Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region

The inclusion of photovoltaic energy in the Colombian energy matrix has had several difficulties due to the lack of energy policies and regulations in renewable energy projects. The lack of government support with subsidies that extend the coverage of PV energy projects in residential areas has made...

Full description

Autores:
Adalberto, Ospino Castro
Robles Algarín, Carlos
Tobón Perez, Juan
Peña Gallardo, Rafael
Acosta Col, Melisa
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7977
Acceso en línea:
https://hdl.handle.net/11323/7977
https://doi.org/10.32479/ijeep.9560
https://repositorio.cuc.edu.co/
Palabra clave:
PV Systems
net Metering
discounted cash flow method
optimal debt ratio
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_531ca2888886b6faf387acdab2f53b55
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7977
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
title Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
spellingShingle Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
PV Systems
net Metering
discounted cash flow method
optimal debt ratio
title_short Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
title_full Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
title_fullStr Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
title_full_unstemmed Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
title_sort Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
dc.creator.fl_str_mv Adalberto, Ospino Castro
Robles Algarín, Carlos
Tobón Perez, Juan
Peña Gallardo, Rafael
Acosta Col, Melisa
dc.contributor.author.spa.fl_str_mv Adalberto, Ospino Castro
Robles Algarín, Carlos
Tobón Perez, Juan
Peña Gallardo, Rafael
Acosta Col, Melisa
dc.subject.spa.fl_str_mv PV Systems
net Metering
discounted cash flow method
optimal debt ratio
topic PV Systems
net Metering
discounted cash flow method
optimal debt ratio
description The inclusion of photovoltaic energy in the Colombian energy matrix has had several difficulties due to the lack of energy policies and regulations in renewable energy projects. The lack of government support with subsidies that extend the coverage of PV energy projects in residential areas has made the collection of funds more challenging. This paper presents a techno-economic analysis for the implementation of grid-connected photovoltaic projects on the roofs of residential areas, under the net metering policy framework. For the profitability analysis, the discounted cash flow (DCF) method was used. The revenues were obtained from the forecasts of the electrical power production of the PV system, based on the characteristics of the Colombian Caribbean Region. For this purpose, the meteorological data (2013-2017) of this region were used as an input for the calculation of the economic benefits that can be achieved with the implementation of PV systems. Based on the technical sizing and economic assumptions, it was proved that the DCF method allows to accurately determine the optimal debt ratio. After evaluating the three scenarios proposed, it was demonstrated that profitability and self-sustainability, with investment from creditors, is obtained from the implementation of PV systems of at least 3 kWp.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-03-10
dc.date.accessioned.none.fl_str_mv 2021-03-10T15:32:34Z
dc.date.available.none.fl_str_mv 2021-03-10T15:32:34Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7977
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.32479/ijeep.9560
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7977
https://doi.org/10.32479/ijeep.9560
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdin, G.C., Noussan, M. (2018), Electricity storage compared to net metering in residential PV applications. Journal of Cleaner Production, 176, 175-186.
Akter, M.N., Mahmud, M.A., Oo, A.M. (2017), Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study. Energy and Buildings, 138, 332-346.
Asumadu, S.S., Owusu, P.A. (2016), The potential and economic viability of solar photovoltaic power in Ghana. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(5), 709-716.
Banrep. (2017), Banco de la República, Tasas de Captación Semanales y Mensuales. Available from: http://www.banrep.gov.co/es/tasascaptacion-semanales-y-mensuales. [Last accessed on 2019 Apr 10].
Burke, M.J., Stephens, J.C. (2018), Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35, 78-93.
Chamorro, M.V., Silvera, O.C., Ochoa, G.V., Ortiz, E.V., Castro, A.O. (2017), Cálculo de las radiaciones total, directa y difusa a través de la transmisibilidad atmosférica en los departamentos del Cesar, La Guajira y Magdalena (Colombia). Espacios, 38(7), 1-8.
