Epithelial transport in disease: an overview of pathophysiology and treatment

Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introductio...

Full description

Autores:
Clemente Suárez, Vicente Javier
Martín Rodríguez, Alexandra
Redondo Flórez, Laura
Villanueva Tobaldo, Carlota Valeria
Yáñez Sepúlveda, Rodrigo
Tornero Aguilera, José Francisco
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13628
Acceso en línea:
https://hdl.handle.net/11323/13628
https://repositorio.cuc.edu.co/
Palabra clave:
Epithelial transport
Ion transport
Hormonal regulation
Genetic disorders
Pathophysiology
Renal disease
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_51ef4c94eba8601e92f53f928f5441c1
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13628
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Epithelial transport in disease: an overview of pathophysiology and treatment
title Epithelial transport in disease: an overview of pathophysiology and treatment
spellingShingle Epithelial transport in disease: an overview of pathophysiology and treatment
Epithelial transport
Ion transport
Hormonal regulation
Genetic disorders
Pathophysiology
Renal disease
title_short Epithelial transport in disease: an overview of pathophysiology and treatment
title_full Epithelial transport in disease: an overview of pathophysiology and treatment
title_fullStr Epithelial transport in disease: an overview of pathophysiology and treatment
title_full_unstemmed Epithelial transport in disease: an overview of pathophysiology and treatment
title_sort Epithelial transport in disease: an overview of pathophysiology and treatment
dc.creator.fl_str_mv Clemente Suárez, Vicente Javier
Martín Rodríguez, Alexandra
Redondo Flórez, Laura
Villanueva Tobaldo, Carlota Valeria
Yáñez Sepúlveda, Rodrigo
Tornero Aguilera, José Francisco
dc.contributor.author.none.fl_str_mv Clemente Suárez, Vicente Javier
Martín Rodríguez, Alexandra
Redondo Flórez, Laura
Villanueva Tobaldo, Carlota Valeria
Yáñez Sepúlveda, Rodrigo
Tornero Aguilera, José Francisco
dc.subject.proposal.eng.fl_str_mv Epithelial transport
Ion transport
Hormonal regulation
Genetic disorders
Pathophysiology
Renal disease
topic Epithelial transport
Ion transport
Hormonal regulation
Genetic disorders
Pathophysiology
Renal disease
description Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-10-15
dc.date.accessioned.none.fl_str_mv 2024-11-05T12:24:46Z
dc.date.available.none.fl_str_mv 2024-11-05T12:24:46Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; Villanueva-Tobaldo, C.V.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023, 12, 2455. https://doi.org/10.3390/cells12202455
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13628
dc.identifier.doi.none.fl_str_mv 10.3390/cells12202455
dc.identifier.eissn.none.fl_str_mv 2073-4409
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; Villanueva-Tobaldo, C.V.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023, 12, 2455. https://doi.org/10.3390/cells12202455
10.3390/cells12202455
2073-4409
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13628
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Cells
dc.relation.references.none.fl_str_mv Hernando, N.; Gagnon, K.; Lederer, E. Phosphate Transport in Epithelial and Nonepithelial Tissue. Physiol. Rev. 2021, 101, 1–35. [CrossRef]
Pizzagalli, M.D.; Bensimon, A.; Superti-Furga, G. A Guide to Plasma Membrane Solute Carrier Proteins. FEBS J. 2021, 288, 2784–2835. [CrossRef]
Ong, T.; Ramsey, B.W. Cystic Fibrosis: A Review. J. Am. Med. Assoc. 2023, 329, 1859–1871. [CrossRef] [PubMed]
Freedman, S.B.; Ali, S.; Oleszczuk, M.; Gouin, S.; Hartling, L. Treatment of Acute Gastroenteritis in Children: An Overview of Systematic Reviews of Interventions Commonly Used in Developed Countries. Evid. Based Child Health 2013, 8, 1123–1137. [CrossRef] [PubMed]
Chiejina, M.; Samant, H. Viral Diarrhea; StatPearls Publishing: Treasure Island, FL, USA, 2023.
Crowley, S.D.; Coffman, T.M. Recent Advances Involving the Renin-Angiotensin System. Exp. Cell Res. 2012, 318, 1049–1056. [CrossRef]
Cutting, G.R. Cystic Fibrosis Genetics: From Molecular Understanding to Clinical Application. Nat. Rev. Genet. 2015, 16, 45–56. [CrossRef] [PubMed]
Soundararajan, R.; Pearce, D.; Hughey, R.P.; Kleyman, T.R. Role of Epithelial Sodium Channels and Their Regulators in Hypertension. J. Biol. Chem. 2010, 285, 30363–30369. [CrossRef] [PubMed]
Eladari, D.; Chambrey, R.; Peti-Peterdi, J. A New Look at Electrolyte Transport in the Distal Tubule. Annu. Rev. Physiol. 2012, 74, 325–349. [CrossRef]
Ross, K.E.; Zhang, G.; Akcora, C.; Lin, Y.; Fang, B.; Koomen, J.; Haura, E.B.; Grimes, M. Network Models of Protein Phosphorylation, Acetylation, and Ubiquitination Connect Metabolic and Cell Signaling Pathways in Lung Cancer. PLoS Comput. Biol. 2023, 19, e1010690. [CrossRef] [PubMed]
Ou, G.; Hedberg, M.; Hörstedt, P.; Baranov, V.; Forsberg, G.; Drobni, M.; Sandström, O.; Wai, S.N.; Johansson, I.; Hammarström, M.-L.; et al. Proximal Small Intestinal Microbiota and Identification of Rod-Shaped Bacteria Associated with Childhood Celiac Disease. Am. J. Gastroenterol. 2009, 104, 3058–3067. [CrossRef]
Greger, R. Physiology of Renal Sodium Transport. Am. J. Med. Sci. 2000, 319, 51–62. [CrossRef]
Knowles, M.R.; Durie, P.R. What Is Cystic Fibrosis? N. Engl. J. Med. 2002, 347, 439–442. [CrossRef]
Barrett, K.E.; Boitano, S.; Barman, S.M.; Brooks, H.L. Ganong’s Review of Medical Physiology, 20th ed.; Mc Graw Hill Education: New York, NY, USA, 2010.
Anderson, J.M.; Itallie, C.M. Physiology and Function of the Tight Junction. Cold Spring Harb. Perspect. Biol. 2009, 1, 002584. [CrossRef]
Houillier, P.; Lievre, L.; Hureaux, M.; Prot-Bertoye, C. Mechanisms of Paracellular Transport of Magnesium in Intestinal and Renal Epithelia. Ann. N. Y. Acad. Sci. 2023, 1521, 14–31. [CrossRef] [PubMed]
Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional Strands in Tight Junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [CrossRef]
Curry, J.N.; Yu, A.S.L. Paracellular Calcium Transport in the Proximal Tubule and the Formation of Kidney Stones. Am. J. Physiol. Renal Physiol. 2019, 316, F966–F969. [CrossRef]
Corfield, A.P. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Hu-Man. Microorganisms 2018, 6, 78. [CrossRef]
Fasano, A. Intestinal Permeability and Its Regulation by Zonulin: Diagnostic and Therapeutic Implications. Clin. Gastroenterol. Hepatol. Clin. Pract. J. Am. Gastroenterol. Assoc. 2012, 10, 1096–1100. [CrossRef]
Rodriguez-Boulan, E.; Macara, I.G. Organization and Execution of the Epithelial Polarity Programme. Nat. Rev. Mol. Cell Biol. 2014, 15, 225–242. [CrossRef] [PubMed]
Rodriguez-Boulan, E.; Kreitzer, G.; Muesch, A. Organization of Vesicular Trafficking in Epithelia. Nat. Rev. Mol. Cell Biol. 2005, 6, 233–247. [CrossRef] [PubMed]
Nixon, R.A. Amyloid Precursor Protein and Endosomal-Lysosomal Dysfunction in Alzheimer’s Disease: Inseparable Partners in a Multifactorial Disease. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 2729–2743. [CrossRef] [PubMed]
Salloum, G.; Bresnick, A.R.; Backer, J.M. Macropinocytosis: Mechanisms and Regulation. Biochem. J. 2023, 480, 335–362. [CrossRef] [PubMed]
Mercer, J.; Helenius, A. Virus Entry by Macropinocytosis. Nat. Cell Biol. 2009, 11, 510–520. [CrossRef] [PubMed]
Stenmark, H. Rab GTPases as Coordinators of Vesicle Traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525. [CrossRef]
Bucci, C.; Parton, R.G.; Mather, I.H.; Stunnenberg, H.; Simons, K.; Hoflack, B.; Zerial, M. The Small GTPase Rab5 Functions as a Regulatory Factor in the Early Endocytic Pathway. Cell 1992, 70, 715–728. [CrossRef]
Rath, E.; Moschetta, A.; Haller, D. Mitochondrial Function—Gatekeeper of Intestinal Epithelial Cell Homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 497–516. [CrossRef]
Mustaqeem, R.; Arif, A. Renal Tubular Acidosis; StatPearls Publishing: Treasure Island, FL, USA, 2023.
Rodríguez Soriano, J. Renal Tubular Acidosis: The Clinical Entity. J. Am. Soc. Nephrol. 2002, 13, 2160–2170. [CrossRef]
Verkman, A.S.; Hoek, A.N.; Ma, T.; Frigeri, A.; Skach, W.R.; Mitra, A.; Tamarappoo, B.K.; Farinas, J. Water transport across mammalian cell membranes. Am. J. Physiol. 1996, 270, C12–C30. [CrossRef]
Knepper, M.A. Molecular Physiology of Urinary Concentrating Mechanism: Regulation of Aquaporin Water Channels by Vasopressin. Am. J. Physiol. 1997, 272, F3–F12. [CrossRef]
Matthay, M.A.; Folkesson, H.G.; Clerici, C. Lung Epithelial Fluid Transport and the Resolution of Pulmonary Edema. Physiol. Rev. 2002, 82, 569–600. [CrossRef]
Binder, H.J. Role of Colonic Short-Chain Fatty Acid Transport in Diarrhea. Annu. Rev. Physiol. 2010, 72, 297–313. [CrossRef] [PubMed]
Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Ran-dolph, A.G.; Calfee, C.S. Acute Respiratory Distress Syndrome. Nat. Rev. Prim. 2019, 5, 18. [CrossRef] [PubMed]
Hayakawa, K.; Chan, S.J.; Mandeville, E.T.; Park, J.H.; Bruzzese, M.; Montaner, J.; Arai, K.; Rosell, A.; Lo, E.H. Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium. Stem Cells 2018, 36, 1404–1410. [CrossRef] [PubMed]
Islam, M.N.; Das, S.R.; Emin, M.T.; Wei, M.; Sun, L.; Westphalen, K.; Rowlands, D.J.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Mitochondrial Transfer from Bone-Marrow-Derived Stromal Cells to Pulmonary Alveoli Protects against Acute Lung Injury. Nat. Med. 2012, 18, 759–765. [CrossRef]
Triplitt, C.L. Understanding the Kidneys’ Role in Blood Glucose Regulation. Am. J. Manag. Care 2012, 18, S11. [PubMed]
Gallardo, P.; Cid, L.P.; Vio, C.P.; Sepúlveda, F.V. Aquaporin-2, a Regulated Water Channel, Is Expressed in Apical Membranes of Rat Distal Colon Epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, 856–863. [CrossRef] [PubMed]
Anabazhagan, A.N.; Chatterjee, I.; Priyamvada, S.; Kumar, A.; Tyagi, S.; Saksena, S.; Alrefai, W.A.; Dudeja, P.K.; Gill, R.K. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D. J. Vis. Exp. JoVE 2017, 121, 55304. [CrossRef]
King, J.; Giselbrecht, S.; Truckenmüller, R.; Carlier, A. Mechanistic Computational Models of Epithelial Cell Transporters-the Adorned Heroes of Pharmacokinetics. Front. Pharmacol. 2021, 12, 780620. [CrossRef]
Field, M.; Semrad, C.E. Toxigenic Diarrheas, Congenital Diarrheas, and Cystic Fibrosis: Disorders of Intesti-Nal Ion Transport. Annu. Rev. Physiol. 1993, 55, 631–655. [CrossRef]
Hanssens, L.S.; Duchateau, J.; Casimir, G.J. CFTR Protein: Not Just a Chloride Channel? Cells 2021, 10, 2844. [CrossRef]
