Thermodynamic Properties Of In1-xBxP Semiconducting Alloys: A First-Principles Study
We have carried out first-principles total-energy calculations in order to study the electronic structure and thermodynamic properties of In 1-xBxP semiconducting alloys using the GGA and LDA formalisms within density functional theory (DFT) with a plane-wave ultrasoft pseudopotential scheme. We hav...
- Autores:
-
González García, Alvaro
López Pérez, William
Palacio Mozo, Rommel
González Hernández, Rafael J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/866
- Acceso en línea:
- https://hdl.handle.net/11323/866
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ab-Initio Calculations
Alloys
Electronic Structure
Thermodynamic Properties
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
Summary: | We have carried out first-principles total-energy calculations in order to study the electronic structure and thermodynamic properties of In 1-xBxP semiconducting alloys using the GGA and LDA formalisms within density functional theory (DFT) with a plane-wave ultrasoft pseudopotential scheme. We have also taken into account the correlation effects of the 3d-In orbitals within the LDA+U method to calculate the band-gap energy. We use special quasirandom structures to investigate the effect of the substituent concentration on structural parameter, band gap energy, mixing enthalpy and phase diagram of In1-xBxP alloys for x = 0, 0.25, 0.50, 0.75 and 1. It is found that the lattice parameters of the In 1-xBxP alloys decrease with B-concentration, showing a negative deviation from Vegard's law, while the bulk modulus increases with composition x, showing a large deviation from the linear concentration dependence (LCD). The calculated band structure presents a similar behavior for any B-composition using LDA, PBE or LDA+U approach. Our results predict that the band-gap shows a x-dependent nonlinear behavior. Calculated band gaps also shows a transition from (Γ→Γ)-direct to (Γ→Δ)- indirect at x = 0.611 and 0.566 for LDA and PBE functionals, respectively. Our calculations predict that the In1-xBxP alloy to be stable at unusual high temperature for both LDA and PBE potentials. © 2014 Elsevier B.V. All rights reserved. |
---|