DANE. (2017), Departamento Administrativo Nacional de Estadística. Encuesta Anual Manufacturera (EAM), 1997-2015. Available from: http://www.dane.gov.co/index.php/estadisticas-portema/industria/ encuesta-anual-manufacturera-enam/eam-historicos. [Last accessed on 2018 Jun 11].
DANE. (2018), Departamento Administrativo Nacional de Estadística. Índice de Precios al Consumidor-IPC. Available from: https://www. dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/ indice-de-precios-al-consumidor-ipc. [Last accessed on 2018 Jan 15].
Dellosa, J.T. (2015), Financial Payback of Solar PV Systems and Analysis of the Potential IMPACT of Net-metering in Butuan city. Philippines: IEEE 15th International Conference on Environment and Electrical Engineering. p1453-1458.
Dufo-López, R., Bernal-Agustín, J.L. (2015), A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy, 84, 684-694.
EIA. (2018), Energy Information Administration, Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels. Available from: https://www.eia.gov/electricity/monthly/epm_table_grapher. php?t=epmt_6_07_b. [Last accessed on 2019 Jan 20].
Electrificadora del Caribe S.A. E.S.P. (2018), Tarifas y Subsidios. Available from: http://www.electricaribe.co/tu-energia/#2017. [Last accessed on 2019 Jan 15].
Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., García, A.P., Ulloa, M.C., Martínez, F.J.R., Rueda-Bayona, J.G. (2018), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15-25.
Gaona, E.E., Trujillo, C.L., Guacaneme, J.A. (2015), Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125-137.
García, J., Gutierrez, A., Tobón, L.V., Velasquez, H. (2018), Smart Grids and Demand Response Mechanism: The Case of the Colombian Electricity Market. United States: Center for Research in Economics and Finance (CIEF), Working Papers, 18-20.
Griffiths, S., Mills, R. (2016), Potential of rooftop solar photovoltaics in the energy system evolution of the United Arab Emirates. Energy Strategy Reviews, 9, 1-7.
Ioannou, A.K., Stefanakis, N.E., Boudouvis, A.G. (2014), Design optimization of residential grid-connected photovoltaics on rooftops. Energy and Buildings, 76, 588-596.
Jamil, I., Zhao, J., Zhang, L., Jamil, R., Rafique, S.F. (2017), Evaluation of energy production and energy yield assessment based on feasibility, design, and execution of 3×50 MW grid-connected solar PV pilot project in Nooriabad. International Journal of Photoenergy, 2017, 1-18.
Karki, I.B. (2015), Effect of temperature on the IV characteristics of a polycrystalline solar cell. Journal of Nepal Physical Society, 3(1), 35-40.
Kumar, N.M., Kumar, M.R., Rejoice, P.R., Mathew, M. (2017), Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia, 117, 180-189.
Lima, D.A. (2019), Stochastic analysis of economic viability of photovoltaic panels installation for big consumers in Brazil. Electric Power Systems Research, 173, 164-172.
Lüdeke-Freund, F., Loock, M. (2011), Debt for brands: Tracking down a bias in financing photovoltaic projects in Germany. Journal of Cleaner Production, 19(12), 1356-1364.
Malvoni, M., Leggieri, A., Maggiotto, G., Congedo, P.M., De Giorgi, M.G. (2017), Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy conversion and management, 145, 169-18.
Miranda, R.F., Szklo, A., Schaeffer, R. (2015), Technical-economic potential of PV systems on Brazilian rooftops. Renewable Energy, 75, 694-713.
Mojonero, D.H., Villacorta, A.R., Kuong, J.L., Mojonero, D.H. (2018), Impact assessment of net metering for residential photovoltaic distributed generation in Peru. International Journal of Renewable Energy Research, 8(3), 1-10.
Muñoz, Y., Zafra, D., Acevedo, V., Ospino, A. (2014), Analysis of energy production with different photovoltaic technologies in the Colombian geography. IOP Conference Series: Materials Science and Engineering, 59(1), 1-12.
Núñez, J.R., Benítez, I.F., Proenza, R., Vázquez, L., Díaz, D. (2019), Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática Industrial, 17(1), 94-105.
