On the reduction of the available bandwidth estimation error through clustering with K-means
There are different tools to estimate the end to end available bandwidth (AB). These tools use techniques which send pairs of packets to the network and observe changes in dispersion or propagation delays to infer the value of the AB. Given the fractal nature of Internet traffic, these observations...
- Autores:
-
Guerrero, Cesar D.
Salcedo Morillo, Dixon David
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/805
- Acceso en línea:
- http://hdl.handle.net/11323/805
https://repositorio.cuc.edu.co/
- Palabra clave:
- Available bandwidth
Available Bandwidth Estimation
Clustering Techniques
Cross-Traffic
End-To-End Capacity
Estimation Errors
Internet Traffic
Propagation Delays
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_518919d158785325c82e8f2ea1576407 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/805 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On the reduction of the available bandwidth estimation error through clustering with K-means |
title |
On the reduction of the available bandwidth estimation error through clustering with K-means |
spellingShingle |
On the reduction of the available bandwidth estimation error through clustering with K-means Available bandwidth Available Bandwidth Estimation Clustering Techniques Cross-Traffic End-To-End Capacity Estimation Errors Internet Traffic Propagation Delays |
title_short |
On the reduction of the available bandwidth estimation error through clustering with K-means |
title_full |
On the reduction of the available bandwidth estimation error through clustering with K-means |
title_fullStr |
On the reduction of the available bandwidth estimation error through clustering with K-means |
title_full_unstemmed |
On the reduction of the available bandwidth estimation error through clustering with K-means |
title_sort |
On the reduction of the available bandwidth estimation error through clustering with K-means |
dc.creator.fl_str_mv |
Guerrero, Cesar D. Salcedo Morillo, Dixon David |
dc.contributor.author.spa.fl_str_mv |
Guerrero, Cesar D. Salcedo Morillo, Dixon David |
dc.subject.eng.fl_str_mv |
Available bandwidth Available Bandwidth Estimation Clustering Techniques Cross-Traffic End-To-End Capacity Estimation Errors Internet Traffic Propagation Delays |
topic |
Available bandwidth Available Bandwidth Estimation Clustering Techniques Cross-Traffic End-To-End Capacity Estimation Errors Internet Traffic Propagation Delays |
description |
There are different tools to estimate the end to end available bandwidth (AB). These tools use techniques which send pairs of packets to the network and observe changes in dispersion or propagation delays to infer the value of the AB. Given the fractal nature of Internet traffic, these observations are prompt to errors affecting the accuracy of the estimation. This article presents the application of a clustering technique to reduce the estimation error due to wrong observations of the available bandwidth in the network. The clustering technique used is K-means which is applied to a tool called Traceband that is originally based on a Hidden Markov Model to perform the estimation. It is shown that using K-means in Traceband can improve its accuracy in 67.45 % when the cross traffic is about 70% of the end-to-end capacity. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012-11-07 |
dc.date.accessioned.none.fl_str_mv |
2018-11-09T16:44:55Z |
dc.date.available.none.fl_str_mv |
2018-11-09T16:44:55Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-146735080-8 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/11323/805 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-146735080-8 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
http://hdl.handle.net/11323/805 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
IEEE |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3fc647ca-fa6c-43d2-8a43-67810de7c8f6/download https://repositorio.cuc.edu.co/bitstreams/a1c51b95-112f-412f-a8f6-bffd658cbcae/download https://repositorio.cuc.edu.co/bitstreams/90cf35e8-ee5b-4d5e-9a2c-25159f16de95/download https://repositorio.cuc.edu.co/bitstreams/e9c563df-ac98-42c2-9fd5-5c6e96f743b8/download |
bitstream.checksum.fl_str_mv |
559a510b142cdcdc44459a0de7540c0d 8a4605be74aa9ea9d79846c1fba20a33 10c29c21fd5a1f7fb3f06b270e27f191 b47e54069071f4aa71bd581539098669 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760662447128576 |
spelling |
Guerrero, Cesar D.Salcedo Morillo, Dixon David2018-11-09T16:44:55Z2018-11-09T16:44:55Z2012-11-07978-146735080-8http://hdl.handle.net/11323/805Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/There are different tools to estimate the end to end available bandwidth (AB). These tools use techniques which send pairs of packets to the network and observe changes in dispersion or propagation delays to infer the value of the AB. Given the fractal nature of Internet traffic, these observations are prompt to errors affecting the accuracy of the estimation. This article presents the application of a clustering technique to reduce the estimation error due to wrong observations of the available bandwidth in the network. The clustering technique used is K-means which is applied to a tool called Traceband that is originally based on a Hidden Markov Model to perform the estimation. It is shown that using K-means in Traceband can improve its accuracy in 67.45 % when the cross traffic is about 70% of the end-to-end capacity.Guerrero, Cesar D.-9d747112-630a-4a1c-ab0e-0923bd2f4e8e-0Salcedo Morillo, Dixon David-0000-0002-3762-8462-600engIEEEAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Available bandwidthAvailable Bandwidth EstimationClustering TechniquesCross-TrafficEnd-To-End CapacityEstimation ErrorsInternet TrafficPropagation DelaysOn the reduction of the available bandwidth estimation error through clustering with K-meansArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALOn the Reduction of the Available.pdfOn the Reduction of the Available.pdfapplication/pdf677191https://repositorio.cuc.edu.co/bitstreams/3fc647ca-fa6c-43d2-8a43-67810de7c8f6/download559a510b142cdcdc44459a0de7540c0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a1c51b95-112f-412f-a8f6-bffd658cbcae/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn the Reduction of the Available.pdf.jpgOn the Reduction of the Available.pdf.jpgimage/jpeg77772https://repositorio.cuc.edu.co/bitstreams/90cf35e8-ee5b-4d5e-9a2c-25159f16de95/download10c29c21fd5a1f7fb3f06b270e27f191MD54TEXTOn the Reduction of the Available.pdf.txtOn the Reduction of the Available.pdf.txttext/plain22362https://repositorio.cuc.edu.co/bitstreams/e9c563df-ac98-42c2-9fd5-5c6e96f743b8/downloadb47e54069071f4aa71bd581539098669MD5511323/805oai:repositorio.cuc.edu.co:11323/8052024-09-16 16:36:30.662open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |