user’s motor intention. Nowadays, the development of MI-based BCI approaches withou...
- Autores:
-
milanés hermosilla, daily
Trujillo Codorniú, Rafael
López Baracaldo, René
Sagaro Zamora, Roberto
Delisle-Rodriguez, Denis
Llosas Albuerne, Yolanda
Núñez Alvarez, José Ricardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8475
- Acceso en línea:
- https://hdl.handle.net/11323/8475
https://repositorio.cuc.edu.co/
- Palabra clave:
- Brain-computer interface
EEG
Motor imagery
Shallow convolutional neural networks
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_53b97f108f218546e96d2ba9be77b1db |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8475 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
title |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
spellingShingle |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications Brain-computer interface EEG Motor imagery Shallow convolutional neural networks |
title_short |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
title_full |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
title_fullStr |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
title_full_unstemmed |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
title_sort |
Shallow convolutional network excel for classifying motor imagery EEG in BCI applications |
dc.creator.fl_str_mv |
milanés hermosilla, daily Trujillo Codorniú, Rafael López Baracaldo, René Sagaro Zamora, Roberto Delisle-Rodriguez, Denis Llosas Albuerne, Yolanda Núñez Alvarez, José Ricardo |
dc.contributor.author.spa.fl_str_mv |
milanés hermosilla, daily Trujillo Codorniú, Rafael López Baracaldo, René Sagaro Zamora, Roberto Delisle-Rodriguez, Denis Llosas Albuerne, Yolanda Núñez Alvarez, José Ricardo |
dc.subject.spa.fl_str_mv |
Brain-computer interface EEG Motor imagery Shallow convolutional neural networks |
topic |
Brain-computer interface EEG Motor imagery Shallow convolutional neural networks |
description |
Many studies applying Brain-Computer Interfaces (BCIs) based on Motor Imagery (MI) tasks for rehabilitation have demonstrated the important role of detecting the Event-Related Desynchronization (ERD) to recognize the user’s motor intention. Nowadays, the development of MI-based BCI approaches without or with very few calibration stages session-by-session for different days or weeks is still an open and emergent scope. In this work, a new scheme is proposed by applying Convolutional Neural Networks (CNN) for MI classification, using an end-to-end Shallow architecture that contains two convolutional layers for temporal and spatial feature extraction. We hypothesize that a BCI designed for capturing event-related desynchronization/synchronization (ERD/ERS) at the CNN input, with an adequate network design, may enhance the MI classification with fewer calibration stages. The proposed system using the same architecture was tested on three public datasets through multiple experiments, including both subject-specific and non-subject-specific training. Comparable and also superior results with respect to the state-of-the-art were obtained. On subjects whose EEG data were never used in the training process, our scheme also achieved promising results with respect to existing non-subject-specific BCIs, which shows greater progress in facilitating clinical applications. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-23T22:18:21Z |
dc.date.available.none.fl_str_mv |
2021-07-23T22:18:21Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2169-3536 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8475 |
dc.identifier.doi.spa.fl_str_mv |
10.1109/ACCESS.2021.3091399 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2169-3536 10.1109/ACCESS.2021.3091399 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8475 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] D. L. Schomer and F. L. Da Silva, Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 6th ed. Lippincott Williams & Wilkins, 2012. [2] M. Clerc, L. Bougrain, and F. Lotte, Brain-Computer Interfaces: Methods and Perspectives. Hoboken, NJ, USA: Wiley, 2016. [3] U. Chaudhary, N. Birbaumer, and A. Ramos, ‘‘Brain–computer interfaces for communication and rehabilitation,’’ Nature Rev. Neurol., vol. 12, pp. 513–525, Aug. 2016. [4] K. K. Ang and C. Guan, ‘‘Brain-computer interface in stroke rehabilitation,’’ J. Comput. Sci. Eng., vol. 7, no. 2, pp. 139–146, 2013. [5] K. K. Ang and C. Guan, ‘‘Brain–computer interface for neurorehabilitation of upper limb after stroke,’’ in Proc. IEEE, vol. 103, no. 6, pp. 944–953, May 2015. [6] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, ‘‘A spelling device for the paralysed,’’ Nature, vol. 398, no. 6725, pp. 297–298, Mar. 1999. [7] D. Beukelman, S. Fager, and A. Nordness, ‘‘Communication support for people with ALS,’’ Neurol. Res. Int., vol. 2011, 2011. [8] U. Chaudhary and N. Birbaumer, ‘‘Communication in locked-in state after brainstem stroke: A brain-computer-interface approach,’’ Ann. Transl. Med., vol. 3, no. 1, 