Ospino-Castro, A., Peña-Gallardo, R., Hernández-Rodríguez, A., Segundo-Ramírez, J., Muñoz-Maldonado, Y.A. (2017), Technoeconomic Evaluation of a Grid-connected Hybrid PV-wind Power Generation System in San Luis Potosi. Mexico: Power, Electronics and Computing (ROPEC). p1-6.
Paez, A.F., Maldonado, Y.M., Castro, A.O., Hernandez, N., Conde, E., Pacheco, L., Sotelo, O. (2017), Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning. International Journal of Energy Economics and Policy, 7(5), 178-190.
Park, J., Kim, H.G., Cho, Y., Shin, C. (2014), Simple modeling and simulation of photovoltaic panels using Matlab/Simulink. Advanced Science and Technology Letters, 73, 147-155.
Peña-Gallardo, R., Ospino-Castro, A., Medina-Ríos, A. (2020), An image processing-based method to assess the monthly energetic complementarity of solar and wind energy in Colombia. Energies, 13(5), 1033.
Pradhan, P., Gadkari, P., Mahajani, S.M., Arora, A. (2019), A conceptual framework and techno-economic analysis of a pelletizationgasification based bioenergy system. Applied Energy, 249, 1-13.
Ramírez-Cerpa, E., Acosta-Coll, M., Vélez-Zapata, J. (2017), Analysis of the climatic conditions for short-term precipitation in urban areas: A case study Barranquilla, Colombia. IDESIA, 35(2), 87-94.
Ramírez-Sagner, G., Mata-Torres, C., Pino, A., Escobar, R.A. (2017), Economic feasibility of residential and commercial PV technology: The Chilean case. Renewable Energy, 111, 332-343.
Rekioua, D., Matagne, E. (2012), Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control. Berlin, Germany: Springer Science and Business Media.
REN 21. (2017), Renewables Now. Policy Landscape. Available from: http://www.ren21.net/gsr-2017/chapters/chapter_05/chapter_05. [Last accessed on 2019 Jan 18].
Robles, A.C.A., Giraldo, J.A.T., Castro, A.J.O. (2018), A procedure for criteria selection in the energy planning of Colombian rural areas. Información Tecnológica, 29(3), 71-80.
Rocha, L.C.S., Aquila, G., de Oliveira Pamplona, E., de Paiva, A.P., Chieregatti, B.G., Lima, J.D.S. (2017), Photovoltaic electricity production in Brazil: A stochastic economic viability analysis for small systems in the face of net metering and tax incentives. Journal of Cleaner Production, 168, 1448-1462.
Rodrigues, S., Chen, X., Morgado-Dias, F.J.E. (2017), Economic analysis of photovoltaic systems for the residential market under China’s new regulation. Energy Policy, 101, 467-472.
Rodrigues, S., Torabikalaki, R., Faria, F., Cafôfo, N., Chen, X., Ivaki, A.R., Morgado-Dias, F.J.S. (2016), Economic feasibility analysis of small scale PV systems in different countries. Solar Energy, 131, 81-95.
Sajjad, I.A., Manganelli, M., Martirano, L., Napoli, R., Chicco, G., Parise, G. (2018), Net-Metering benefits for residential customers: The economic advantages of a proposed user-centric model in Italy. IEEE Industry Applications Magazine, 24(4), 39-49.
Schelly, C., Louie, E.P., Pearce, J.M. (2017), Examining interconnection and net metering policy for distributed generation in the United States. Renewable Energy Focus, 22, 10-19.
Secretaría Distrital de Planeación. (2012), Observatorio: Dinámicas Del Territorio DC. Available from: http://www.sdp.gov.co/sites/default/ files/dice145-tamanospromedios-29052012.pdf. [Last accessed on 2019 Mar 15].
Shivalkar], R.S., Jadhav, H.T., Deo, P. (2015), Feasibility Study for the Net Metering Implementation Energy Consumers. India: International Conference on Circuit, Power and Computing Technologies. p1-6. Sommerfeldt, N., Madani, H. (2017a), Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one-review. Renewable and Sustainable Energy Reviews, 74, 1379-1393.
Sommerfeldt, N., Madani, H. (2017b), Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part two-application. Renewable and Sustainable Energy Reviews, 74, 1394-1404.
SUI. (2018), Sistema Único de Información de Servicios Públicos, Superintendencia de Servicios Públicos Domiciliarios. Available from: http://www.sui.gov.co/SUIAuth/portada.jsp?servicioPortada=4. [Last accessed on 2018 Nov 16].
Ur Rehman, W., Sajjad, I.A., Malik, T.N., Martirano, L., Manganelli, M. (2017), Economic Analysis of Net Metering Regulations for Residential Consumers in Pakistan. United States: Conference Proceedings-2017 17th IEEE International Conference on Environment and Electrical Engineering (EEEIC).
Watts, D., Valdes, M.F., Jara, D., Watson, A. (2015), Potential residential PV development in Chile: The effect of net metering and net billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews, 41, 1037-1051.
Wen, I.J., Pei-Chi, C., Che-Ming, C., Chi-Ming, L. (2008), Performance assessment of ventilated BIPV roofs collocating with outdoor and indoor openings. Journal of Applied Sciences, 8(20), 3572-3582.
Yamaya, H., Ohigashi, T., Matsukawa, H., Kaizuka, I., Ikki, O. (2014), Feed-in tariff program and its impact on PV market in Japan. Tampa, FL, USA: Photovoltaic Specialist Conference, (PVSC). p910-913.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv International Journal of Energy Economics and Policy
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85092410001&doi=10.32479%2fijeep.9560&origin=inward&txGid=2340349b93c5b8b42babc17948a88507
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7977/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7977/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7977/1/Financing%20of%20Residential%20Rooftop%20Photovoltaic%20Projects%20Under%20a%20Net%20Metering%20Policy%20Framework.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7977/4/Financing%20of%20Residential%20Rooftop%20Photovoltaic%20Projects%20Under%20a%20Net%20Metering%20Policy%20Framework.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7977/5/Financing%20of%20Residential%20Rooftop%20Photovoltaic%20Projects%20Under%20a%20Net%20Metering%20Policy%20Framework.pdf.txt
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
b7a2d42b34810044f95f1dec4d0fe26e
124c7d8261c1ed52d460f05a06571502
7c54e90ef22baba9c52aeb85f3b3828a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400121343246336
spelling Adalberto, Ospino Castro074a288a06c15317691c59283f74c172Robles Algarín, Carlos9e951190a3565d3f527ba6c861b118a4Tobón Perez, Juan71c9918a69324c122989b815a0e11d0aPeña Gallardo, Rafael28f1b9addfd74d20355f9353d97b4bb1Acosta Col, Melisa96bcb5d1553ab18bb65a32384ceebe1b2021-03-10T15:32:34Z2021-03-10T15:32:34Z2020-03-10https://hdl.handle.net/11323/7977https://doi.org/10.32479/ijeep.9560Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The inclusion of photovoltaic energy in the Colombian energy matrix has had several difficulties due to the lack of energy policies and regulations in renewable energy projects. The lack of government support with subsidies that extend the coverage of PV energy projects in residential areas has made the collection of funds more challenging. This paper presents a techno-economic analysis for the implementation of grid-connected photovoltaic projects on the roofs of residential areas, under the net metering policy framework. For the profitability analysis, the discounted cash flow (DCF) method was used. The revenues were obtained from the forecasts of the electrical power production of the PV system, based on the characteristics of the Colombian Caribbean Region. For this purpose, the meteorological data (2013-2017) of this region were used as an input for the calculation of the economic benefits that can be achieved with the implementation of PV systems. Based on the technical sizing and economic assumptions, it was proved that the DCF method allows to accurately determine the optimal debt ratio. After evaluating the three scenarios proposed, it was demonstrated that profitability and self-sustainability, with investment from creditors, is obtained from the implementation of PV systems of at least 3 kWp.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Energy Economics and Policyhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85092410001&doi=10.32479%2fijeep.9560&origin=inward&txGid=2340349b93c5b8b42babc17948a88507PV Systemsnet Meteringdiscounted cash flow methodoptimal debt ratioFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean RegionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbdin, G.C., Noussan, M. (2018), Electricity storage compared to net metering in residential PV applications. Journal of Cleaner Production, 176, 175-186.Akter, M.N., Mahmud, M.A., Oo, A.M. (2017), Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study. Energy and Buildings, 138, 332-346.Asumadu, S.S., Owusu, P.A. (2016), The potential and economic viability of solar photovoltaic power in Ghana. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(5), 709-716.Banrep. (2017), Banco de la República, Tasas de Captación Semanales y Mensuales. Available from: http://www.banrep.gov.co/es/tasascaptacion-semanales-y-mensuales. [Last accessed on 2019 Apr 10].Burke, M.J., Stephens, J.C. (2018), Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35, 78-93.Chamorro, M.V., Silvera, O.C., Ochoa, G.V., Ortiz, E.V., Castro, A.O. (2017), Cálculo de las radiaciones total, directa y difusa a través de la transmisibilidad atmosférica en los departamentos del Cesar, La Guajira y Magdalena (Colombia). Espacios, 38(7), 1-8.DANE. (2017), Departamento Administrativo Nacional de Estadística. Encuesta Anual Manufacturera (EAM), 1997-2015. Available from: http://www.dane.gov.co/index.php/estadisticas-portema/industria/ encuesta-anual-manufacturera-enam/eam-historicos. [Last accessed on 2018 Jun 11].DANE. (2018), Departamento Administrativo Nacional de Estadística. Índice de Precios al Consumidor-IPC. Available from: https://www. dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/ indice-de-precios-al-consumidor-ipc. [Last accessed on 2018 Jan 15].Dellosa, J.T. (2015), Financial Payback of Solar PV Systems and Analysis of the Potential IMPACT of Net-metering in Butuan city. Philippines: IEEE 15th International Conference on Environment and Electrical Engineering. p1453-1458.Dufo-López, R., Bernal-Agustín, J.L. (2015), A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy, 84, 684-694.EIA. (2018), Energy Information Administration, Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels. Available from: https://www.eia.gov/electricity/monthly/epm_table_grapher. php?t=epmt_6_07_b. [Last accessed on 2019 Jan 20].Electrificadora del Caribe S.A. E.S.P. (2018), Tarifas y Subsidios. Available from: http://www.electricaribe.co/tu-energia/#2017. [Last accessed on 2019 Jan 15].Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., García, A.P., Ulloa, M.C., Martínez, F.J.R., Rueda-Bayona, J.G. (2018), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15-25.Gaona, E.E., Trujillo, C.L., Guacaneme, J.A. (2015), Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125-137.García, J., Gutierrez, A., Tobón, L.V., Velasquez, H. (2018), Smart Grids and Demand Response Mechanism: The Case of the Colombian Electricity Market. United States: Center for Research in Economics and Finance (CIEF), Working Papers, 18-20.Griffiths, S., Mills, R. (2016), Potential of rooftop solar photovoltaics in the energy system evolution of the United Arab Emirates. Energy Strategy Reviews, 9, 1-7.Ioannou, A.K., Stefanakis, N.E., Boudouvis, A.G. (2014), Design optimization of residential grid-connected photovoltaics on rooftops. Energy and Buildings, 76, 588-596.Jamil, I., Zhao, J., Zhang, L., Jamil, R., Rafique, S.F. (2017), Evaluation of energy production and energy yield assessment based on feasibility, design, and execution of 3×50 MW grid-connected solar PV pilot project in