Schiller, L.R.; Pardi, D.S.; Sellin, J.H. Chronic Diarrhea: Diagnosis and Management. Clin. Gastroenterol. Hepatol. Clin. Pr. J. Am. Gastroenterol. Assoc. 2017, 15, 182–193. [CrossRef] [PubMed]
McLafferty, E.; Johnstone, C.; Hendry, C.; Farley, A. Fluid and Electrolyte Balance. Nurs. Stand. 2014, 28, 42–49. [CrossRef] [PubMed]
Batlle, D.; Haque, S.K. Genetic Causes and Mechanisms of Distal Renal Tubular Acidosis. Nephrology, Dialy-Sis, Transplantation: Official Publication of the European Dialysis and Transplant Association—European Renal Association. Engl. Oct. 2012, 27, 3691–3704. [CrossRef]
King, T.E.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378(9807), 1949–1961. [CrossRef]
Lee, J.-A.; Cho, A.; Huang, E.N.; Xu, Y.; Quach, H.; Hu, J.; Wong, A.P. Gene Therapy for Cystic Fibrosis: New Tools for Precision Medicine. J. Transl. Med. 2021, 19, 452. [CrossRef]
Choi, J.Y.; Muallem, D.; Kiselyov, K.; Lee, M.G.; Thomas, P.J.; Muallem, S. Aberrant CFTR-Dependent HCO3 − Transport in Mutations Associated with Cystic Fibrosis. Nature 2001, 410, 94–97. [CrossRef]
Chen, L.; Wang, H.-L.; Zhu, Y.-B.; Jin, Z.; Huang, J.-B.; Lin, X.-F.; Luo, J.-W.; Fang, Z.-T. Screening and Function Discussion of a Hereditary Renal Tubular Acidosis Family Pathogenic Gene. Cell Death Dis. 2020, 11, 159. [CrossRef]
Kortenoeven, M.L.A.; Pedersen, N.B.; Rosenbaek, L.L.; Fenton, R.A. Vasopressin Regulation of Sodium Transport in the Distal Nephron and Collecting Duct. Am. J. Physiol. Ren. Physiol. 2015, 309, 280–299. [CrossRef]
Makaryus, A.N.; McFarlane, S.I. Diabetes Insipidus: Diagnosis and Treatment of a Complex Disease. Clevel. Clin. J. Med. 2006, 73, 65–71. [CrossRef]
Dabrowski, E.; Kadakia, R.; Zimmerman, D. Diabetes Insipidus in Infants and Children. Best Pr. Res. Clin. Endocrinol. Metab. 2016, 30, 317–328. [CrossRef]
Nova, Z.; Skovierova, H.; Calkovska, A. Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. Int. J. Mol. Sci. 2019, 20, 831. [CrossRef]
Beretta, E.; Romanò, F.; Sancini, G.; Grotberg, J.B.; Nieman, G.F.; Miserocchi, G. Pulmonary Interstitial Matrix and Lung Fluid Balance From Normal to the Acutely Injured Lung. Front. Physiol. 2021, 12, 781874. [CrossRef] [PubMed]
Fernández-Pérez, E.R.; Sprung, J.; Afessa, B.; Warner, D.O.; Vachon, C.M.; Schroeder, D.R.; Brown, D.R.; Hubmayr, R.D.; Gajic, O. Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: A Nested Case Control Study. Thorax 2009, 64, 121–127. [CrossRef] [PubMed]
Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [CrossRef]
Goodman, B.E. Transport of Small Molecules across Cell Membranes: Water Channels and Urea Transport-Ers. Adv. Physiol. Educ. 2002, 26, 146–157. [CrossRef] [PubMed]
Gibson, R.J.; Keefe, D.M.K. Cancer Chemotherapy-Induced Diarrhoea and Constipation: Mechanisms of Damage and Prevention Strategies. Support. Care Cancer 2006, 14, 890–900. [CrossRef]
Boudry, G.; David, E.S.; Douard, V.; Monteiro, I.M.; Le Huërou-Luron, I.; Ferraris, R.P. Role of Intestinal Transporters in Neonatal Nutrition: Carbohydrates, Proteins, Lipids, Minerals, and Vitamins. J. Pediatr. Gastroen Terol. Nutr. 2010, 51, 380–401. [CrossRef]
Wright, E.M.; Martín, M.G.; Turk, E. Intestinal Absorption in Health and Disease–Sugars. Best Pr. Res. Clin. Gastroenterol. 2003, 17, 943–956. [CrossRef]
Stremmel, W.; Pohl, L.; Ring, A.; Herrmann, T. A New Concept of Cellular Uptake and Intracellular Trafficking of Long-Chain Fatty Acids. Lipids 2001, 36, 981–989. [CrossRef]
Chartoumpekis, D.V.; Kensler, T.W. New Player on an Old Field; the Keap1/Nrf2 Pathway as a Target for Treatment of Type 2 Diabetes and Metabolic Syndrome. Curr. Diabetes Rev. 2013, 9, 137–145. [CrossRef]
Brosnan, J.T.; Brosnan, M.E. Branched-Chain Amino Acids: Enzyme and Substrate Regulation. J. Nutr. 2006, 136, 207–211. [CrossRef] [PubMed]
Desai, M.; Crowther, N.J.; Ozanne, S.E.; Lucas, A.; Hales, C.N. Adult Glucose and Lipid Metabolism May Be Programmed during Fetal Life. Biochem. Soc. Trans. 1995, 23, 331–335. [CrossRef] [PubMed]
Wilschanski, M.; Novak, I. The Cystic Fibrosis of Exocrine Pancreas. Cold Spring Harb. Perspect. Med. 2013, 3, 009746. [CrossRef]
BioRender. Available online: https://app.biorender.com/biorender-templates/figures/all/t-5f98644fc942a500a89da31cabsorption-of-nutrients-in-the-small-intestine (accessed on 1 October 2023).
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonal-coholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [CrossRef] [PubMed]
Samuel, V.T.; Shulman, G.I. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab. 2018, 27, 22–41. [CrossRef]
Roberts, E.A.; Schilsky, M.L. Diagnosis and Treatment of Wilson Disease: An Update. Hepatology 2008, 47, 2089–2111. [CrossRef]
Virmani, R.; Joner, M.; Sakakura, K. Recent Highlights of ATVB: Calcification. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1329–1332. [CrossRef]
Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A. ACG Clinical Guidelines: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2013, 108, 656–676. [CrossRef] [PubMed]
Szilagyi, A.; Smith, B.E.; Sebbag, N.; Leighton, H.; Xue, X. Changing Patterns of Relationships Between Geo-Graphic Markers and IBD: Possible Intrusion of Obesity. Crohn’s Colitis 2020, 360, 044. [CrossRef]
Di Sabatino, A.; Corazza, G. Coeliac Disease. Lancet 2009, 373, 1480–1493. [CrossRef] [PubMed]
Masuda, T.; Muto, S.; Fukuda, K.; Watanabe, M.; Ohara, K.; Koepsell, H.; Vallon, V.; Nagata, D. Osmotic Diure-Sis by SGLT2 Inhibition Stimulates Vasopressin-Induced Water Reabsorption to Maintain Body Fluid Volume. Physiol. Rep. 2020, 8, 14360. [CrossRef] [PubMed]
Boron, W.F.; Boulpaep, E.L. (Eds.) Boron y Boulpaep. In Manual de Fisiología Médica; Elsevier Health Sciences: Amsterdam, The Netherlands, 2022.
Goltzman, D.; Mannstadt, M.; Marcocci, C. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Front. Horm. Res. 2018, 50, 1–13. [CrossRef] [PubMed]
Taylor, J.G.; Bushinsky, D.A. Calcium and Phosphorus Homeostasis. Blood Purif. 2009, 27, 387–394. [CrossRef] [PubMed]
Chen, Y.; Schaefer, J.J.; Iyer, S.R.; Harders, G.E.; Pan, S.; Sangaralingham, S.J.; Chen, H.H.; Redfield, M.M.; Burnett, J.C., Jr. Long-Term Blood Pressure Lowering and CGMP-Activating Actions of the Novel ANP Analog MANP. Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, 669–676. [CrossRef]
John, S.W.; Veress, A.T.; Honrath, U.; Chong, C.K.; Peng, L.; Smithies, O.; Sonnenberg, H. Blood Pressure and Fluid-Electrolyte Balance in Mice with Reduced or Absent ANP. Am. J. Physiol. Integr. Comp. Physiol. 1996, 1, 271. [CrossRef]
Maurer, M.; Riesen, W.; Muser, J.; Hulter, H.N.; Krapf, R. Neutralization of Western Diet Inhibits Bone Re-Sorption Independently of K Intake and Reduces Cortisol Secretion in Humans. Am. J. Physiol. Ren. Physiol. 2003, 284, 32–40. [CrossRef] [PubMed]
Hall, J.E.; Carmo, J.M.; Silva, A.A.; Wang, Z.; Hall, M.E.O. Kidney Dysfunction and Hypertension: Mechanistic Links. Nat. Rev. Nephrol. 2019, 15, 367–385. [CrossRef]
Berend, K.; Hulsteijn, L.H.; Gans, R.O.B.C. The Queen of Electrolytes? Eur. J. Intern. Med. 2012, 23, 203–211. [CrossRef]
Tinawi, M. Disorders of Calcium Metabolism: Hypocalcemia and Hypercalcemia. Cureus 2021, 13, 12420. [CrossRef]
Staruschenko, A. Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct. Compr. Physiol. 2012, 2, 1541–1584. [CrossRef]
Decaux, G.; Soupart, A.; Musch, W.; Bourgeois, S.; Verhoeven, A. Treatment of Polydipsia-Hyponatremia with Urea. Psychopharmacol. Biol. Narcology 2005, 5, 919.
Kassim, T.A.; Clarke, D.D.; Mai, V.Q.; Clyde, P.W.; Mohamed Shakir, K.M. Catecholamine-Induced Cardiomyopathy. Endocr. Pract. 2008, 14, 1137–1149. [CrossRef] [PubMed]
Dickinson, K.M.; Collaco, J.M. Cystic Fibrosis. Pediatr. Rev. 2021, 42, 55–67. [CrossRef] [PubMed]
Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [CrossRef]
Boeck, K.; Amaral, M.D. Progress in Therapies for Cystic Fibrosis. Lancet Respir. Med. 2016, 4, 662–674. [CrossRef]
McCague, A.F.; Raraigh, K.S.; Pellicore, M.J.; Davis-Marcisak, E.F.; Evans, T.A.; Han, S.T.; Lu, Z.; Joynt, A.T.; Sharma, N.; Castellani, C.; et al. Correlating Cystic Fibrosis Transmembrane Conductance Regulator Function with Clinical Features to Inform Precision Treatment of Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 1116–1126. [CrossRef] [PubMed]
Riordan, J.R. CFTR Function and Prospects for Therapy. Annu. Rev. Biochem. 2008, 77, 701–726. [CrossRef]
Gustafsson, J.K.; Ermund, A.; Ambort, D.; Johansson, M.E.V.; Nilsson, H.E.; Thorell, K.; Hebert, H.; Sjövall, H.; Hansson, G.C. Bicarbonate and Functional CFTR Channel Are Required for Proper Mucin Secretion and Link Cystic Fibrosis with Its Mucus Phenotype. J. Exp. Med. 2012, 209, 1263–1272. [CrossRef] [PubMed]
Chmiel, J.F.; Davis, P.B. State of the Art: Why Do the Lungs of Patients with Cystic Fibrosis Become Infect-Ed and Why Can’t They Clear the Infection? Respir. Res. 2003, 4, 8. [CrossRef]
Fulchiero, R.; Seo-Mayer, P. Bartter Syndrome and Gitelman Syndrome. Pediatr. Clin. N. Am. 2019, 66, 121–134. [CrossRef]
Mumford, E.; Unwin, R.J.; Walsh, S.B. Liquorice, Liddle, Bartter or Gitelman-How to Differentiate? Nephrol. Dial. Transplant. 2019, 34, 38–39. [CrossRef]
Seyberth, H.W.; Weber, S.; Kömhoff, M.B.; Syndrome, G. Bartter’s and Gitelman’s syndrome. Curr. Opin. Pediatr. 2017, 29, 179–186. [CrossRef]
Konrad, M.; Vollmer, M.; Lemmink, H.H.; van den Heuvel, L.P.; Jeck, N.; Vargas-Poussou, R.; Lakings, A.; Ruf, R.; Deschênes, G.; Antignac, C.; et al. Mutations in the Chloride Channel Gene CLCNKB as a Cause of Classic Bartter Syn-Drome. J. Am. Soc. Nephrol. 2000, 11, 1449–1459. [CrossRef] [PubMed]
Blanchard, A.; Bockenhauer, D.; Bolignano, D.; Calò, L.A.; Cosyns, E.; Devuyst, O.; Ellison, D.H.; Karet Frankl, F.E.; Knoers, N.V.A.M.; Konrad, M.; et al. Gitelman Syndrome: Consensus and Guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 24–33. [CrossRef]
Simon, D.B.; Nelson-Williams, C.; Bia, M.J.; Ellison, D.; Karet, F.E.; Molina, A.M.; Vaara, I.; Iwata, F.; Cushner, H.M.; Koolen, M.; et al. Gitelman’s Variant of Bartter’s Syndrome, Inherited Hypokalaemic Alkalosis, Is Caused by Mutations in the ThiazideSensitive Na-Cl Cotransporter. Nat. Genet. 1996, 12, 24–30. [CrossRef]
Knoers, N.V.A.M.; Levtchenko, E.N. Gitelman Syndrome. Orphanet J. Rare Dis. 2008, 3, 22. [CrossRef] [PubMed]
Zella, G.C.; Israel, E.J. Chronic Diarrhea in Children. Pediatr. Rev. 2012, 33, 207–208. [CrossRef]
Burgers, K.; Lindberg, B.; Bevis, Z.J. Chronic Diarrhea in Adults: Evaluation and Differential Diagnosis. Am. Fam. Physician 2020, 101, 472–480.
Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053–1060. [CrossRef]
Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [CrossRef]
Benninga, M.A.; Faure, C.; Hyman, P.E.; James Roberts, I.; Schechter, N.L.; Nurko, S. Childhood Functional Gastrointestinal Disorders: Neonate/Toddler. Gastroenterology 2016, 150, 1443–1455.e2. [CrossRef] [PubMed]
Barrett, K.E.; Keely, S.J. Integrative Physiology and Pathophysiology of Intestinal Electrolyte Transport. In Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1931–1951.
Alli, A.A.; Bao, H.-F.; Liu, B.-C.; Yu, L.; Aldrugh, S.; Montgomery, D.S.; Ma, H.-P.; Eaton, D.C. Calmod-Ulin and CaMKII Modulate ENaC Activity by Regulating the Association of MARCKS and the Cytoskeleton with the Apical Membrane. Am. J. Physiol. Ren. Physiol. 2015, 309, 456–463. [CrossRef] [PubMed]
Barrett, K.E.; Keely, S.J. Chloride Secretion by the Intestinal Epithelium: Molecular Basis and Regulatory Aspects. Annu. Rev. Physiol. 2000, 62, 535–572. [CrossRef] [PubMed]
Priyamvada, S.; Gomes, R.; Gill, R.K.; Saksena, S.; Alrefai, W.A.; Dudeja, P.K. Mechanisms Underlying Dysregulation of Electrolyte Absorption in Inflammatory Bowel Disease-Associated Diarrhea. Inflamm. Bowel Dis. 2015, 21, 2926–2935. [CrossRef]
Ousingsawat, J.; Mirza, M.; Tian, Y.; Roussa, E.; Schreiber, R.; Cook, D.I.; Kunzelmann, K. Rotavirus Toxin NSP4 Induces Diarrhea by Activation of TMEM16A and Inhibition of Na+ Absorption. Pflugers. Arch. 2011, 461, 579–589. [CrossRef]
Borenshtein, D.; Fry, R.C.; Groff, E.B.; Nambiar, P.R.; Carey, V.J.; Fox, J.G.; Schauer, D.B. Diarrhea as a Cause of Mortality in a Mouse Model of Infectious Colitis. Genome Biol. 2008, 9, 122. [CrossRef]
Borenshtein, D.; Schlieper, K.A.; Rickman, B.H.; Chapman, J.M.; Schweinfest, C.W.; Fox, J.G.; Schauer, D.B. Decreased Expression of Colonic Slc26a3 and Carbonic Anhydrase Iv as a Cause of Fatal Infectious Diarrhea in Mice. Infect. Immun. 2009, 77, 3639–3650. [CrossRef]
Zhu, X.C.; Sarker, R.; Horton, J.R.; Chakraborty, M.; Chen, T.-E.; Tse, C.M.; Cha, B.; Donowitz, M. Non-Synonymous Single Nucleotide Polymorphisms of NHE3 Differentially Decrease NHE3 Transporter Activity. Am. J. Physiol. Cell Physiol. 2015, 308, 758–766. [CrossRef]
Thiagarajah, J.R.; Verkman, A.S. Chloride Channel-Targeted Therapy for Secretory Diarrheas. Curr. Opin. Pharmacol. 2013, 13, 888–894. [CrossRef]
Xiao, F.; Yu, Q.; Li, J.; Johansson, M.E.V.; Singh, A.K.; Xia, W.; Riederer, B.; Engelhardt, R.; Montrose, M.; Soleimani, M.; et al. Slc26a3 Deficiency Is Associated with Loss of Colonic HCO3 − Secretion, Absence of a Firm Mucus Layer and Barrier Impairment in Mice. Acta Physiol. 2014, 211, 161–175. [CrossRef]
Shao, X.; Min, X.; Xia, X.; Lin, X.; Jiang, L.; Ding, R.; Jiang, Y. Association of Solute-Linked Carrier Family 26 Member A3 Gene Polymorphisms with Ulcerative Colitis among Chinese Patients. Chin. J. Med. Genet. 2017, 34, 255–260. [CrossRef]
Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; et al. A Genome-Wide Association Study Identifies Three New Suscepti-Bility Loci for Ulcerative Colitis in the Japanese Population. Nat. Genet. 2009, 41, 1325–1329. [CrossRef] [PubMed]
Harrison, D.G.; Coffman, T.M.; Wilcox, C.S. Pathophysiology of Hypertension. Circ. Res. 2021, 128, 847–863. [CrossRef] [PubMed]
Al Ghorani, H.; Götzinger, F.; Böhm, M.; Mahfoud, F. Arterial Hypertension—Clinical Trials Update 2021. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 21–31. [CrossRef] [PubMed]
Hering, D.; Trzebski, A.; Narkiewicz, K. Recent Advances in the Pathophysiology of Arterial Hyperten-Sion: Potential Implications for Clinical Practice. Pol. Arch. Intern. Med. 2017, 127, 195–204. [PubMed]
Beevers, G.; Lip, G.Y.H.; O’Brien, E. The Pathophysiology of Hypertension. BMJ 2001, 322, 912–916. [CrossRef]
Ramalhinho, V. Central and peripheral vascular resistance. Acta Med. Port. 1992, 5, 263–265.
Dijk, J.G.; Rossum, I.A.; Thijs, R.D. The Pathophysiology of Vasovagal Syncope: Novel Insights. Auton. Neurosci. 2021, 236, 102899. [CrossRef]
Mathias, C.J. Role of Sympathetic Efferent Nerves in Blood Pressure Regulation and in Hypertension. Hypertension 1991, 18, III22-30. [CrossRef]
Fagard, R.; Staessen, J. Relation of Cardiac Output at Rest and during Exercise to Age in Essential Hypertension. Am. J. Cardiol. 1991, 67, 585–589. [CrossRef]
Cipolla, M.J.; Liebeskind, D.S.; Chan, S.-L. The Importance of Comorbidities in Ischemic Stroke: Impact of Hypertension on the Cerebral Circulation. J. Cereb. Blood Flow Metab. 2018, 38, 2129–2149. [CrossRef] [PubMed]
Carnagarin, R.; Matthews, V.; Zaldivia, M.T.K.; Peter, K.; Schlaich, M.P. The Bidirectional Interaction between the Sympathetic Nervous System and Immune Mechanisms in the Pathogenesis of Hypertension. Br. J. Pharmacol. 2019, 176, 1839–1852. [CrossRef] [PubMed]
Fujita, M.; Fujita, T. The Role of CNS in Salt-Sensitive Hypertension. Curr. Hypertens. Rep. 2013, 15, 390–394. [CrossRef] [PubMed]
Mutchler, S.M.; Kirabo, A.; Kleyman, T.R. Epithelial Sodium Channel and Salt-Sensitive Hypertension. Hypertension 2021, 77, 759–767. [CrossRef] [PubMed]
Kelly, T.N.; He, J. Genomic Epidemiology of Blood Pressure Salt Sensitivity. J. Hypertens. 2012, 30, 861–873. [CrossRef] [PubMed]
King, A.J.; Osborn, J.W.; Fink, G.D. Splanchnic Circulation Is a Critical Neural Target in Angiotensin II Salt Hypertension in Rats. Hypertension 2007, 50, 547–556. [CrossRef] [PubMed]
Kopp, C.; Linz, P.; Dahlmann, A.; Hammon, M.; Jantsch, J.; Müller, D.N.; Schmieder, R.E.; Cavallaro, A.; Eckardt, K.-U.; Uder, M.; et al. 23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients. Hypertension 2013, 61, 635–640. [CrossRef]
Jantsch, J.; Schatz, V.; Friedrich, D.; Schröder, A.; Kopp, C.; Siegert, I.; Maronna, A.; Wendelborn, D.; Linz, P.; Binger, K.J.; et al. Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macro-Phage-Driven Host Defense. Cell Metab. 2015, 21, 493–501. [CrossRef]
Kitada, K.; Daub, S.; Zhang, Y.; Klein, J.D.; Nakano, D.; Pedchenko, T.; Lantier, L.; LaRocque, L.M.; Marton, A.; Neubert, P.; et al. High Salt Intake Reprioritizes Osmolyte and Energy Metabolism for Body Fluid Conservation. J. Clin. Investig. 2017, 127, 1944–1959. [CrossRef]
Jacob, F.; Clark, L.A.; Guzman, P.A.; Osborn, J.W. Role of Renal Nerves in Development of Hypertension in DOCA-Salt Model in Rats: A Telemetric Approach. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1519–H1529. [CrossRef]
Ito, S.; Hiratsuka, M.; Komatsu, K.; Tsukamoto, K.; Kanmatsuse, K.; Sved, A.F. Ventrolateral Medulla AT1 Receptors Support Arterial Pressure in Dahl Salt-Sensitive Rats. Hypertension 2003, 41, 744–750. [CrossRef] [PubMed]
Jia, G.; Sowers, J.R. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension 2021, 78, 1197–1205. [CrossRef]
Shimbo, D.; Newman, J.D.; Aragaki, A.K.; LaMonte, M.J.; Bavry, A.A.; Allison, M.; Manson, J.E.; Wassertheil-Smoller, S. Association between Annual Visit-to-Visit Blood Pressure Variability and Stroke in Postmenopausal Women: Data from the Women’s Health Initiative. Hypertension 2012, 60, 625–630. [CrossRef]
Hollenberg, N.K. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs Diuretic. Curr. Hypertens. Rep. 2003, 5, 183–185. [CrossRef] [PubMed]
Shearer, F.; Lang, C.C.; Struthers, A.D. Renin-Angiotensin-Aldosterone System Inhibitors in Heart Failure. Clin. Pharmacol. Ther. 2013, 94, 459–467. [CrossRef]
Ames, M.K.; Atkins, C.E.; Pitt, B. The Renin-Angiotensin-Aldosterone System and Its Suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [CrossRef] [PubMed]
Sayer, G.; Bhat, G. The Renin-Angiotensin-Aldosterone System and Heart Failure. Cardiol. Clin. 2014, 32, 21–32. [CrossRef]
Su, C.; Xue, J.; Ye, C.; Chen, A. Role of the Central Renin-angiotensin System in Hypertension (Review). Int. J. Mol. Med. 2021, 47, 95. [CrossRef]
Pacurari, M.; Kafoury, R.; Tchounwou, P.B.; Ndebele, K. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling. Int. J. Inflamm. 2014, 2014, 689360. [CrossRef]
Poznyak, A.V.; Bharadwaj, D.; Prasad, G.; Grechko, A.V.; Sazonova, M.A.; Orekhov, A.N. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int. J. Mol. Sci. 2021, 22, 6702. [CrossRef]
Davignon, J.; Ganz, P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation 2004, 109, III-27–III-32. [CrossRef]
Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [CrossRef]
Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [CrossRef] [PubMed]
Daniele, N.; Marrone, G.; Lauro, M.; Daniele, F.; Palazzetti, D.; Guerriero, C.; Noce, A. Effects of Caloric Restriction Diet on Arterial Hypertension and Endothelial Dysfunction. Nutrients 2021, 13, 274. [CrossRef]
Araujo, M.; Wilcox, C.S. Oxidative Stress in Hypertension: Role of the Kidney. Antioxid. Redox Signal. 2014, 20, 74–101. [CrossRef] [PubMed]
Lob, H.E.; Schultz, D.; Marvar, P.J.; Davisson, R.L.; Harrison, D.G. Role of the NADPH Oxidases in the Subfornical Organ in Angiotensin II-Induced Hypertension. Hypertension 1979, 61, 382–387. [CrossRef]
Lifton, R.P.; Gharavi, A.G.; Geller, D.S. Molecular Mechanisms of Human Hypertension. Cell 2001, 104, 545–556. [CrossRef] [PubMed]
Vaura, F.; Kauko, A.; Suvila, K.; Havulinna, A.S.; Mars, N.; Salomaa, V.; FinnGen; Cheng, S.; Niiranen, T. Polygenic Risk Scores Predict Hypertension Onset and Cardiovascular Risk. Hypertension 2021, 77, 1119–1127. [CrossRef] [PubMed]
Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol. Med. 2021, 27, 314–331. [CrossRef]
Eisenhut, M. Changes in Ion Transport in Inflammatory Disease. J. Inflamm. Lond. Engl. 2006, 3, 5. [CrossRef] [PubMed]
Ware, L.B.; Lee, J.W.; Wickersham, N.; Nguyen, J.; Matthay, M.A.; Calfee, C.S. Donor Smoking Is Associated With Pulmonary Edema, Inflammation and Epithelial Dysfunction in Ex Vivo Human Donor Lungs. Am. J. Transplant. 2014, 14, 2295–2302. [CrossRef]
Herrero, R.; Sanchez, G.; Lorente, J.A. New Insights into the Mechanisms of Pulmonary Edema in Acute Lung Injury. Ann. Transl. Med. 2018, 6, 32. [CrossRef]
Scallan, J.; Huxley, V.H.; Korthuis, R.J. Capillary Fluid Exchange: Regulation, Functions, and Pathology; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010.