2015. [9] N. Mrachacz-Kersting, N. Jiang, A. J. T. Stevenson, I. K. Niazi, V. Kostic, A. Pavlovic, S. Radovanovic, M. Djuric-Jovicic, F. Agosta, K. Dremstrup, and D. Farina, ‘‘Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface,’’ J. Neurophysiol., vol. 115, no. 3, pp. 1410–1421, Mar. 2016. [10] G. Pfurtscheller, G. R. Müller, J. Pfurtscheller, H. J. Gerner, and R. Rupp, ‘‘‘Thought’—Control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia,’’ Neurosci. Lett., vol. 351, no. 1, pp. 33–36, Nov. 2003. [11] J. Lüdemann-Podubecká, K. Bösl, and D. A. Nowak, ‘‘Repetitive transcranial magnetic stimulation in post stroke upper limb spasticity,’’ Case Med. Res., vol. 218, pp. 281–311, Aug. 2019. [12] A. Kübler, A. Furdea, S. Halder, E. M. Hammer, F. Nijboer, and B. Kotchoubey, ‘‘A brain-computer interface controlled auditory eventrelated potential (P300) spelling system for locked-in patients,’’ Ann. New York Acad. Sci., vol. 1157, no. 1, pp. 90–100, Mar. 2009. [13] G. Pires, U. Nunes, and M. Castelo-Branco, ‘‘Statistical spatial filtering for a P300-based BCI: Tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis,’’ J. Neurosci. Methods, vol. 195, no. 2, pp. 270–281, Feb. 2011. [14] D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, ‘‘A survey of stimulation methods used in SSVEP-based BCIs,’’ Comput. Intell. Neurosci., vol. 2010, pp. 1–12, Jan. 2010. [15] D. Lesenfants, D. Habbal, Z. Lugo, M. Lebeau, P. Horki, E. Amico, C. Pokorny, F. Gómez, A. Soddu, G. Müller-Putz, S. Laureys, and Q. Noirhomme, ‘‘An independent SSVEP-based brain–computer interface in locked-in syndrome,’’ J. Neural Eng., vol. 11, no. 3, Jun. 2014, Art. no. 035002. [16] K. K. Ang, C. Guan, K. S. Phua, C. Wang, L. Zhou, K. Y. Tang, G. J. E. Joseph, C. W. K. Kuah, and K. S. G. Chua, ‘‘Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled trial for chronic stroke,’’ Frontiers Neuroeng., vol. 7, p. 30, Jul. 2014. [17] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan, ‘‘Brain-computer interfaces for communication and control,’’ Clin. Neurophys., vol. 113, no. 6, pp. 767–791, 2002. [18] G. Pfurtscheller, C. Guger, G. Müller, G. Krausz, and C. Neuper, ‘‘Brain oscillations control hand orthosis in a tetraplegic,’’ Neurosci. Lett., vol. 292, no. 3, pp. 211–214, Oct. 2000. [19] G. Pfurtscheller and F. H. L. da Silva, ‘‘Event-related EEG/MEG synchronization and esynchronization: Basic principles,’’ Clin. Neurophysiol., vol. 110, no. 11, pp. 1842–1857, Nov. 1999. [20] G. Pfurtscheller and A. Aranibar, ‘‘Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement,’’ Electroencephalogr. Clin. Neurophysiol., vol. 46, no. 2, pp. 138–146, Feb. 1979. [21] G. Pfurtscheller, ‘‘Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest,’’ Electroencephalogr. Clin. Neurophysiol., vol. 83, no. 1, pp. 62–69, Jul. 1992. [22] G. Pfurtscheller, K. Zalaudek, and C. Neuper, ‘‘Event-related beta synchronization after wrist, finger and thumb movement,’’ Electroencephalogr. Clin. Neurophysiol./Electromyograp. Motor Control, vol. 109, no. 2, pp. 154–160, Apr. 1998. [23] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball, ‘‘Deep learning with convolutional neural networks for EEG decoding and visualization,’’ Hum. Brain Mapping, vol. 38, no. 11, pp. 5391–5420, Nov. 2017. [24] S. Sakhavi and C. Guan, ‘‘Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data in motor imagery BCI,’’ in Proc. 8th Int. IEEE/EMBS Conf. Neural Eng. (NER), May 2017, pp. 588–591. [25] G. Pfurtscheller, C. Neuper, A. Schlogl, and K. Lugger, ‘‘Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,’’ IEEE Trans. Rehabil. Eng., vol. 6, no. 3, pp. 316–325, Sep. 1998. [26] C.-I. Hung, P.-L. Lee, Y.-T. Wu, L.-F. Chen, T.-C. Yeh, and J.-C. Hsieh, ‘‘Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers,’’ Ann. Biomed. Eng., vol. 33, no. 8, pp. 1053–1070, Aug. 2005. [27] Y. Zhang, X. Zhang, H. Sun, Z. Fan, and X. Zhong, ‘‘Portable braincomputer interface based on novel convolutional neural network,’’ Comput. Biol. Med., vol. 107, pp. 248–256, Apr. 2019. [28] S. Kelly, D. Burke, P. de Chazal, and R. Reilly, ‘‘Parametric models and spectral analysis for classification in brain-computer interfaces,’’ in Proc. 14th Int. Conf. Digit. Signal Process. (DSP), 2002, pp. 307–310. [29] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. H. L. da Silva, ‘‘Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,’’ NeuroImage, vol. 31, no. 1, pp. 153–159, May 2006. [30] G. Pfurtscheller, A. Stancák, and C. Neuper, ‘‘Post-movement beta synchronization. A correlate of an idling motor area?’’ Electroencephalogr. Clin. Neurophysiol., vol. 98, no. 4, pp. 281–293, Apr. 1996. [31] Z. Tang, S. Sun, S. Zhang, Y. Chen, C. Li, and S. Chen, ‘‘A brain-machine interface based on ERD/ERS for an upper-limb exoskeleton control,’’ Sensors, vol. 16, no. 12, p. 2050, Dec. 2016. [32] G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, ‘‘Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study,’’ J. NeuroEngineering Rehabil., vol. 7, no. 1, p. 60, Dec. 2010. [33] Y. Hashimoto and J. Ushiba, ‘‘EEG-based classification of imaginary left and right foot movements using beta rebound,’’ Clin. Neurophysiol., vol. 124, no. 11, pp. 2153–2160, Nov. 2013. [34] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, ‘‘A review of classification algorithms for EEG-based brain–computer interfaces,’’ J. Neural Eng., vol. 4, no. 2, pp. R1–R13, 2007. [35] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger, ‘‘A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update,’’ J. Neural Eng., vol. 15, no. 3, Jun. 2018, Art. no. 031005. [36] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, ‘‘Optimal spatial filtering of single trial EEG during imagined hand movement,’’ IEEE Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441–446, Dec. 2000. [37] K. Fukunaga, Statistical Pattern Recognition, 2nd ed. New York, NY, USA: Academic, 1990. [38] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, ‘‘Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b,’’ Frontiers Neurosci., vol. 6, p. 39, Mar. 2012. [39] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning nature,’’ Nature, vol. 521, pp. 436–444, 2015. [40] A. Craik, Y. He, and J. L. Contreras-Vidal, ‘‘Deep learning for electroencephalogram (EEG) classification tasks: A review,’’ J. Neural Eng., vol. 16, no. 3, Jun. 2019, Art. no. 031001. [41] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, ‘‘Deep learning-based electroencephalography analysis: A systematic review,’’ J. Neural Eng., vol. 16, no. 5, Aug. 2019, Art. no. 051001. [42] K. Roots, Y. Muhammad, and N. Muhammad, ‘‘Fusion convolutional neural network for cross-subject EEG motor imagery classification,’’ Computers, vol. 9, no. 3, p. 72, Sep. 2020. [43] J. J. Liao, J. J. Luo, T. Yang, R. Q. Y. So, and M. C. H. Chua, ‘‘Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network,’’ Brain-Comput. Interfaces, vol. 7, nos. 3–4, pp. 47–56, 2020. [44] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Bencherif, and M. S. Hossain, ‘‘Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification,’’ IEEE Access, vol. 7, pp. 18940–18950, 2019. [45] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Mekhtiche, and M. S. Hossain, ‘‘Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion,’’ Future Gener. Comput. Syst., vol. 101, pp. 542–554, Dec. 2019. [46] H. Wu, Y. Niu, F. Li, Y. Li, B. Fu, G. Shi, and M. Dong, ‘‘A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification,’’ Frontiers Neurosci., vol. 13, p. 1275, Nov. 2019. [47] Z. Wang, L. Cao, Z. Zhang, X. Gong, Y. Sun, and H. Wang, ‘‘Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition,’’ Concurrency Comput. Pract. Exper., vol. 30, no. 23, p. e4413, Dec. 2018. [48] M. Dai, D. Zheng, R. Na, S. Wang, and S. Zhang, ‘‘EEG classification of motor imagery using a novel deep learning framework,’’ Sensors, vol. 19, p. 551, 2019. [49] T. Wang, E. Dong, S. Du, and C. Jia, ‘‘A shallow convolutional neural network for classifying MI-EEG,’’ in Proc. Chin. Autom. Congr. (CAC), Nov. 2019, pp. 5837–5841. [50] Z. Tayeb, J. Fedjaev, N. Ghaboosi, C. Richter, L. Everding, X. Qu, Y. Wu, G. Cheng, and J. Conradt, ‘‘Validating deep neural networks for online decoding of motor imagery movements from EEG signals,’’ Sensors, vol. 19, no. 1, p. 210, Jan. 2019. [51] W. Qiao and X. Bi, ‘‘Deep spatial-temporal neural network for classification of EEG-based motor imagery,’’ in Proc. Int. Conf. Artif. Intell. Comput. Sci., Jul. 2019, pp. 265–272. [52] W. Abbas and N. A. Khan, ‘‘DeepMI: Deep learning for multiclass motor imagery classification,’’ in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2018, pp. 219–222. [53] Z. Zhang, F. Duan, J. Sole-Casals, J. Dinares-Ferran, A. Cichocki, Z. Yang, and Z. Sun, ‘‘A novel deep learning approach with data augmentation to classify motor imagery signals,’’ IEEE Access, vol. 7, pp. 15945–15954, 2019. [54] H. Dose, J. S. Møller, H. K. Iversen, and S. Puthusserypady, ‘‘An end-toend deep learning approach to MI-EEG signal classification for BCIs,’’ Expert Syst. Appl., vol. 114, pp. 532–542, Dec. 2018. [55] M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K. J. Miller, G. R. Müller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, and B. Blankertz, ‘‘Review of the BCI competition IV,’’ Frontiers Neurosci., vol. 6, p. 55, Jul. 2012. [56] C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, ‘‘BCI competition 2008–Graz data set A,’’ Inst. Knowl. Discovery (Lab. Brain-Comput. Interfaces), Graz Univ. Technol., vol. 16, pp. 1–6, 2008. [57] Y. R. Tabar and U. Halici, ‘‘A novel deep learning approach for classification of EEG motor imagery signals,’’ J. Neural Eng., vol. 14, no. 1, Feb. 2017, Art. no. 016003. [58] G. Xu, X. Shen, S. Chen, Y. Zong, C. Zhang, H. Yue, M. Liu, F. Chen, and W. Che, ‘‘A deep transfer convolutional neural network framework for EEG signal classification,’’ IEEE Access, vol. 7, pp. 112767–112776, 2019. [59] F. Li, F. He, F. Wang, D. Zhang, Y. Xia, and X. Li, ‘‘A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning,’’ Appl. Sci., vol. 10, no. 5, p. 1605, Feb. 2020. [60] S. Roy, A. Chowdhury, K. McCreadie, and G. Prasad, ‘‘Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces,’’ Frontiers Neurosci., vol. 14, Sep. 2020. [61] B. Sun, X. Zhao, H. Zhang, R. Bai, and T. Li, ‘‘EEG motor imagery classification with sparse spectrotemporal decomposition and deep learning,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 541–551, Apr. 2021. [62] B. Blankertz, K.