Nooriabad. International Journal of Photoenergy, 2017, 1-18.Karki, I.B. (2015), Effect of temperature on the IV characteristics of a polycrystalline solar cell. Journal of Nepal Physical Society, 3(1), 35-40.Kumar, N.M., Kumar, M.R., Rejoice, P.R., Mathew, M. (2017), Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia, 117, 180-189.Lima, D.A. (2019), Stochastic analysis of economic viability of photovoltaic panels installation for big consumers in Brazil. Electric Power Systems Research, 173, 164-172.Lüdeke-Freund, F., Loock, M. (2011), Debt for brands: Tracking down a bias in financing photovoltaic projects in Germany. Journal of Cleaner Production, 19(12), 1356-1364.Malvoni, M., Leggieri, A., Maggiotto, G., Congedo, P.M., De Giorgi, M.G. (2017), Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy conversion and management, 145, 169-18.Miranda, R.F., Szklo, A., Schaeffer, R. (2015), Technical-economic potential of PV systems on Brazilian rooftops. Renewable Energy, 75, 694-713.Mojonero, D.H., Villacorta, A.R., Kuong, J.L., Mojonero, D.H. (2018), Impact assessment of net metering for residential photovoltaic distributed generation in Peru. International Journal of Renewable Energy Research, 8(3), 1-10.Muñoz, Y., Zafra, D., Acevedo, V., Ospino, A. (2014), Analysis of energy production with different photovoltaic technologies in the Colombian geography. IOP Conference Series: Materials Science and Engineering, 59(1), 1-12.Núñez, J.R., Benítez, I.F., Proenza, R., Vázquez, L., Díaz, D. (2019), Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática Industrial, 17(1), 94-105.Ospino-Castro, A., Peña-Gallardo, R., Hernández-Rodríguez, A., Segundo-Ramírez, J., Muñoz-Maldonado, Y.A. (2017), Technoeconomic Evaluation of a Grid-connected Hybrid PV-wind Power Generation System in San Luis Potosi. Mexico: Power, Electronics and Computing (ROPEC). p1-6.Paez, A.F., Maldonado, Y.M., Castro, A.O., Hernandez, N., Conde, E., Pacheco, L., Sotelo, O. (2017), Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning. International Journal of Energy Economics and Policy, 7(5), 178-190.Park, J., Kim, H.G., Cho, Y., Shin, C. (2014), Simple modeling and simulation of photovoltaic panels using Matlab/Simulink. Advanced Science and Technology Letters, 73, 147-155.Peña-Gallardo, R., Ospino-Castro, A., Medina-Ríos, A. (2020), An image processing-based method to assess the monthly energetic complementarity of solar and wind energy in Colombia. Energies, 13(5), 1033.Pradhan, P., Gadkari, P., Mahajani, S.M., Arora, A. (2019), A conceptual framework and techno-economic analysis of a pelletizationgasification based bioenergy system. Applied Energy, 249, 1-13.Ramírez-Cerpa, E., Acosta-Coll, M., Vélez-Zapata, J. (2017), Analysis of the climatic conditions for short-term precipitation in urban areas: A case study Barranquilla, Colombia. IDESIA, 35(2), 87-94.Ramírez-Sagner, G., Mata-Torres, C., Pino, A., Escobar, R.A. (2017), Economic feasibility of residential and commercial PV technology: The Chilean case. Renewable Energy, 111, 332-343.Rekioua, D., Matagne, E. (2012), Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control. Berlin, Germany: Springer Science and Business Media.REN 21. (2017), Renewables Now. Policy Landscape. Available from: http://www.ren21.net/gsr-2017/chapters/chapter_05/chapter_05. [Last accessed on 2019 Jan 18].Robles, A.C.A., Giraldo, J.A.T., Castro, A.J.O. (2018), A procedure for criteria selection in the energy planning of Colombian rural areas. Información Tecnológica, 29(3), 71-80.Rocha, L.C.S., Aquila, G., de Oliveira Pamplona, E., de Paiva, A.P., Chieregatti, B.G., Lima, J.D.S. (2017), Photovoltaic electricity production in Brazil: A stochastic economic viability analysis for small systems in the face of net metering and tax incentives. Journal of Cleaner Production, 168, 1448-1462.Rodrigues, S., Chen, X., Morgado-Dias, F.J.E. (2017), Economic analysis of photovoltaic systems for the residential market under China’s