Stickland, M.K.; Lindinger, M.I.; Olfert, I.M.; Heigenhauser, G.J.F.; Hopkins, S.R. Pulmonary Gas Ex-Change and Acid-Base Balance during Exercise. Compr. Physiol. 2013, 3, 693–739. [CrossRef]
Rahbar, E.; Akl, T.; Coté, G.L.; Moore, J.E.J.; Zawieja, D.C. Lymph Transport in Rat Mesenteric Lym-phatics Experiencing Edemagenic Stress. Microcirculation 2014, 21, 359–367. [CrossRef] [PubMed]
Wiig, H.; Swartz, M.A. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol. Rev. 2012, 92, 1005–1060. [CrossRef] [PubMed]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/Reperfusion. Compr. Physiol. 2016, 7, 113–170. [CrossRef]
Dana, I.; Susanto, L.A.; Suryana, K. Ascites in Peripartum Cardiomyopathy: Case Report. Int. J. Adv. Med. 2021, 8, 306–310. [CrossRef]
Kadry, H.; Noorani, B.; Cucullo, L. A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids Barriers CNS 2020, 17, 69. [CrossRef] [PubMed]
Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet Radiation and Skin Aging: Roles of Reactive Oxygen Spe-Cies, Inflammation and Protease Activation, and Strategies for Prevention of Inflammation-Induced Matrix Deg-Radation—A Review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [CrossRef]
Murphy, T.V.; Spurrell, B.E.; Hill, M.A. Cellular Signalling in Arteriolar Myogenic Constriction: In-Volvement of Tyrosine Phosphorylation Pathways. Clin. Exp. Pharmacol. Physiol. 2002, 29, 612–619. [CrossRef]
Chappell, D.; Jacob, M.; Hofmann-Kiefer, K.; Conzen, P.; Rehm, M. A Rational Approach to Perioperative Fluid Management. Anesthesiology 2008, 109, 723–740. [CrossRef] [PubMed]
Jacob, M.; Chappell, D.; Rehm, M. The ’Third Space’–Fact or Fiction? Best Pract. Res. Clin. Anaesthesiol. 2009, 23, 145–157. [CrossRef]
Gallelli, L. Escin: A Review of Its Anti-Edematous, Anti-Inflammatory, and Venotonic Properties. Drug Dev. Ther. 2019, 13, 3425–3437. [CrossRef]
Singh, S.K.; Revand, R. Physiological Basis of Lower Limb Edema. In Approach to Lower Limb Oedema; Springer: Berlin/Heidelberg, Germany, 2022; pp. 25–43.
Rajput, S.; Sharma, P.K.; Malviya, R. Fluid Mechanics in Circulating Tumour Cells: Role in Metastasis and Treatment Strategies. Med. Drug Discov. 2023, 18, 100158. [CrossRef]
Magder, S.; Malhotra, A.; Hibbert, K.A.; Hardin, C.C. Cardiopulmonary Monitoring: Basic Physiology, Tools, and Bedside Management for the Critically Ill; Springer Nature: Berlin/Heidelberg, Germany, 2021.
López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nat. Rev. Cardiol. 2021, 18, 479–498. [CrossRef]
Britzen-Laurent, N.; Weidinger, C.; Stürzl, M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2023, 24, 5517. [CrossRef]
Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [CrossRef]
Marek-Jozefowicz, L.; Nedoszytko, B.; Grochocka, M.; Zmijewski, M.A.; Czajkowski, R.; Cubała, W.J.; Slominski, A.T. Molecular ˙ Mechanisms of Neurogenic Inflammation of the Skin. Int. J. Mol. Sci. 2023, 24, 5001. [CrossRef] [PubMed]
Meade, E.; Garvey, M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. Int. J. Mol. Sci. 2022, 23, 8574. [CrossRef] [PubMed]
Rongioletti, F.; Romanelli, P.; Ferreli, C. Mucinosis and Disorders of Collagen and Elastic Fibers. Hosp. Based Dermatopathol. Illus. Diagn. Guide 2020, 199–244.
Stewart, R.H. A Modern View of the Interstitial Space in Health and Disease. Front. Vet Sci. 2020, 7, 609583. [CrossRef]
Bonamonte, D.; Filoni, A. Impact of Endocrine Disorders on Skin Disorders. Endocrinol. Syst. Dis. 2021, 399–434.
Martin-Almedina, S.; Mortimer, P.S.; Ostergaard, P. Development and Physiological Functions of the Lymphatic System: Insights from Human Genetic Studies of Primary Lymphedema. Physiol. Rev. 2021, 101, 1809–1871. [CrossRef]
Modi, S.; Stanton, A.W.B.; Mortimer, P.S.; Levick, J.R. Clinical Assessment of Human Lymph Flow Using Removal Rate Constants of Interstitial Macromolecules: A Critical Review of Lymphoscintigraphy. Lym-Phat. Res. Biol. 2007, 5, 183–202. [CrossRef]
Polomska, A.K.; Proulx, S.T. Imaging Technology of the Lymphatic System. Adv. Drug Deliv. Rev. 2021, 170, 294–311. [CrossRef]
Binkley, J.M.; Harris, S.R.; Levangie, P.K.; Pearl, M.; Guglielmino, J.; Kraus, V.; Rowden, D. Patient Per-Spectives on Breast Cancer Treatment Side Effects and the Prospective Surveillance Model for Physical Rehabilita-Tion for Women with Breast Cancer. Cancer 2012, 118, 2207–2216. [CrossRef]
Bauer, M.; London, E.D.; Rasgon, N.; Berman, S.M.; Frye, M.A.; Altshuler, L.L.; Mandelkern, M.A.; Bramen, J.; Voytek, B.; Woods, R.; et al. Supraphysiological Doses of Levothyroxine Alter Regional Cerebral Metabolism and Improve Mood in Bipolar Depression. Mol. Psychiatry 2005, 10, 456–469. [CrossRef]
Bauer, D.C.; McPhee, S.J. Pathophysiology of Disease: An Introduction to Clinical Medicine; McGraw-Hill: New York, NY, USA, 2013.
Matovinovi´c, M.S. 1. Pathophysiology and Classification of Kidney Diseases. Electron. J. Int. Fed. Clin. Chem. 2009, 20, 2–11.
Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.-J. Chronic Kidney Disease. Nat. Rev. Dis. Prim. 2017, 3, 17088. [CrossRef]
Morrell, E.D.; Kellum, J.A.; Hallows, K.R.; Pastor-Soler, N.M. Epithelial Transport during Septic Acute Kidney Injury. Nephrol. Dial. Transplant. 2014, 29, 1312–1319. [CrossRef]
Schmidt, C.; Höcherl, K.; Schweda, F.; Bucher, M. Proinflammatory Cytokines Cause Down-Regulation of Renal Chloride Entry Pathways during Sepsis. Crit. Care Med. 2007, 35, 2110–2119. [CrossRef] [PubMed]
Role of AQP1 in Endotoxemia-Induced Acute Kidney Injury—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/18 434389/ (accessed on 1 October 2023).
Escalante, B.A.; Ferreri, N.R.; Dunn, C.E.; McGiff, J.C. Cytokines Affect Ion Transport in Primary Cultured Thick Ascending Limb of Henle’s Loop Cells. Am. J. Physiol. 1994, 266, C1568–C1576. [CrossRef]
Zeidel, M.L.; Brady, H.R.; Kohan, D.E. Interleukin-1 Inhibition of Na(+)-K(+)-ATPase in Inner Medullary Collecting Duct Cells: Role of PGE2. Am. J. Physiol. 1991, 261, F1013–F1016. [CrossRef] [PubMed]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [CrossRef] [PubMed]
Milkovic, L.; Cipak Gasparovic, A.; Cindric, M.; Mouthuy, P.-A.; Zarkovic, N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells 2019, 8, 793. [CrossRef]
Gyurászová, M.; Gurecká, R.; Bábíˇcková, J.; Tóthová, L’. Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxid. Med. Cell Longev. 2020, 2020, e5478708. [CrossRef]
Sies, H. Oxidative Stress: Oxidants and Antioxidants. Exp. Physiol. 1997, 82, 291–295. [CrossRef]
Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol 2015, 4, 180–183. [CrossRef]
Pickkers, P.; Darmon, M.; Hoste, E.; Joannidis, M.; Legrand, M.; Ostermann, M.; Prowle, J.R.; Schneider, A.; Schetz, M. Acute Kidney Injury in the Critically Ill: An Updated Review on Pathophysiology and Management. Intensive Care Med. 2021, 47, 835–850. [CrossRef]
Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute Kidney Injury from Sepsis: Current Concepts, Epidemiology, Pathophysiology, Prevention and Treatment. Kidney Int. 2019, 96, 1083–1099. [CrossRef]
Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98.
Wu, L.; Hu, Y.; Yuan, B.; Zhang, X.; Chen, W.; Liu, K.; Liu, M. Which Risk Predictors Are More Likely to Indicate Severe AKI in Hospitalized Patients? Int. J. Med. Inf. 2020, 143, 104270. [CrossRef] [PubMed]
Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. Oxidative Stress and Acute Kid-Ney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers-Interventions, and Future Perspectives. Oxid. Med. Cell Longev. 2017, 2017, 6193694. [CrossRef] [PubMed]
Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; et al. Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics 2021, 11, 1845–1863. [CrossRef] [PubMed]
Dennis, J.M.; Witting, P.K. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017, 9, 718. [CrossRef]
Paller, M.S.; Hoidal, J.R.; Ferris, T.F. Oxygen Free Radicals in Ischemic Acute Renal Failure in the Rat. J. Clin. Investig. 1984, 74, 1156–1164. [CrossRef]
Zarbock, A.; Gomez, H.; Kellum, J.A. Sepsis-Induced AKI Revisited: Pathophysiology, Prevention and Future Therapies. Curr. Opin. Crit. Care 2014, 20, 588–595. [CrossRef]
Nakazawa, D.; Kumar, S.V.; Marschner, J.; Desai, J.; Holderied, A.; Rath, L.; Kraft, F.; Lei, Y.; Fukasawa, Y.; Moeckel, G.W.; et al. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J. Am. Soc. Nephrol. JASN 2017, 28, 1753–1768. [CrossRef]
Al-Harbi, N.O.; Nadeem, A.; Ahmad, S.F.; Alanazi, M.M.; Aldossari, A.A.; Alasmari, F. Amelioration of Sepsis-Induced Acute Kidney Injury through Inhibition of Inflammatory Cytokines and Oxidative Stress in Dendritic Cells and Neutrophils Respectively in Mice: Role of Spleen Tyrosine Kinase Signaling. Biochimie 2019, 158, 102–110. [CrossRef]
Chancharoenthana, W.; Leelahavanichkul, A. Acute Kidney Injury Spectrum in Patients with Chronic Liver Disease: Where Do We Stand? World J. Gastroenterol. 2019, 25, 3684–3703. [CrossRef]
Dounousi, E.; Papavasiliou, E.; Makedou, A.; Ioannou, K.; Katopodis, K.P.; Tselepis, A.; Siamopoulos, K.C.; Tsakiris, D. Oxidative Stress Is Progressively Enhanced with Advancing Stages of CKD. Am. J. Kidney Dis. 2006, 48, 752–760. [CrossRef]
Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; CarrilloLópez, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int. J. Mol. Sci. 2021, 22, 408. [CrossRef]
Swartling, O.; Rydell, H.; Stendahl, M.; Segelmark, M.; Trolle Lagerros, Y.; Evans, M. CKD Progression and Mortality Among Men and Women: A Nationwide Study in Sweden. Am. J. Kidney Dis. 2021, 78, 190–199.e1. [CrossRef]
Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. Int. J. Mol. Sci. 2019, 20, 3711. [CrossRef]
Kao, M.P.C.; Ang, D.S.C.; Pall, A.; Struthers, A.D. Oxidative Stress in Renal Dysfunction: Mechanisms, Clinical Sequelae and Therapeutic Options. J. Hum. Hypertens. 2010, 24, 1–8. [CrossRef] [PubMed]
Dieter, B.P.; Alicic, R.Z.; Meek, R.L.; Anderberg, R.J.; Cooney, S.K.; Tuttle, K.R. Novel Therapies for Diabetic Kidney Disease: Storied Past and Forward Paths. Diabetes Spectr. 2015, 28, 167–174. [CrossRef]
Galvan, D.L.; Green, N.H.; Danesh, F.R. The Hallmarks of Mitochondrial Dysfunction in Chronic Kidney Disease. Kidney Int. 2017, 92, 1051–1057. [CrossRef] [PubMed]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-Associated Uric Acid Crystals Activate the NALP3 Inflammasome. Nature 2006, 440, 237–241. [CrossRef]
Sato, Y.; Yanagita, M. Immune Cells and Inflammation in AKI to CKD Progression. Am. J. Physiol. Renal Physiol. 2018, 315, F1501–F1512. [CrossRef] [PubMed]
Jiang, M.; Bai, M.; Lei, J.; Xie, Y.; Xu, S.; Jia, Z.; Zhang, A. Mitochondrial Dysfunction and the AKI-to-CKD Transition. Am. J. Physiol. Renal Physiol. 2020, 319, F1105–F1116. [CrossRef]
Fu, Y.; Tang, C.; Cai, J.; Chen, G.; Zhang, D.; Dong, Z. Rodent Models of AKI-CKD Transition. Am. J. Physiol. Renal Physiol. 2018, 315, 1098–1106. [CrossRef] [PubMed]
dc.relation.citationendpage.none.fl_str_mv 35
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 20
dc.relation.citationvolume.none.fl_str_mv 12
dc.rights.none.fl_str_mv © 2023 by the authors.