-R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlogl, G. Pfurtscheller, J. R. Millan, M. Schroder, and N. Birbaumer, ‘‘The BCI competition III: Validating alternative approaches to actual BCI problems,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 153–159, Jun. 2006. [63] S. Selim, M. M. Tantawi, H. A. Shedeed, and A. Badr, ‘‘A CSP/AMBA-SVM approach for motor imagery BCI system,’’ IEEE Access, vol. 6, pp. 49192–49208, 2018. [64] Y. Park and W. Chung, ‘‘Optimal channel selection using correlation coefficient for CSP based EEG classification,’’ IEEE Access, vol. 8, pp. 111514–111521, 2020. [65] Y. Guo, Y. Zhang, Z. Chen, Y. Liu, and W. Chen, ‘‘EEG classification by filter band component regularized common spatial pattern for motor imagery,’’ Biomed. Signal Process. Control, vol. 59, May 2020, Art. no. 101917. [66] A. Singh, S. Lal, and H. Guesgen, ‘‘Reduce calibration time in motor imagery using spatially regularized symmetric positives-definite matrices based classification,’’ Sensors, vol. 19, no. 2, p. 379, Jan. 2019. [67] J. Jin, Y. Miao, I. Daly, C. Zuo, D. Hu, and A. Cichocki, ‘‘Correlationbased channel selection and regularized feature optimization for MI-based BCI,’’ Neural Netw., vol. 118, pp. 262–270, Oct. 2019. [68] M. Dai, D. Zheng, S. Liu, and P. Zhang, ‘‘Transfer kernel common spatial patterns for motor imagery brain-computer interface classification,’’ Comput. Math. Methods Med., vol. 2018, pp. 1–9, Mar. 2018. [69] S. Huang, H. Peng, Y. Chen, K. Sun, F. Shen, T. Wang, and T. Ma, ‘‘Tensor discriminant analysis for MI-EEG signal classification using convolutional neural network,’’ in Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 5971–5974. [70] M. Miao, W. Hu, H. Yin, and K. Zhang, ‘‘Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network,’’ Comput. Math. Methods Med., vol. 2020, pp. 1–13, Jul. 2020. [71] O. Attallah, J. Abougharbia, M. Tamazin, and A. A. Nasser, ‘‘A BCI system based on motor imagery for assisting people with motor deficiencies in the limbs,’’ Brain Sci., vol. 10, no. 11, p. 864, Nov. 2020. [72] R. Leeb, C. Brunner, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, ‘‘BCI competition 2008–Graz data set B,’’ Graz Univ. Technol., Graz, Austria, Tech. Rep., 2008, pp. 1–6. [73] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, ‘‘Filter bank common spatial pattern (FBCSP) in brain-computer interface,’’ in Proc. IEEE Int. Joint Conf. Neural Netw. (IEEE World Congr. Comput. Intell.), Jun. 2008, pp. 2390–2397. [74] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 448–456. [75] I. Nusrat and S.-B. Jang, ‘‘A comparison of regularization techniques in deep neural networks,’’ Symmetry, vol. 10, no. 11, p. 648, Nov. 2018. [76] H. Alemu, W. Wu, and J. Zhao, ‘‘Feedforward neural networks with a hidden layer regularization method,’’ Symmetry, vol. 10, no. 10, p. 525, Oct. 2018. [77] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015. [78] S. Raschka, ‘‘Model evaluation, model selection, and algorithm selection in machine learning,’’ 2018, arXiv:1811.12808. [Online]. Available: http://arxiv.org/abs/1811.12808 [79] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics Bull., vol. 1, no. 6, pp. 80–83, 1945. [80] H. K. Lee and Y.-S. Choi, ‘‘Application of continuous wavelet transform and convolutional neural network in decoding motor imagery braincomputer interface,’’ Entropy, vol. 21, no. 12, p. 1199, Dec. 2019. [81] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea, ‘‘Visualizing the hidden activity of artificial neural networks,’’ IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 1, pp. 101–110, Jan. 2017. [82] A. A. Frolov, O. Mokienko, R. Lyukmanov, E. Biryukova, S. Kotov, L. Turbina, G. Nadareyshvily, and Y. Bushkova, ‘‘Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)- controlled hand exoskeleton: A randomized controlled multicenter trial,’’ Frontiers Neurosci., vol. 11, p. 400, Jul. 2017. [83] A. A. S. Leon and J. R. N. Alvarez, ‘‘1D convolutional neural network for detecting ventricular heartbeats,’’ IEEE Latin Amer. Trans., vol. 17, no. 12, pp. 1970–1977, Dec. 2019, doi: 10.1109/TLA.2019.9011541. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE Xplore |
dc.source.spa.fl_str_mv |
IEEE Access |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/9461749 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9f6d04e5-6fdb-4231-b664-838ededdb5a9/download https://repositorio.cuc.edu.co/bitstreams/8a20db02-d196-48dd-84e6-e9f174925712/download https://repositorio.cuc.edu.co/bitstreams/32fe56e4-e847-41d4-bda9-d49982b9be30/download https://repositorio.cuc.edu.co/bitstreams/1a0beef3-4e92-4fd1-8f3e-02d4cd255d63/download https://repositorio.cuc.edu.co/bitstreams/3622440d-13ea-4e1a-87e8-092d174959ef/download https://repositorio.cuc.edu.co/bitstreams/5be87532-92bd-4d99-963f-e44fe256fcd1/download |
bitstream.checksum.fl_str_mv |
7c2c4ffa774d383d03212bd70ec05073 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 71d97f8ee7b646d00cc981471eb0b87d 71d97f8ee7b646d00cc981471eb0b87d f33d3ff74ebbfa230290a0c3ca5d2523 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760739491250176 |
spelling |
milanés hermosilla, dailyTrujillo Codorniú, RafaelLópez Baracaldo, RenéSagaro Zamora, RobertoDelisle-Rodriguez, DenisLlosas Albuerne, YolandaNúñez Alvarez, José Ricardo2021-07-23T22:18:21Z2021-07-23T22:18:21Z20212169-3536https://hdl.handle.net/11323/847510.1109/ACCESS.2021.3091399Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Many studies applying Brain-Computer Interfaces (BCIs) based on Motor Imagery (MI) tasks for rehabilitation have demonstrated the important role of detecting the Event-Related Desynchronization (ERD) to recognize the user’s motor intention. Nowadays, the development of MI-based BCI approaches without or with very few calibration stages session-by-session for different days or weeks is still an open and emergent scope. In this work, a new scheme is proposed by applying Convolutional Neural Networks (CNN) for MI classification, using an end-to-end Shallow architecture that contains two convolutional layers for temporal and spatial feature extraction. We hypothesize that a BCI designed for capturing event-related desynchronization/synchronization (ERD/ERS) at the CNN input, with an adequate network design, may enhance the MI classification with fewer calibration stages. The proposed system using the same architecture was tested on three public datasets through multiple experiments, including both subject-specific and non-subject-specific training. Comparable and also superior results with respect to the state-of-the-art were obtained. On subjects whose EEG data were never used in the training process, our scheme also achieved promising results with respect to existing non-subject-specific BCIs, which shows greater progress in facilitating clinical applications.milanés hermosilla, daily-will be generated-orcid-0000-0003-4463-9263-600Trujillo Codorniú, RafaelLópez Baracaldo, RenéSagaro Zamora, Roberto-will be generated-orcid-0000-0001-5808-1999-600Delisle-Rodriguez, Denis-will be generated-orcid-0000-0002-8937-031X-600Llosas Albuerne, Yolanda-will be generated-orcid-0000-0002-5713-0565-600Núñez Alvarez, José Ricardo-will be generated-orcid-0000-0002-6607-7305-600application/pdfengIEEE XploreCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2IEEE Accesshttps://ieeexplore.ieee.org/document/9461749Brain-computer interfaceEEGMotor imageryShallow convolutional neural networksShallow convolutional network excel for classifying motor imagery EEG in BCI applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] D. L. Schomer and F. L. Da Silva, Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 6th ed. Lippincott Williams & Wilkins, 2012.[2] M. Clerc, L. Bougrain, and F. Lotte, Brain-Computer Interfaces: Methods and Perspectives. Hoboken, NJ, USA: Wiley, 2016.[3] U. Chaudhary, N. Birbaumer, and A. Ramos, ‘‘Brain–computer interfaces for communication and rehabilitation,’’ Nature Rev. Neurol., vol. 12, pp. 513–525, Aug. 2016.[4] K. K. Ang and C. Guan, ‘‘Brain-computer interface in stroke rehabilitation,’’ J. Comput. Sci. Eng., vol. 7, no. 2, pp. 139–146, 2013.[5] K. K. Ang and C. Guan, ‘‘Brain–computer interface for neurorehabilitation of upper limb after stroke,’’ in Proc. IEEE, vol. 103, no. 6, pp. 944–953, May 2015.[6] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, ‘‘A spelling device for the paralysed,’’ Nature, vol. 398, no. 6725, pp. 297–298, Mar. 1999.[7] D. Beukelman, S. Fager, and A. Nordness, ‘‘Communication support for people with ALS,’’ Neurol. Res. Int., vol. 2011, 2011.[8] U. Chaudhary and N. Birbaumer, ‘‘Communication in locked-in state after brainstem stroke: A brain-computer-interface approach,’’ Ann. Transl. Med., vol. 3, no. 1, 2015.[9] N. Mrachacz-Kersting, N. Jiang, A. J. T. Stevenson, I. K. Niazi, V. Kostic, A. Pavlovic, S. Radovanovic, M. Djuric-Jovicic, F. Agosta, K. Dremstrup, and D. Farina, ‘‘Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface,’’ J. Neurophysiol., vol. 115, no. 3, pp. 1410–1421, Mar. 2016.[10] G. Pfurtscheller, G. R. Müller, J. Pfurtscheller, H. J. Gerner, and R. Rupp, ‘‘‘Thought’—Control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia,’’ Neurosci. Lett., vol. 351, no. 1, pp. 33–36, Nov. 2003.[11] J. Lüdemann-Podubecká, K. Bösl, and D. A. Nowak, ‘‘Repetitive transcranial magnetic stimulation in post stroke upper limb spasticity,’’ Case Med. Res., vol. 218, pp. 281–311, Aug. 2019.