new regulation. Energy Policy, 101, 467-472.Rodrigues, S., Torabikalaki, R., Faria, F., Cafôfo, N., Chen, X., Ivaki, A.R., Morgado-Dias, F.J.S. (2016), Economic feasibility analysis of small scale PV systems in different countries. Solar Energy, 131, 81-95.Sajjad, I.A., Manganelli, M., Martirano, L., Napoli, R., Chicco, G., Parise, G. (2018), Net-Metering benefits for residential customers: The economic advantages of a proposed user-centric model in Italy. IEEE Industry Applications Magazine, 24(4), 39-49.Schelly, C., Louie, E.P., Pearce, J.M. (2017), Examining interconnection and net metering policy for distributed generation in the United States. Renewable Energy Focus, 22, 10-19.Secretaría Distrital de Planeación. (2012), Observatorio: Dinámicas Del Territorio DC. Available from: http://www.sdp.gov.co/sites/default/ files/dice145-tamanospromedios-29052012.pdf. [Last accessed on 2019 Mar 15].Shivalkar], R.S., Jadhav, H.T., Deo, P. (2015), Feasibility Study for the Net Metering Implementation Energy Consumers. India: International Conference on Circuit, Power and Computing Technologies. p1-6. Sommerfeldt, N., Madani, H. (2017a), Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one-review. Renewable and Sustainable Energy Reviews, 74, 1379-1393.Sommerfeldt, N., Madani, H. (2017b), Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part two-application. Renewable and Sustainable Energy Reviews, 74, 1394-1404.SUI. (2018), Sistema Único de Información de Servicios Públicos, Superintendencia de Servicios Públicos Domiciliarios. Available from: http://www.sui.gov.co/SUIAuth/portada.jsp?servicioPortada=4. [Last accessed on 2018 Nov 16].Ur Rehman, W., Sajjad, I.A., Malik, T.N., Martirano, L., Manganelli, M. (2017), Economic Analysis of Net Metering Regulations for Residential Consumers in Pakistan. United States: Conference Proceedings-2017 17th IEEE International Conference on Environment and Electrical Engineering (EEEIC).Watts, D., Valdes, M.F., Jara, D., Watson, A. (2015), Potential residential PV development in Chile: The effect of net metering and net billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews, 41, 1037-1051.Wen, I.J., Pei-Chi, C., Che-Ming, C., Chi-Ming, L. (2008), Performance assessment of ventilated BIPV roofs collocating with outdoor and indoor openings. Journal of Applied Sciences, 8(20), 3572-3582.Yamaya, H., Ohigashi, T., Matsukawa, H., Kaizuka, I., Ikki, O. (2014), Feed-in tariff program and its impact on PV market in Japan. Tampa, FL, USA: Photovoltaic Specialist Conference, (PVSC). p910-913.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/7977/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7977/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessORIGINALFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework.pdfFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework.pdfapplication/pdf6824https://repositorio.cuc.edu.co/bitstream/11323/7977/1/Financing%20of%20Residential%20Rooftop%20Photovoltaic%20Projects%20Under%20a%20Net%20Metering%20Policy%20Framework.pdfb7a2d42b34810044f95f1dec4d0fe26eMD51open accessTHUMBNAILFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework.pdf.jpgFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework.pdf.jpgimage/jpeg66821https://repositorio.cuc.edu.co/bitstream/11323/7977/4/Financing%20of%20Residential%20Rooftop%20Photovoltaic%20Projects%20Under%20a%20Net%20Metering%20Policy%20Framework.pdf.jpg124c7d8261c1ed52d460f05a06571502MD54open accessTEXTFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework.pdf.txtFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework.pdf.txttext/plain1700https://repositorio.cuc.edu.co/bitstream/11323/7977/5/Financing%20of%20Residential%20Rooftop%20Photovoltaic%20Projects%20Under%20a%20Net%20Metering%20Policy%20Framework.pdf.txt7c54e90ef22baba9c52aeb85f3b3828aMD55open access11323/7977oai:repositorio.cuc.edu.co:11323/79772023-12-14 14:46:41.046CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==