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 by the authors.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 35 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Switzerland
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv https://www.mdpi.com/2073-4409/12/20/2455
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/443a7e72-d5d2-43c5-af7c-e5000a0eda07/download
https://repositorio.cuc.edu.co/bitstreams/27045a5d-4118-4aa1-bc28-8e10721e7322/download
https://repositorio.cuc.edu.co/bitstreams/8ba0c9aa-414f-4d89-93c9-7c14e052305e/download
https://repositorio.cuc.edu.co/bitstreams/e39276f1-1a41-4e9d-998a-0619ab381b77/download
bitstream.checksum.fl_str_mv 841aa4ab2ea5e49665474ca4a785a8e1
73a5432e0b76442b22b026844140d683
652e6ba2ab960382a344cb6b62734641
156a8b524f202a123f029a090534c033
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166867375620096
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 by the authors.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clemente Suárez, Vicente JavierMartín Rodríguez, AlexandraRedondo Flórez, LauraVillanueva Tobaldo, Carlota ValeriaYáñez Sepúlveda, RodrigoTornero Aguilera, José Francisco2024-11-05T12:24:46Z2024-11-05T12:24:46Z2023-10-15Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; Villanueva-Tobaldo, C.V.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023, 12, 2455. https://doi.org/10.3390/cells12202455https://hdl.handle.net/11323/1362810.3390/cells122024552073-4409Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.35 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/2073-4409/12/20/2455Epithelial transport in disease: an overview of pathophysiology and treatmentArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85CellsHernando, N.; Gagnon, K.; Lederer, E. Phosphate Transport in Epithelial and Nonepithelial Tissue. Physiol. Rev. 2021, 101, 1–35. [CrossRef]Pizzagalli, M.D.; Bensimon, A.; Superti-Furga, G. A Guide to Plasma Membrane Solute Carrier Proteins. FEBS J. 2021, 288, 2784–2835. [CrossRef]Ong, T.; Ramsey, B.W. Cystic Fibrosis: A Review. J. Am. Med. Assoc. 2023, 329, 1859–1871. [CrossRef] [PubMed]Freedman, S.B.; Ali, S.; Oleszczuk, M.; Gouin, S.; Hartling, L. Treatment of Acute Gastroenteritis in Children: An Overview of Systematic Reviews of Interventions Commonly Used in Developed Countries. Evid. Based Child Health 2013, 8, 1123–1137. [CrossRef] [PubMed]Chiejina, M.; Samant, H. Viral Diarrhea; StatPearls Publishing: Treasure Island, FL, USA, 2023.Crowley, S.D.; Coffman, T.M. Recent Advances Involving the Renin-Angiotensin System. Exp. Cell Res. 2012, 318, 1049–1056. [CrossRef]Cutting, G.R. Cystic Fibrosis Genetics: From Molecular Understanding to Clinical Application. Nat. Rev. Genet. 2015, 16, 45–56. [CrossRef] [PubMed]Soundararajan, R.; Pearce, D.; Hughey, R.P.; Kleyman, T.R. Role of Epithelial Sodium Channels and Their Regulators in Hypertension. J. Biol. Chem. 2010, 285, 30363–30369. [CrossRef] [PubMed]Eladari, D.; Chambrey, R.; Peti-Peterdi, J. A New Look at Electrolyte Transport in the Distal Tubule. Annu. Rev. Physiol. 2012, 74, 325–349. [CrossRef]Ross, K.E.; Zhang, G.; Akcora, C.; Lin, Y.; Fang, B.; Koomen, J.; Haura, E.B.; Grimes, M. Network Models of Protein Phosphorylation, Acetylation, and Ubiquitination Connect Metabolic and Cell Signaling Pathways in Lung Cancer. PLoS Comput. Biol. 2023, 19, e1010690. [CrossRef] [PubMed]Ou, G.; Hedberg, M.; Hörstedt, P.; Baranov, V.; Forsberg, G.; Drobni, M.; Sandström, O.; Wai, S.N.; Johansson, I.; Hammarström, M.-L.; et al. Proximal Small Intestinal Microbiota and Identification of Rod-Shaped Bacteria Associated with Childhood Celiac Disease. Am. J. Gastroenterol. 2009, 104, 3058–3067. [CrossRef]Greger, R. Physiology of Renal Sodium Transport. Am. J. Med. Sci. 2000, 319, 51–62. [CrossRef]Knowles, M.R.; Durie, P.R. What Is Cystic Fibrosis? N. Engl. J. Med. 2002, 347, 439–442. [CrossRef]Barrett, K.E.; Boitano, S.; Barman, S.M.; Brooks, H.L. Ganong’s Review of Medical Physiology, 20th ed.; Mc Graw Hill Education: New York, NY, USA, 2010.Anderson, J.M.; Itallie, C.M. Physiology and Function of the Tight Junction. Cold Spring Harb. Perspect. Biol. 2009, 1, 002584. [CrossRef]Houillier, P.; Lievre, L.; Hureaux, M.; Prot-Bertoye, C. Mechanisms of Paracellular Transport of Magnesium in Intestinal and Renal Epithelia. Ann. N. Y. Acad. Sci. 2023, 1521, 14–31. [CrossRef] [PubMed]Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional Strands in Tight Junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [CrossRef]Curry, J.N.; Yu, A.S.L. Paracellular Calcium Transport in the Proximal Tubule and the Formation of Kidney Stones. Am. J. Physiol. Renal Physiol. 2019, 316, F966–F969. [CrossRef]Corfield, A.P. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Hu-Man. Microorganisms 2018, 6, 78. [CrossRef]Fasano, A. Intestinal Permeability and Its Regulation by Zonulin: Diagnostic and Therapeutic Implications. Clin. Gastroenterol. Hepatol. Clin. Pract. J. Am. Gastroenterol. Assoc. 2012, 10, 1096–1100. [CrossRef]Rodriguez-Boulan, E.; Macara, I.G. Organization and Execution of the Epithelial Polarity Programme. Nat. Rev. Mol. Cell Biol. 2014, 15, 225–242. [CrossRef] [PubMed]Rodriguez-Boulan, E.; Kreitzer, G.; Muesch, A. Organization of Vesicular Trafficking in Epithelia. Nat. Rev. Mol. Cell Biol. 2005, 6, 233–247. [CrossRef] [PubMed]Nixon, R.A. Amyloid Precursor Protein and Endosomal-Lysosomal Dysfunction in Alzheimer’s Disease: Inseparable Partners in a Multifactorial Disease. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 2729–2743. [CrossRef] [PubMed]Salloum, G.; Bresnick, A.R.; Backer, J.M. Macropinocytosis: Mechanisms and Regulation. Biochem. J. 2023, 480, 335–362. [CrossRef] [PubMed]Mercer, J.; Helenius, A. Virus Entry by Macropinocytosis. Nat. Cell Biol. 2009, 11, 510–520. [CrossRef] [PubMed]Stenmark, H. Rab GTPases as Coordinators of Vesicle Traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525. [CrossRef]Bucci, C.; Parton, R.G.; Mather, I.H.; Stunnenberg, H.; Simons, K.; Hoflack, B.; Zerial, M. The Small GTPase Rab5 Functions as a Regulatory Factor in the Early Endocytic Pathway. Cell 1992, 70, 715–728. [CrossRef]Rath, E.; Moschetta, A.; Haller, D. Mitochondrial Function—Gatekeeper of Intestinal Epithelial Cell Homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 497–516. [CrossRef]Mustaqeem, R.; Arif, A. Renal Tubular Acidosis; StatPearls Publishing: Treasure Island, FL, USA, 2023.Rodríguez Soriano, J. Renal Tubular Acidosis: The Clinical Entity. J. Am. Soc. Nephrol. 2002, 13, 2160–2170. [CrossRef]Verkman, A.S.; Hoek, A.N.; Ma, T.; Frigeri, A.; Skach, W.R.; Mitra, A.; Tamarappoo, B.K.; Farinas, J. Water transport across mammalian cell membranes. Am. J. Physiol. 1996, 270, C12–C30. [CrossRef]Knepper, M.A. Molecular Physiology of Urinary Concentrating Mechanism: Regulation of Aquaporin Water Channels by Vasopressin. Am. J. Physiol. 1997, 272, F3–F12. [CrossRef]Matthay, M.A.; Folkesson, H.G.; Clerici, C. Lung Epithelial Fluid Transport and the Resolution of Pulmonary Edema. Physiol. Rev. 2002, 82, 569–600. [CrossRef]Binder, H.J. Role of Colonic Short-Chain Fatty Acid Transport in Diarrhea. Annu. Rev. Physiol. 2010, 72, 297–313. [CrossRef] [PubMed]Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Ran-dolph, A.G.; Calfee, C.S. Acute Respiratory Distress Syndrome. Nat. Rev. Prim. 2019, 5, 18. [CrossRef] [PubMed]Hayakawa, K.; Chan, S.J.; Mandeville, E.T.; Park, J.H.; Bruzzese, M.; Montaner, J.; Arai, K.; Rosell, A.; Lo, E.H. Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium. Stem Cells 2018, 36, 1404–1410. [CrossRef] [PubMed]Islam, M.N.; Das, S.R.; Emin, M.T.; Wei, M.; Sun, L.; Westphalen, K.; Rowlands, D.J.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Mitochondrial Transfer from Bone-Marrow-Derived Stromal Cells to Pulmonary Alveoli Protects against Acute Lung Injury. Nat. Med. 2012, 18, 759–765. [CrossRef]Triplitt, C.L. Understanding the Kidneys’ Role in Blood Glucose Regulation. Am. J. Manag. Care 2012, 18, S11. [PubMed]Gallardo, P.; Cid, L.P.; Vio, C.P.; Sepúlveda, F.V. Aquaporin-2, a Regulated Water Channel, Is Expressed in Apical Membranes of Rat Distal Colon Epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, 856–863. [CrossRef] [PubMed]Anabazhagan, A.N.; Chatterjee, I.; Priyamvada, S.; Kumar, A.; Tyagi, S.; Saksena, S.; Alrefai, W.A.; Dudeja, P.K.; Gill, R.K. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D. J. Vis. Exp. JoVE 2017, 121, 55304. [CrossRef]King, J.; Giselbrecht, S.; Truckenmüller, R.; Carlier, A. Mechanistic Computational Models of Epithelial Cell Transporters-the Adorned Heroes of Pharmacokinetics. Front. Pharmacol. 2021, 12, 780620. [CrossRef]Field, M.; Semrad, C.E. Toxigenic Diarrheas, Congenital Diarrheas, and Cystic Fibrosis: Disorders of Intesti-Nal Ion Transport. Annu. Rev. Physiol. 1993, 55, 631–655. [CrossRef]Hanssens, L.S.; Duchateau, J.; Casimir, G.J. CFTR Protein: Not Just a Chloride Channel? Cells 2021, 10, 2844. [CrossRef]Schiller, L.R.; Pardi, D.S.; Sellin, J.H. Chronic Diarrhea: Diagnosis and Management. Clin. Gastroenterol. Hepatol. Clin. Pr. J. Am. Gastroenterol. Assoc. 2017, 15, 182–193. [CrossRef] [PubMed]McLafferty, E.; Johnstone, C.; Hendry, C.; Farley, A. Fluid and Electrolyte Balance. Nurs. Stand. 2014, 28, 42–49. [CrossRef] [PubMed]Batlle, D.; Haque, S.K. Genetic Causes and Mechanisms of Distal Renal Tubular Acidosis. Nephrology, Dialy-Sis, Transplantation: Official Publication of the European Dialysis and Transplant Association—European Renal Association. Engl. Oct. 2012, 27, 3691–3704. [CrossRef]King, T.E.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378(9807), 1949–1961. [CrossRef]Lee, J.-A.; Cho, A.; Huang, E.N.; Xu, Y.; Quach, H.; Hu, J.; Wong, A.P. Gene Therapy for Cystic Fibrosis: New Tools for Precision Medicine. J. Transl. Med. 2021, 19, 452. [CrossRef]Choi, J.Y.; Muallem, D.; Kiselyov, K.; Lee, M.G.; Thomas, P.J.; Muallem, S. Aberrant CFTR-Dependent HCO3 − Transport in Mutations Associated with Cystic Fibrosis. Nature 2001, 410, 94–97. [CrossRef]Chen, L.; Wang, H.-L.; Zhu, Y.-B.; Jin, Z.; Huang, J.-B.; Lin, X.-F.; Luo, J.-W.; Fang, Z.-T. Screening and Function Discussion of a Hereditary Renal Tubular Acidosis Family Pathogenic Gene. Cell Death Dis. 2020, 11, 159. [CrossRef]Kortenoeven, M.L.A.; Pedersen, N.B.; Rosenbaek, L.L.; Fenton, R.A. Vasopressin Regulation of Sodium Transport in the Distal Nephron and Collecting Duct. Am. J. Physiol. Ren. Physiol. 