[12] A. Kübler, A. Furdea, S. Halder, E. M. Hammer, F. Nijboer, and B. Kotchoubey, ‘‘A brain-computer interface controlled auditory eventrelated potential (P300) spelling system for locked-in patients,’’ Ann. New York Acad. Sci., vol. 1157, no. 1, pp. 90–100, Mar. 2009.[13] G. Pires, U. Nunes, and M. Castelo-Branco, ‘‘Statistical spatial filtering for a P300-based BCI: Tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis,’’ J. Neurosci. Methods, vol. 195, no. 2, pp. 270–281, Feb. 2011.[14] D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, ‘‘A survey of stimulation methods used in SSVEP-based BCIs,’’ Comput. Intell. Neurosci., vol. 2010, pp. 1–12, Jan. 2010.[15] D. Lesenfants, D. Habbal, Z. Lugo, M. Lebeau, P. Horki, E. Amico, C. Pokorny, F. Gómez, A. Soddu, G. Müller-Putz, S. Laureys, and Q. Noirhomme, ‘‘An independent SSVEP-based brain–computer interface in locked-in syndrome,’’ J. Neural Eng., vol. 11, no. 3, Jun. 2014, Art. no. 035002.[16] K. K. Ang, C. Guan, K. S. Phua, C. Wang, L. Zhou, K. Y. Tang, G. J. E. Joseph, C. W. K. Kuah, and K. S. G. Chua, ‘‘Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled trial for chronic stroke,’’ Frontiers Neuroeng., vol. 7, p. 30, Jul. 2014.[17] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan, ‘‘Brain-computer interfaces for communication and control,’’ Clin. Neurophys., vol. 113, no. 6, pp. 767–791, 2002.[18] G. Pfurtscheller, C. Guger, G. Müller, G. Krausz, and C. Neuper, ‘‘Brain oscillations control hand orthosis in a tetraplegic,’’ Neurosci. Lett., vol. 292, no. 3, pp. 211–214, Oct. 2000.[19] G. Pfurtscheller and F. H. L. da Silva, ‘‘Event-related EEG/MEG synchronization and esynchronization: Basic principles,’’ Clin. Neurophysiol., vol. 110, no. 11, pp. 1842–1857, Nov. 1999.[20] G. Pfurtscheller and A. Aranibar, ‘‘Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement,’’ Electroencephalogr. Clin. Neurophysiol., vol. 46, no. 2, pp. 138–146, Feb. 1979.[21] G. Pfurtscheller, ‘‘Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest,’’ Electroencephalogr. Clin. Neurophysiol., vol. 83, no. 1, pp. 62–69, Jul. 1992.[22] G. Pfurtscheller, K. Zalaudek, and C. Neuper, ‘‘Event-related beta synchronization after wrist, finger and thumb movement,’’ Electroencephalogr. Clin. Neurophysiol./Electromyograp. Motor Control, vol. 109, no. 2, pp. 154–160, Apr. 1998.[23] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball, ‘‘Deep learning with convolutional neural networks for EEG decoding and visualization,’’ Hum. Brain Mapping, vol. 38, no. 11, pp. 5391–5420, Nov. 2017.[24] S. Sakhavi and C. Guan, ‘‘Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data in motor imagery BCI,’’ in Proc. 8th Int. IEEE/EMBS Conf. Neural Eng. (NER), May 2017, pp. 588–591.[25] G. Pfurtscheller, C. Neuper, A. Schlogl, and K. Lugger, ‘‘Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,’’ IEEE Trans. Rehabil. Eng., vol. 6, no. 3, pp. 316–325, Sep. 1998.[26] C.-I. Hung, P.-L. Lee, Y.-T. Wu, L.-F. Chen, T.-C. Yeh, and J.-C. Hsieh, ‘‘Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers,’’ Ann. Biomed. Eng., vol. 33, no. 8, pp. 1053–1070, Aug. 2005.[27] Y. Zhang, X. Zhang, H. Sun, Z. Fan, and X. Zhong, ‘‘Portable braincomputer interface based on novel convolutional neural network,’’ Comput. Biol. Med., vol. 107, pp. 248–256, Apr. 2019.[28] S. Kelly, D. Burke, P. de Chazal, and R. Reilly, ‘‘Parametric models and spectral analysis for classification in brain-computer interfaces,’’ in Proc. 14th Int. Conf. Digit. Signal Process. (DSP), 2002, pp. 307–310.[29] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. H. L. da Silva, ‘‘Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,’’ NeuroImage, vol. 31, no. 1, pp. 153–159, May 2006.[30] G. Pfurtscheller, A. Stancák, and C. Neuper, ‘‘Post-movement beta synchronization. A correlate of an idling motor area?’’ Electroencephalogr. Clin. Neurophysiol., vol. 98, no. 4, pp. 281–293, Apr. 1996.[31] Z. Tang, S. Sun, S. Zhang, Y. Chen, C. Li, and S. Chen, ‘‘A brain-machine interface based on ERD/ERS for an upper-limb exoskeleton control,’’ Sensors, vol. 16, no. 12, p. 2050, Dec. 2016.[32] G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, ‘‘Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study,’’ J. NeuroEngineering Rehabil., vol. 7, no. 1, p. 60, Dec. 2010.[33] Y. Hashimoto and J. Ushiba, ‘‘EEG-based classification of imaginary left and right foot movements using beta rebound,’’ Clin. Neurophysiol., vol. 124, no. 11, pp. 2153–2160, Nov. 2013.[34] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, ‘‘A review of classification algorithms for EEG-based brain–computer interfaces,’’ J. Neural Eng., vol. 4, no. 2, pp. R1–R13, 2007.[35] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger, ‘‘A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update,’’ J. Neural Eng., vol. 15, no. 3, Jun. 2018, Art. no. 031005.[36] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, ‘‘Optimal spatial filtering of single trial EEG during imagined hand movement,’’ IEEE Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441–446, Dec. 2000.[37] K. Fukunaga, Statistical Pattern Recognition, 2nd ed. New York, NY, USA: Academic, 1990.[38] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, ‘‘Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b,’’ Frontiers Neurosci., vol. 6, p. 39, Mar. 2012.[39] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning nature,’’ Nature, vol. 521, pp. 436–444, 2015.[40] A. Craik, Y. He, and J. L. Contreras-Vidal, ‘‘Deep learning for electroencephalogram (EEG) classification tasks: A review,’’ J. Neural Eng., vol. 16, no. 3, Jun. 2019, Art. no. 031001.[41] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, ‘‘Deep learning-based electroencephalography analysis: A systematic review,’’ J. Neural Eng., vol. 16, no. 5, Aug. 2019, Art. no. 051001.[42] K. Roots, Y. Muhammad, and N. Muhammad, ‘‘Fusion convolutional neural network for cross-subject EEG motor imagery classification,’’ Computers, vol. 9, no. 3, p. 72, Sep. 2020.[43] J. J. Liao, J. J. Luo, T. Yang, R. Q. Y. So, and M. C. H. Chua, ‘‘Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network,’’ Brain-Comput. Interfaces, vol. 7, nos. 3–4, pp. 47–56, 2020.[44] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Bencherif, and M. S. Hossain, ‘‘Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification,’’ IEEE Access, vol. 7, pp. 18940–18950, 2019.[45] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Mekhtiche, and M. S. Hossain, ‘‘Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion,’’ Future Gener. Comput. Syst., vol. 101, pp. 542–554, Dec. 2019.[46] H. Wu, Y. Niu, F. Li, Y. Li, B. Fu, G. Shi, and M. Dong, ‘‘A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification,’’ Frontiers Neurosci., vol. 13, p. 1275, Nov. 2019.[47] Z. Wang, L. Cao, Z. Zhang, X. Gong, Y. Sun, and H. Wang, ‘‘Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition,’’ Concurrency Comput. Pract. Exper., vol. 30, no. 23, p. e4413, Dec. 2018.[48] M. Dai, D. Zheng, R. Na, S. Wang, and S. Zhang, ‘‘EEG classification of motor imagery using a novel deep learning framework,’’ Sensors, vol. 19, p. 551, 2019.[49] T. Wang, E. Dong, S. Du, and C. Jia, ‘‘A shallow convolutional neural network for classifying MI-EEG,’’ in Proc. Chin. Autom. Congr. (CAC), Nov. 2019, pp. 5837–5841.[50] Z. Tayeb, J. Fedjaev, N. Ghaboosi, C. Richter, L. Everding, X. Qu, Y. Wu, G. Cheng, and J. Conradt, ‘‘Validating deep neural networks for online decoding of motor imagery movements from EEG signals,’’ Sensors, vol. 19, no. 1, p. 210, Jan. 2019.[51] W. Qiao and X. Bi, ‘‘Deep spatial-temporal neural network for classification of EEG-based motor imagery,’’ in Proc. Int. Conf. Artif. Intell. Comput. Sci., Jul. 2019, pp. 265–272.[52] W. Abbas and N. A. Khan, ‘‘DeepMI: Deep learning for multiclass motor imagery classification,’’ in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2018, pp. 219–222.[53] Z. Zhang, F. Duan, J. Sole-Casals, J. Dinares-Ferran, A. Cichocki, Z. Yang, and Z. Sun, ‘‘A novel deep learning approach with data augmentation to classify motor imagery signals,’’ IEEE Access, vol. 7, pp. 15945–15954, 2019.[54] H. Dose, J. S. Møller, H. K. Iversen, and S. Puthusserypady, ‘‘An end-toend deep learning approach to MI-EEG signal classification for BCIs,’’ Expert Syst. Appl., vol. 114, pp. 532–542, Dec. 2018.[55] M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K. J. Miller, G. R. Müller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, and B. Blankertz, ‘‘Review of the BCI competition IV,’’ Frontiers Neurosci., vol. 6, p. 55, Jul. 2012.[56] C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, ‘‘BCI competition 2008–Graz data set A,’’ Inst. Knowl. Discovery (Lab. Brain-Comput. Interfaces), Graz Univ. Technol., vol. 16, pp. 1–6, 2008.[57] Y. R. Tabar and U. Halici, ‘‘A novel deep learning approach for classification of EEG motor imagery signals,’’ J. Neural Eng., vol. 14, no. 1, Feb. 2017, Art. no. 016003.[58] G. Xu, X. Shen, S. Chen, Y. Zong, C. Zhang, H. Yue, M. Liu, F. Chen, and W. Che, ‘‘A deep transfer convolutional neural network framework for EEG signal classification,’’ IEEE Access, vol. 7, pp. 112767–112776, 2019.[59] F. Li, F. He, F. Wang, D. Zhang, Y. Xia, and X. Li, ‘‘A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning,’’ Appl. Sci., vol. 10, no. 5, p. 1605, Feb. 2020.[60] S. Roy, A. Chowdhury, K. McCreadie, and G. Prasad, ‘‘Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces,’’ Frontiers Neurosci., vol. 14, Sep. 2020.[61] B. Sun, X. Zhao, H. Zhang, R. Bai, and T. Li, ‘‘EEG motor imagery classification with sparse spectrotemporal decomposition and deep learning,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 541–551, Apr. 2021.[62] B. Blankertz, K.-R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlogl, G. Pfurtscheller, J. R. Millan, M. Schroder, and N. Birbaumer, ‘‘The BCI competition III: Validating alternative approaches to actual BCI problems,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 153–159, Jun. 2006.[63] S. Selim, M. M. Tantawi, H. A. Shedeed, and A. Badr, ‘‘A CSP/AMBA-SVM approach for motor imagery BCI system,’’ IEEE Access, vol. 6, pp. 49192–49208, 2018.