2015, 309, 280–299. [CrossRef]Makaryus, A.N.; McFarlane, S.I. Diabetes Insipidus: Diagnosis and Treatment of a Complex Disease. Clevel. Clin. J. Med. 2006, 73, 65–71. [CrossRef]Dabrowski, E.; Kadakia, R.; Zimmerman, D. Diabetes Insipidus in Infants and Children. Best Pr. Res. Clin. Endocrinol. Metab. 2016, 30, 317–328. [CrossRef]Nova, Z.; Skovierova, H.; Calkovska, A. Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. Int. J. Mol. Sci. 2019, 20, 831. [CrossRef]Beretta, E.; Romanò, F.; Sancini, G.; Grotberg, J.B.; Nieman, G.F.; Miserocchi, G. Pulmonary Interstitial Matrix and Lung Fluid Balance From Normal to the Acutely Injured Lung. Front. Physiol. 2021, 12, 781874. [CrossRef] [PubMed]Fernández-Pérez, E.R.; Sprung, J.; Afessa, B.; Warner, D.O.; Vachon, C.M.; Schroeder, D.R.; Brown, D.R.; Hubmayr, R.D.; Gajic, O. Intraoperative Ventilator Settings and Acute Lung Injury after Elective Surgery: A Nested Case Control Study. Thorax 2009, 64, 121–127. [CrossRef] [PubMed]Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [CrossRef]Goodman, B.E. Transport of Small Molecules across Cell Membranes: Water Channels and Urea Transport-Ers. Adv. Physiol. Educ. 2002, 26, 146–157. [CrossRef] [PubMed]Gibson, R.J.; Keefe, D.M.K. Cancer Chemotherapy-Induced Diarrhoea and Constipation: Mechanisms of Damage and Prevention Strategies. Support. Care Cancer 2006, 14, 890–900. [CrossRef]Boudry, G.; David, E.S.; Douard, V.; Monteiro, I.M.; Le Huërou-Luron, I.; Ferraris, R.P. Role of Intestinal Transporters in Neonatal Nutrition: Carbohydrates, Proteins, Lipids, Minerals, and Vitamins. J. Pediatr. Gastroen Terol. Nutr. 2010, 51, 380–401. [CrossRef]Wright, E.M.; Martín, M.G.; Turk, E. Intestinal Absorption in Health and Disease–Sugars. Best Pr. Res. Clin. Gastroenterol. 2003, 17, 943–956. [CrossRef]Stremmel, W.; Pohl, L.; Ring, A.; Herrmann, T. A New Concept of Cellular Uptake and Intracellular Trafficking of Long-Chain Fatty Acids. Lipids 2001, 36, 981–989. [CrossRef]Chartoumpekis, D.V.; Kensler, T.W. New Player on an Old Field; the Keap1/Nrf2 Pathway as a Target for Treatment of Type 2 Diabetes and Metabolic Syndrome. Curr. Diabetes Rev. 2013, 9, 137–145. [CrossRef]Brosnan, J.T.; Brosnan, M.E. Branched-Chain Amino Acids: Enzyme and Substrate Regulation. J. Nutr. 2006, 136, 207–211. [CrossRef] [PubMed]Desai, M.; Crowther, N.J.; Ozanne, S.E.; Lucas, A.; Hales, C.N. Adult Glucose and Lipid Metabolism May Be Programmed during Fetal Life. Biochem. Soc. Trans. 1995, 23, 331–335. [CrossRef] [PubMed]Wilschanski, M.; Novak, I. The Cystic Fibrosis of Exocrine Pancreas. Cold Spring Harb. Perspect. Med. 2013, 3, 009746. [CrossRef]BioRender. Available online: https://app.biorender.com/biorender-templates/figures/all/t-5f98644fc942a500a89da31cabsorption-of-nutrients-in-the-small-intestine (accessed on 1 October 2023).Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonal-coholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [CrossRef] [PubMed]Samuel, V.T.; Shulman, G.I. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab. 2018, 27, 22–41. [CrossRef]Roberts, E.A.; Schilsky, M.L. Diagnosis and Treatment of Wilson Disease: An Update. Hepatology 2008, 47, 2089–2111. [CrossRef]Virmani, R.; Joner, M.; Sakakura, K. Recent Highlights of ATVB: Calcification. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1329–1332. [CrossRef]Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A. ACG Clinical Guidelines: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2013, 108, 656–676. [CrossRef] [PubMed]Szilagyi, A.; Smith, B.E.; Sebbag, N.; Leighton, H.; Xue, X. Changing Patterns of Relationships Between Geo-Graphic Markers and IBD: Possible Intrusion of Obesity. Crohn’s Colitis 2020, 360, 044. [CrossRef]Di Sabatino, A.; Corazza, G. Coeliac Disease. Lancet 2009, 373, 1480–1493. [CrossRef] [PubMed]Masuda, T.; Muto, S.; Fukuda, K.; Watanabe, M.; Ohara, K.; Koepsell, H.; Vallon, V.; Nagata, D. Osmotic Diure-Sis by SGLT2 Inhibition Stimulates Vasopressin-Induced Water Reabsorption to Maintain Body Fluid Volume. Physiol. Rep. 2020, 8, 14360. [CrossRef] [PubMed]Boron, W.F.; Boulpaep, E.L. (Eds.) Boron y Boulpaep. In Manual de Fisiología Médica; Elsevier Health Sciences: Amsterdam, The Netherlands, 2022.Goltzman, D.; Mannstadt, M.; Marcocci, C. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Front. Horm. Res. 2018, 50, 1–13. [CrossRef] [PubMed]Taylor, J.G.; Bushinsky, D.A. Calcium and Phosphorus Homeostasis. Blood Purif. 2009, 27, 387–394. [CrossRef] [PubMed]Chen, Y.; Schaefer, J.J.; Iyer, S.R.; Harders, G.E.; Pan, S.; Sangaralingham, S.J.; Chen, H.H.; Redfield, M.M.; Burnett, J.C., Jr. Long-Term Blood Pressure Lowering and CGMP-Activating Actions of the Novel ANP Analog MANP. Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, 669–676. [CrossRef]John, S.W.; Veress, A.T.; Honrath, U.; Chong, C.K.; Peng, L.; Smithies, O.; Sonnenberg, H. Blood Pressure and Fluid-Electrolyte Balance in Mice with Reduced or Absent ANP. Am. J. Physiol. Integr. Comp. Physiol. 1996, 1, 271. [CrossRef]Maurer, M.; Riesen, W.; Muser, J.; Hulter, H.N.; Krapf, R. Neutralization of Western Diet Inhibits Bone Re-Sorption Independently of K Intake and Reduces Cortisol Secretion in Humans. Am. J. Physiol. Ren. Physiol. 2003, 284, 32–40. [CrossRef] [PubMed]Hall, J.E.; Carmo, J.M.; Silva, A.A.; Wang, Z.; Hall, M.E.O. Kidney Dysfunction and Hypertension: Mechanistic Links. Nat. Rev. Nephrol. 2019, 15, 367–385. [CrossRef]Berend, K.; Hulsteijn, L.H.; Gans, R.O.B.C. The Queen of Electrolytes? Eur. J. Intern. Med. 2012, 23, 203–211. [CrossRef]Tinawi, M. Disorders of Calcium Metabolism: Hypocalcemia and Hypercalcemia. Cureus 2021, 13, 12420. [CrossRef]Staruschenko, A. Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct. Compr. Physiol. 2012, 2, 1541–1584. [CrossRef]Decaux, G.; Soupart, A.; Musch, W.; Bourgeois, S.; Verhoeven, A. Treatment of Polydipsia-Hyponatremia with Urea. Psychopharmacol. Biol. Narcology 2005, 5, 919.Kassim, T.A.; Clarke, D.D.; Mai, V.Q.; Clyde, P.W.; Mohamed Shakir, K.M. Catecholamine-Induced Cardiomyopathy. Endocr. Pract. 2008, 14, 1137–1149. [CrossRef] [PubMed]Dickinson, K.M.; Collaco, J.M. Cystic Fibrosis. Pediatr. Rev. 2021, 42, 55–67. [CrossRef] [PubMed]Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [CrossRef]Boeck, K.; Amaral, M.D. Progress in Therapies for Cystic Fibrosis. Lancet Respir. Med. 2016, 4, 662–674. [CrossRef]McCague, A.F.; Raraigh, K.S.; Pellicore, M.J.; Davis-Marcisak, E.F.; Evans, T.A.; Han, S.T.; Lu, Z.; Joynt, A.T.; Sharma, N.; Castellani, C.; et al. Correlating Cystic Fibrosis Transmembrane Conductance Regulator Function with Clinical Features to Inform Precision Treatment of Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 1116–1126. [CrossRef] [PubMed]Riordan, J.R. CFTR Function and Prospects for Therapy. Annu. Rev. Biochem. 2008, 77, 701–726. [CrossRef]Gustafsson, J.K.; Ermund, A.; Ambort, D.; Johansson, M.E.V.; Nilsson, H.E.; Thorell, K.; Hebert, H.; Sjövall, H.; Hansson, G.C. Bicarbonate and Functional CFTR Channel Are Required for Proper Mucin Secretion and Link Cystic Fibrosis with Its Mucus Phenotype. J. Exp. Med. 2012, 209, 1263–1272. [CrossRef] [PubMed]Chmiel, J.F.; Davis, P.B. State of the Art: Why Do the Lungs of Patients with Cystic Fibrosis Become Infect-Ed and Why Can’t They Clear the Infection? Respir. Res. 2003, 4, 8. [CrossRef]Fulchiero, R.; Seo-Mayer, P. Bartter Syndrome and Gitelman Syndrome. Pediatr. Clin. N. Am. 2019, 66, 121–134. [CrossRef]Mumford, E.; Unwin, R.J.; Walsh, S.B. Liquorice, Liddle, Bartter or Gitelman-How to Differentiate? Nephrol. Dial. Transplant. 2019, 34, 38–39. [CrossRef]Seyberth, H.W.; Weber, S.; Kömhoff, M.B.; Syndrome, G. Bartter’s and Gitelman’s syndrome. Curr. Opin. Pediatr. 2017, 29, 179–186. [CrossRef]Konrad, M.; Vollmer, M.; Lemmink, H.H.; van den Heuvel, L.P.; Jeck, N.; Vargas-Poussou, R.; Lakings, A.; Ruf, R.; Deschênes, G.; Antignac, C.; et al. Mutations in the Chloride Channel Gene CLCNKB as a Cause of Classic Bartter Syn-Drome. J. Am. Soc. Nephrol. 2000, 11, 1449–1459. [CrossRef] [PubMed]Blanchard, A.; Bockenhauer, D.; Bolignano, D.; Calò, L.A.; Cosyns, E.; Devuyst, O.; Ellison, D.H.; Karet Frankl, F.E.; Knoers, N.V.A.M.; Konrad, M.; et al. Gitelman Syndrome: Consensus and Guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 24–33. [CrossRef]Simon, D.B.; Nelson-Williams, C.; Bia, M.J.; Ellison, D.; Karet, F.E.; Molina, A.M.; Vaara, I.; Iwata, F.; Cushner, H.M.; Koolen, M.; et al. Gitelman’s Variant of Bartter’s Syndrome, Inherited Hypokalaemic Alkalosis, Is Caused by Mutations in the ThiazideSensitive Na-Cl Cotransporter. Nat. Genet. 1996, 12, 24–30. [CrossRef]Knoers, N.V.A.M.; Levtchenko, E.N. Gitelman Syndrome. Orphanet J. Rare Dis. 2008, 3, 22. [CrossRef] [PubMed]Zella, G.C.; Israel, E.J. Chronic Diarrhea in Children. Pediatr. Rev. 2012, 33, 207–208. [CrossRef]Burgers, K.; Lindberg, B.; Bevis, Z.J. Chronic Diarrhea in Adults: Evaluation and Differential Diagnosis. Am. Fam. Physician 2020, 101, 472–480.Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053–1060. [CrossRef]Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [CrossRef]Benninga, M.A.; Faure, C.; Hyman, P.E.; James Roberts, I.; Schechter, N.L.; Nurko, S. Childhood Functional Gastrointestinal Disorders: Neonate/Toddler. Gastroenterology 2016, 150, 1443–1455.e2. [CrossRef] [PubMed]Barrett, K.E.; Keely, S.J. Integrative Physiology and Pathophysiology of Intestinal Electrolyte Transport. In Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1931–1951.Alli, A.A.; Bao, H.-F.; Liu, B.-C.; Yu, L.; Aldrugh, S.; Montgomery, D.S.; Ma, H.-P.; Eaton, D.C. Calmod-Ulin and CaMKII Modulate ENaC Activity by Regulating the Association of MARCKS and the Cytoskeleton with the Apical Membrane. Am. J. Physiol. Ren. Physiol. 2015, 309, 456–463. [CrossRef] [PubMed]Barrett, K.E.; Keely, S.J. Chloride Secretion by the Intestinal Epithelium: Molecular Basis and Regulatory Aspects. Annu. Rev. Physiol. 2000, 62, 535–572. [CrossRef] [PubMed]Priyamvada, S.; Gomes, R.; Gill, R.K.; Saksena, S.; Alrefai, W.A.; Dudeja, P.K. Mechanisms Underlying Dysregulation of Electrolyte Absorption in Inflammatory Bowel Disease-Associated Diarrhea. Inflamm. Bowel Dis. 2015, 21, 2926–2935. [CrossRef]Ousingsawat, J.; Mirza, M.; Tian, Y.; Roussa, E.; Schreiber, R.; Cook, D.I.; Kunzelmann, K. Rotavirus Toxin NSP4 Induces Diarrhea by Activation of TMEM16A and Inhibition of Na+ Absorption. Pflugers. Arch. 2011, 461, 579–589. [CrossRef]Borenshtein, D.; Fry, R.C.; Groff, E.B.; Nambiar, P.R.; Carey, V.J.; Fox, J.G.; Schauer, D.B. Diarrhea as a Cause of Mortality in a Mouse Model of Infectious Colitis. Genome Biol. 2008, 9, 122. [CrossRef]Borenshtein, D.; Schlieper, K.A.; Rickman, B.H.; Chapman, J.M.; Schweinfest, C.W.; Fox, J.G.; Schauer, D.B. Decreased Expression of Colonic Slc26a3 and Carbonic Anhydrase Iv as a Cause of Fatal Infectious Diarrhea in Mice. Infect. Immun. 2009, 77, 3639–3650. [CrossRef]Zhu, X.C.; Sarker, R.; Horton, J.R.; Chakraborty, M.; Chen, T.-E.; Tse, C.M.; Cha, B.; Donowitz, M. Non-Synonymous Single Nucleotide Polymorphisms of NHE3 Differentially Decrease NHE3 Transporter Activity. Am. J. Physiol. Cell Physiol. 2015, 308, 758–766. [CrossRef]Thiagarajah, J.R.; Verkman, A.S. Chloride Channel-Targeted Therapy for Secretory Diarrheas. Curr. Opin. Pharmacol. 2013, 13, 888–894. [CrossRef]Xiao, F.; Yu, Q.; Li, J.; Johansson, M.E.V.; Singh, A.K.; Xia, W.; Riederer, B.; Engelhardt, R.; Montrose, M.; Soleimani, M.; et al. Slc26a3 Deficiency Is Associated with Loss of Colonic HCO3 − Secretion, Absence of a Firm Mucus Layer and Barrier Impairment in Mice. Acta Physiol. 2014, 211, 161–175. [CrossRef]Shao, X.; Min, X.; Xia, X.; Lin, X.; Jiang, L.; Ding, R.; Jiang, Y. Association of Solute-Linked Carrier Family 26 Member A3 Gene Polymorphisms with Ulcerative Colitis among Chinese Patients. Chin. J. Med. Genet. 2017, 34, 255–260. [CrossRef]Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; et al. A Genome-Wide Association Study Identifies Three New Suscepti-Bility Loci for Ulcerative Colitis in the Japanese Population. Nat. Genet. 2009, 41, 1325–1329. [CrossRef] [PubMed]Harrison, D.G.; Coffman, T.M.; Wilcox, C.S. Pathophysiology of Hypertension. Circ. Res. 2021, 128, 847–863. [CrossRef] [PubMed]Al Ghorani, H.; Götzinger, F.; Böhm, M.; Mahfoud, F. Arterial Hypertension—Clinical Trials Update 2021. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 21–31. [CrossRef] [PubMed]Hering, D.; Trzebski, A.; Narkiewicz, K. Recent Advances in the Pathophysiology of Arterial Hyperten-Sion: Potential Implications for Clinical Practice. Pol. Arch. Intern. Med. 2017, 127, 195–204. [PubMed]Beevers, G.; Lip, G.Y.H.; O’Brien, E. The Pathophysiology of Hypertension. BMJ 2001, 322, 912–916. [CrossRef]Ramalhinho, V. Central and peripheral vascular resistance. Acta Med. Port. 1992, 5, 263–265.Dijk, J.G.; Rossum, I.A.; Thijs, R.D. The Pathophysiology of Vasovagal Syncope: Novel Insights. Auton. Neurosci. 2021, 236, 102899. [CrossRef]Mathias, C.J. Role of Sympathetic Efferent Nerves in Blood Pressure Regulation and in Hypertension. Hypertension 1991, 18, III22-30. [CrossRef]Fagard, R.; Staessen, J. Relation of Cardiac Output at Rest and during Exercise to Age in Essential Hypertension. Am. J. Cardiol. 1991, 67, 585–589. [CrossRef]Cipolla, M.J.; Liebeskind, D.S.; Chan, S.-L. The Importance of Comorbidities in Ischemic Stroke: Impact of Hypertension on the Cerebral Circulation. J. Cereb. Blood Flow Metab. 2018, 38, 2129–2149. [CrossRef] [PubMed]Carnagarin, R.; Matthews, V.; Zaldivia, M.T.K.; Peter, K.; Schlaich, M.P. The Bidirectional Interaction between the Sympathetic Nervous System and Immune Mechanisms in the Pathogenesis of Hypertension. Br. J. Pharmacol. 2019, 176, 1839–1852. [CrossRef] [PubMed]Fujita, M.; Fujita, T. The Role of CNS in Salt-Sensitive Hypertension. Curr. Hypertens. Rep. 2013, 15, 390–394. [CrossRef] [PubMed]Mutchler, S.M.; Kirabo, A.; Kleyman, T.R. Epithelial Sodium Channel and Salt-Sensitive Hypertension. Hypertension 2021, 77, 759–767. [CrossRef] [PubMed]Kelly, T.N.; He, J. Genomic Epidemiology of Blood Pressure Salt Sensitivity. J. Hypertens. 2012, 30, 861–873. [CrossRef] [PubMed]King, A.J.; Osborn, J.W.; Fink, G.D. Splanchnic Circulation Is a Critical Neural Target in Angiotensin II Salt Hypertension in Rats. Hypertension 2007, 50, 547–556. [CrossRef] [PubMed]Kopp, C.; Linz, P.; Dahlmann, A.; Hammon, M.; Jantsch, J.; Müller, D.N.; Schmieder, R.E.; Cavallaro, A.; Eckardt, K.-U.; Uder, M.; et al. 23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients. Hypertension 2013, 61, 635–640. [CrossRef]Jantsch, J.; Schatz, V.; Friedrich, D.; Schröder, A.; Kopp, C.; Siegert, I.; Maronna, A.; Wendelborn, D.; Linz, P.; Binger, K.J.; et al. Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macro-Phage-Driven Host Defense. Cell Metab. 2015, 21, 493–501. [CrossRef]Kitada, K.; Daub, S.; Zhang, Y.; Klein, J.D.; Nakano, D.; Pedchenko, T.; Lantier, L.; LaRocque, L.M.; Marton, A.; Neubert, P.; et al. High Salt Intake Reprioritizes Osmolyte and Energy Metabolism for Body Fluid Conservation. J. Clin. Investig. 2017, 127, 1944–1959. [CrossRef]Jacob, F.; Clark, L.A.; Guzman, P.A.; Osborn, J.W. Role of Renal Nerves in Development of Hypertension in DOCA-Salt Model in Rats: A Telemetric Approach. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1519–H1529. [CrossRef]Ito, S.; Hiratsuka, M.; Komatsu, K.; Tsukamoto, K.; Kanmatsuse, K.; Sved, A.F. Ventrolateral Medulla AT1 Receptors Support Arterial Pressure in Dahl Salt-Sensitive Rats. Hypertension 2003, 41, 744–750. [CrossRef] [PubMed]Jia, G.; Sowers, J.R. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension 2021, 78, 1197–1205. [CrossRef]Shimbo, D.; Newman, J.D.; Aragaki, A.K.; LaMonte, M.J.; Bavry, A.A.; Allison, M.; Manson, J.E.; Wassertheil-Smoller, S. Association between Annual Visit-to-Visit Blood Pressure Variability and Stroke in Postmenopausal Women: Data from the Women’s Health Initiative. Hypertension 2012, 60, 625–630. [CrossRef]Hollenberg, N.K. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs Diuretic. Curr. Hypertens. Rep. 2003, 5, 183–185. [CrossRef] [PubMed]Shearer, F.; Lang, C.C.; Struthers, A.D. Renin-Angiotensin-Aldosterone System Inhibitors in Heart Failure. Clin. Pharmacol. Ther. 2013, 94, 459–467. [CrossRef]Ames, M.K.; Atkins, C.E.; Pitt, B. The Renin-Angiotensin-Aldosterone System and Its Suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [CrossRef] [PubMed]Sayer, G.; Bhat, G. The Renin-Angiotensin-Aldosterone System and Heart Failure. Cardiol. Clin. 2014, 32, 21–32. [CrossRef]Su, C.; Xue, J.; Ye, C.; Chen, A. Role of the Central Renin-angiotensin System in Hypertension (Review). Int. J. Mol. Med. 2021, 47, 95. [CrossRef]Pacurari, M.; Kafoury, R.; Tchounwou, P.B.; Ndebele, K. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling. Int. J. Inflamm. 2014, 2014, 689360. [CrossRef]Poznyak, A.V.; Bharadwaj, D.; Prasad, G.; Grechko, A.V.; Sazonova, M.A.; Orekhov, A.N. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int. J. Mol. Sci. 2021, 22, 6702. [CrossRef]Davignon, J.; Ganz, P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation 2004, 109, III-27–III-32. [CrossRef]Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [CrossRef]Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [CrossRef] [PubMed]Daniele, N.; Marrone, G.; Lauro, M.; Daniele, F.; Palazzetti, D.; Guerriero, C.; Noce, A. Effects of Caloric Restriction Diet on Arterial Hypertension and Endothelial Dysfunction. Nutrients 2021, 13, 274. [CrossRef]Araujo, M.; Wilcox, C.S. Oxidative Stress in Hypertension: Role of the Kidney. Antioxid. Redox Signal. 2014, 20, 74–101. [CrossRef] [PubMed]Lob, H.E.; Schultz, D.; Marvar, P.J.; Davisson, R.L.; Harrison, D.G. Role of the NADPH Oxidases in the Subfornical Organ in Angiotensin II-Induced Hypertension. Hypertension 1979, 61, 382–387. [CrossRef]Lifton, R.P.; Gharavi, A.G.; Geller, D.S. Molecular Mechanisms of Human Hypertension. Cell 2001, 104, 545–556. [CrossRef] [PubMed]Vaura, F.; Kauko, A.; Suvila, K.; Havulinna, A.S.; Mars, N.; Salomaa, V.; FinnGen; Cheng, S.; Niiranen, T. Polygenic Risk Scores Predict Hypertension Onset and Cardiovascular Risk. Hypertension 2021, 77, 1119–1127. [CrossRef] [PubMed]Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol. Med. 2021, 27, 314–331. [CrossRef]Eisenhut, M. Changes in Ion Transport in Inflammatory Disease. J. Inflamm. Lond. Engl. 2006, 3, 5. [CrossRef] [PubMed]Ware, L.B.; Lee, J.W.; Wickersham, N.; Nguyen, J.; Matthay, M.A.; Calfee, C.S. Donor Smoking Is Associated With Pulmonary Edema, Inflammation and Epithelial Dysfunction in Ex Vivo Human Donor Lungs. Am. J. Transplant. 2014, 14, 2295–2302. [CrossRef]Herrero, R.; Sanchez, G.; Lorente, J.A. New Insights into the Mechanisms of Pulmonary Edema in Acute Lung Injury. Ann. Transl. Med. 2018, 6, 32. [CrossRef]Scallan, J.; Huxley, V.H.; Korthuis, R.J. Capillary Fluid Exchange: Regulation, Functions, and Pathology; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010.Stickland, M.K.; Lindinger, M.I.; Olfert, I.M.; Heigenhauser, G.J.F.; Hopkins, S.R. Pulmonary Gas Ex-Change and Acid-Base Balance during Exercise. Compr. Physiol. 2013, 3, 693–739. [CrossRef]Rahbar, E.; Akl, T.; Coté, G.L.; Moore, J.E.J.; Zawieja, D.C. Lymph Transport in Rat Mesenteric Lym-phatics Experiencing Edemagenic Stress. Microcirculation 2014, 21, 359–367. [CrossRef] [PubMed]Wiig, H.; Swartz, M.A. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol. Rev. 2012, 92, 1005–1060. [CrossRef] [PubMed]Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/Reperfusion. Compr. Physiol. 2016, 7, 113–170. [CrossRef]Dana, I.; Susanto, L.A.; Suryana, K. Ascites in Peripartum Cardiomyopathy: Case Report. Int. J. Adv. Med. 2021, 8, 306–310. [CrossRef]Kadry, H.; Noorani, B.; Cucullo, L. A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids Barriers CNS 2020, 17, 69. [CrossRef] [PubMed]Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet Radiation and Skin Aging: Roles of Reactive Oxygen Spe-Cies, Inflammation and Protease Activation, and Strategies for Prevention of Inflammation-Induced Matrix Deg-Radation—A Review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [CrossRef]Murphy, T.V.; Spurrell, B.E.; Hill, M.A. Cellular Signalling in Arteriolar Myogenic Constriction: In-Volvement of Tyrosine Phosphorylation Pathways. Clin. Exp. Pharmacol. Physiol. 2002, 29, 612–619. [CrossRef]Chappell, D.; Jacob, M.; Hofmann-Kiefer, K.; Conzen, P.; Rehm, M. A Rational Approach to Perioperative Fluid Management. Anesthesiology 2008, 109, 723–740. [CrossRef] [PubMed]Jacob, M.; Chappell, D.; Rehm, M. The ’Third Space’–Fact or Fiction? Best Pract. Res. Clin. Anaesthesiol. 2009, 23, 145–157. [CrossRef]Gallelli, L. Escin: A Review of Its Anti-Edematous, Anti-Inflammatory, and Venotonic Properties. Drug Dev. Ther. 2019, 13, 3425–3437. [CrossRef]Singh, S.K.; Revand, R. Physiological Basis of Lower Limb Edema. In Approach to Lower Limb Oedema; Springer: Berlin/Heidelberg, Germany, 2022; pp. 25–43.Rajput, S.; Sharma, P.K.; Malviya, R. Fluid Mechanics in Circulating Tumour Cells: Role in Metastasis and Treatment Strategies. Med. Drug Discov. 2023, 18, 100158. [CrossRef]Magder, S.; Malhotra, A.; Hibbert, K.A.; Hardin, C.C. Cardiopulmonary Monitoring: Basic Physiology, Tools, and Bedside Management for the Critically Ill; Springer Nature: Berlin/Heidelberg, Germany, 2021.López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nat. Rev. Cardiol. 2021, 18, 479–498. [CrossRef]Britzen-Laurent, N.; Weidinger, C.; Stürzl, M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2023, 24, 5517. [CrossRef]Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [CrossRef]Marek-Jozefowicz, L.; Nedoszytko, B.; Grochocka, M.; Zmijewski, M.A.; Czajkowski, R.; Cubała, W.J.; Slominski, A.T. Molecular ˙ Mechanisms of Neurogenic Inflammation of the Skin. Int. J. Mol. Sci. 2023, 24, 5001. [CrossRef] [PubMed]Meade, E.; Garvey, M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. Int. J. Mol. Sci. 2022, 23, 8574. [CrossRef] [PubMed]Rongioletti, F.; Romanelli, P.; Ferreli, C. Mucinosis and Disorders of Collagen and Elastic Fibers. Hosp. Based Dermatopathol. Illus. Diagn. Guide 2020, 199–244.Stewart, R.H. A Modern View of the Interstitial Space in Health and Disease. Front. Vet Sci. 2020, 7, 609583. [CrossRef]Bonamonte, D.; Filoni, A. Impact of Endocrine Disorders on Skin Disorders. Endocrinol. Syst. Dis. 2021, 399–434.Martin-Almedina, S.; Mortimer, P.S.; Ostergaard, P. Development and Physiological Functions of the Lymphatic System: Insights from Human Genetic Studies of Primary Lymphedema. Physiol. Rev. 2021, 101, 1809–1871. [CrossRef]Modi, S.; Stanton, A.W.B.; Mortimer, P.S.; Levick, J.R. Clinical Assessment of Human Lymph Flow Using Removal Rate Constants of Interstitial Macromolecules: A Critical Review of Lymphoscintigraphy. Lym-Phat. Res. Biol. 2007, 5, 183–202. [CrossRef]Polomska, A.K.; Proulx, S.T. Imaging Technology of the Lymphatic System. Adv. Drug Deliv. Rev. 2021, 170, 294–311. [CrossRef]Binkley, J.M.; Harris, S.R.; Levangie, P.K.; Pearl, M.; Guglielmino, J.; Kraus, V.; Rowden, D. Patient Per-Spectives on Breast Cancer Treatment Side Effects and the Prospective Surveillance Model for Physical Rehabilita-Tion for Women with Breast Cancer. Cancer 2012, 118, 2207–2216. [CrossRef]Bauer, M.; London, E.D.; Rasgon, N.; Berman, S.M.; Frye, M.A.; Altshuler, L.L.; Mandelkern, M.A.; Bramen, J.; Voytek, B.; Woods, R.; et al. Supraphysiological Doses of Levothyroxine Alter Regional Cerebral Metabolism and Improve Mood in Bipolar Depression. Mol. Psychiatry 2005, 10, 456–469. [CrossRef]Bauer, D.C.; McPhee, S.J. Pathophysiology of Disease: An Introduction to Clinical Medicine; McGraw-Hill: New York, NY, USA, 2013.Matovinovi´c, M.S. 1. Pathophysiology and Classification of Kidney Diseases. Electron. J. Int. Fed. Clin. Chem. 2009, 20, 2–11.Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.-J. Chronic Kidney Disease. Nat. Rev. Dis. Prim. 2017, 3, 17088. [CrossRef]Morrell, E.D.; Kellum, J.A.; Hallows, K.R.; Pastor-Soler, N.M. Epithelial Transport during Septic Acute Kidney Injury. Nephrol. Dial. Transplant. 2014, 29, 1312–1319. [CrossRef]Schmidt, C.; Höcherl, K.; Schweda, F.; Bucher, M. Proinflammatory Cytokines Cause Down-Regulation of Renal Chloride Entry Pathways during Sepsis. Crit. Care Med. 2007, 35, 2110–2119. [CrossRef] [PubMed]Role of AQP1 in Endotoxemia-Induced Acute Kidney Injury—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/18 434389/ (accessed on 1 October 2023).Escalante, B.A.; Ferreri, N.R.; Dunn, C.E.; McGiff, J.C. Cytokines Affect Ion Transport in Primary Cultured Thick Ascending Limb of Henle’s Loop Cells. Am. J. Physiol. 1994, 266, C1568–C1576. [CrossRef]Zeidel, M.L.; Brady, H.R.; Kohan, D.E. Interleukin-1 Inhibition of Na(+)-K(+)-ATPase in Inner Medullary Collecting Duct Cells: Role of PGE2. Am. J. Physiol. 1991, 261, F1013–F1016. [CrossRef] [PubMed]Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [CrossRef] [PubMed]Milkovic, L.; Cipak Gasparovic, A.; Cindric, M.; Mouthuy, P.-A.; Zarkovic, N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells 2019, 8, 793. [CrossRef]Gyurászová, M.; Gurecká, R.; Bábíˇcková, J.; Tóthová, L’. Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxid. Med. Cell Longev. 2020, 2020, e5478708. [CrossRef]Sies, H. Oxidative Stress: Oxidants and Antioxidants. Exp. Physiol. 1997, 82, 291–295. [CrossRef]Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol 2015, 4, 180–183. [CrossRef]Pickkers, P.; Darmon, M.; Hoste, E.; Joannidis, M.; Legrand, M.; Ostermann, M.; Prowle, J.R.; Schneider, A.; Schetz, M. Acute Kidney Injury in the Critically Ill: An Updated Review on Pathophysiology and Management. Intensive Care Med. 2021, 47, 835–850. [CrossRef]Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute Kidney Injury from Sepsis: Current Concepts, Epidemiology, Pathophysiology, Prevention and Treatment. Kidney Int. 2019, 96, 1083–1099. [CrossRef]Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98.Wu, L.; Hu, Y.; Yuan, B.; Zhang, X.; Chen, W.; Liu, K.; Liu, M. Which Risk Predictors Are More Likely to Indicate Severe AKI in Hospitalized Patients? Int. J. Med. Inf. 2020, 143, 104270. [CrossRef] [PubMed]Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. Oxidative Stress and Acute Kid-Ney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers-Interventions, and Future Perspectives. Oxid. Med. Cell Longev. 2017, 2017, 6193694. [CrossRef] [PubMed]Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; et al. Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics 2021, 11, 1845–1863. [CrossRef] [PubMed]Dennis, J.M.; Witting, P.K. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017, 9, 718. [CrossRef]Paller, M.S.; Hoidal, J.R.; Ferris, T.F. Oxygen Free Radicals in Ischemic Acute Renal Failure in the Rat. J. Clin. Investig. 1984, 74, 1156–1164. [CrossRef]Zarbock, A.; Gomez, H.; Kellum, J.A. Sepsis-Induced AKI Revisited: Pathophysiology, Prevention and Future Therapies. Curr. Opin. Crit. Care 2014, 20, 588–595. [CrossRef]Nakazawa, D.; Kumar, S.V.; Marschner, J.; Desai, J.; Holderied, A.; Rath, L.; Kraft, F.; Lei, Y.; Fukasawa, Y.; Moeckel, G.W.; et al. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J. Am. Soc. Nephrol. JASN 2017, 28, 1753–1768. [CrossRef]Al-Harbi, N.O.; Nadeem, A.; Ahmad, S.F.; Alanazi, M.M.; Aldossari, A.A.; Alasmari, F. Amelioration of Sepsis-Induced Acute Kidney Injury through Inhibition of Inflammatory Cytokines and Oxidative Stress in Dendritic Cells and Neutrophils Respectively in Mice: Role of Spleen Tyrosine Kinase Signaling. Biochimie 2019, 158, 102–110. [CrossRef]Chancharoenthana, W.; Leelahavanichkul, A. Acute Kidney Injury Spectrum in Patients with Chronic Liver Disease: Where Do We Stand? World J. Gastroenterol. 2019, 25, 3684–3703. [CrossRef]Dounousi, E.; Papavasiliou, E.; Makedou, A.; Ioannou, K.; Katopodis, K.P.; Tselepis, A.; Siamopoulos, K.C.; Tsakiris, D. Oxidative Stress Is Progressively Enhanced with Advancing Stages of CKD. Am. J. Kidney Dis. 2006, 48, 752–760. [CrossRef]Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; CarrilloLópez, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int. J. Mol. Sci. 2021, 22, 408. [CrossRef]Swartling, O.; Rydell, H.; Stendahl, M.; Segelmark, M.; Trolle Lagerros, Y.; Evans, M. CKD Progression and Mortality Among Men and Women: A Nationwide Study in Sweden. Am. J. Kidney Dis. 2021, 78, 190–199.e1. [CrossRef]Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. Int. J. Mol. Sci. 2019, 20, 3711. [CrossRef]Kao, M.P.C.; Ang, D.S.C.; Pall, A.; Struthers, A.D. Oxidative Stress in Renal Dysfunction: Mechanisms, Clinical Sequelae and Therapeutic Options. J. Hum. Hypertens. 2010, 24, 1–8. [CrossRef] [PubMed]Dieter, B.P.; Alicic, R.Z.; Meek, R.L.; Anderberg, R.J.; Cooney, S.K.; Tuttle, K.R. Novel Therapies for Diabetic Kidney Disease: Storied Past and Forward Paths. Diabetes Spectr. 2015, 28, 167–174. [CrossRef]Galvan, D.L.; Green, N.H.; Danesh, F.R. The Hallmarks of Mitochondrial Dysfunction in Chronic Kidney Disease. Kidney Int. 2017, 92, 1051–1057. [CrossRef] [PubMed]Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-Associated Uric Acid Crystals Activate the NALP3 Inflammasome. Nature 2006, 440, 237–241. [CrossRef]Sato, Y.; Yanagita, M. Immune Cells and Inflammation in AKI to CKD Progression. Am. J. Physiol. Renal Physiol. 2018, 315, F1501–F1512. [CrossRef] [PubMed]Jiang, M.; Bai, M.; Lei, J.; Xie, Y.; Xu, S.; Jia, Z.; Zhang, A. Mitochondrial Dysfunction and the AKI-to-CKD Transition. Am. J. Physiol. Renal Physiol. 2020, 319, F1105–F1116. [CrossRef]Fu, Y.; Tang, C.; Cai, J.; Chen, G.; Zhang, D.; Dong, Z. Rodent Models of AKI-CKD Transition. Am. J. Physiol. Renal Physiol. 2018, 315, 1098–1106. [CrossRef] [PubMed]3512012Epithelial transportIon transportHormonal regulationGenetic disordersPathophysiologyRenal diseasePublicationORIGINALEpithelial Transport in Disease An Overview of.pdfEpithelial Transport in Disease An Overview of.pdfapplication/pdf2445211https://repositorio.cuc.edu.co/bitstreams/443a7e72-d5d2-43c5-af7c-e5000a0eda07/download841aa4ab2ea5e49665474ca4a785a8e1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/27045a5d-4118-4aa1-bc28-8e10721e7322/download73a5432e0b76442b22b026844140d683MD52TEXTEpithelial Transport in Disease An Overview of.pdf.txtEpithelial Transport in Disease An Overview of.pdf.txtExtracted texttext/plain101367https://repositorio.cuc.edu.co/bitstreams/8ba0c9aa-414f-4d89-93c9-7c14e052305e/download652e6ba2ab960382a344cb6b62734641MD53THUMBNAILEpithelial Transport in Disease An Overview of.pdf.jpgEpithelial Transport in Disease An Overview of.pdf.jpgGenerated Thumbnailimage/jpeg15598https://repositorio.cuc.edu.co/bitstreams/e39276f1-1a41-4e9d-998a-0619ab381b77/download156a8b524f202a123f029a090534c033MD5411323/13628oai:repositorio.cuc.edu.co:11323/136282024-11-06 03:02:11.17https://creativecommons.org/licenses/by/4.0/© 2023 by the authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K