[64] Y. Park and W. Chung, ‘‘Optimal channel selection using correlation coefficient for CSP based EEG classification,’’ IEEE Access, vol. 8, pp. 111514–111521, 2020.[65] Y. Guo, Y. Zhang, Z. Chen, Y. Liu, and W. Chen, ‘‘EEG classification by filter band component regularized common spatial pattern for motor imagery,’’ Biomed. Signal Process. Control, vol. 59, May 2020, Art. no. 101917.[66] A. Singh, S. Lal, and H. Guesgen, ‘‘Reduce calibration time in motor imagery using spatially regularized symmetric positives-definite matrices based classification,’’ Sensors, vol. 19, no. 2, p. 379, Jan. 2019.[67] J. Jin, Y. Miao, I. Daly, C. Zuo, D. Hu, and A. Cichocki, ‘‘Correlationbased channel selection and regularized feature optimization for MI-based BCI,’’ Neural Netw., vol. 118, pp. 262–270, Oct. 2019.[68] M. Dai, D. Zheng, S. Liu, and P. Zhang, ‘‘Transfer kernel common spatial patterns for motor imagery brain-computer interface classification,’’ Comput. Math. Methods Med., vol. 2018, pp. 1–9, Mar. 2018.[69] S. Huang, H. Peng, Y. Chen, K. Sun, F. Shen, T. Wang, and T. Ma, ‘‘Tensor discriminant analysis for MI-EEG signal classification using convolutional neural network,’’ in Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 5971–5974.[70] M. Miao, W. Hu, H. Yin, and K. Zhang, ‘‘Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network,’’ Comput. Math. Methods Med., vol. 2020, pp. 1–13, Jul. 2020.[71] O. Attallah, J. Abougharbia, M. Tamazin, and A. A. Nasser, ‘‘A BCI system based on motor imagery for assisting people with motor deficiencies in the limbs,’’ Brain Sci., vol. 10, no. 11, p. 864, Nov. 2020.[72] R. Leeb, C. Brunner, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, ‘‘BCI competition 2008–Graz data set B,’’ Graz Univ. Technol., Graz, Austria, Tech. Rep., 2008, pp. 1–6.[73] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, ‘‘Filter bank common spatial pattern (FBCSP) in brain-computer interface,’’ in Proc. IEEE Int. Joint Conf. Neural Netw. (IEEE World Congr. Comput. Intell.), Jun. 2008, pp. 2390–2397.[74] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 448–456.[75] I. Nusrat and S.-B. Jang, ‘‘A comparison of regularization techniques in deep neural networks,’’ Symmetry, vol. 10, no. 11, p. 648, Nov. 2018.[76] H. Alemu, W. Wu, and J. Zhao, ‘‘Feedforward neural networks with a hidden layer regularization method,’’ Symmetry, vol. 10, no. 10, p. 525, Oct. 2018.[77] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015.[78] S. Raschka, ‘‘Model evaluation, model selection, and algorithm selection in machine learning,’’ 2018, arXiv:1811.12808. [Online]. Available: http://arxiv.org/abs/1811.12808[79] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics Bull., vol. 1, no. 6, pp. 80–83, 1945.[80] H. K. Lee and Y.-S. Choi, ‘‘Application of continuous wavelet transform and convolutional neural network in decoding motor imagery braincomputer interface,’’ Entropy, vol. 21, no. 12, p. 1199, Dec. 2019.[81] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea, ‘‘Visualizing the hidden activity of artificial neural networks,’’ IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 1, pp. 101–110, Jan. 2017.[82] A. A. Frolov, O. Mokienko, R. Lyukmanov, E. Biryukova, S. Kotov, L. Turbina, G. Nadareyshvily, and Y. Bushkova, ‘‘Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)- controlled hand exoskeleton: A randomized controlled multicenter trial,’’ Frontiers Neurosci., vol. 11, p. 400, Jul. 2017.[83] A. A. S. Leon and J. R. N. Alvarez, ‘‘1D convolutional neural network for detecting ventricular heartbeats,’’ IEEE Latin Amer. Trans., vol. 17, no. 12, pp. 1970–1977, Dec. 2019, doi: 10.1109/TLA.2019.9011541.PublicationORIGINALShallow Convolutional Network Excel for.pdfShallow Convolutional Network Excel for.pdfapplication/pdf2954850https://repositorio.cuc.edu.co/bitstreams/9f6d04e5-6fdb-4231-b664-838ededdb5a9/download7c2c4ffa774d383d03212bd70ec05073MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/8a20db02-d196-48dd-84e6-e9f174925712/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/32fe56e4-e847-41d4-bda9-d49982b9be30/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILShallow Convolutional Network Excel for.pdf.jpgShallow Convolutional Network Excel for.pdf.jpgimage/jpeg68481https://repositorio.cuc.edu.co/bitstreams/1a0beef3-4e92-4fd1-8f3e-02d4cd255d63/download71d97f8ee7b646d00cc981471eb0b87dMD54THUMBNAILShallow Convolutional Network Excel for.pdf.jpgShallow Convolutional Network Excel for.pdf.jpgimage/jpeg68481https://repositorio.cuc.edu.co/bitstreams/3622440d-13ea-4e1a-87e8-092d174959ef/download71d97f8ee7b646d00cc981471eb0b87dMD54TEXTShallow Convolutional Network Excel for.pdf.txtShallow Convolutional Network Excel for.pdf.txttext/plain64376https://repositorio.cuc.edu.co/bitstreams/5be87532-92bd-4d99-963f-e44fe256fcd1/downloadf33d3ff74ebbfa230290a0c3ca5d2523MD5511323/8475oai:repositorio.cuc.edu.co:11323/84752024-09-17 10:54:22.237http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |