On the reduction of the available bandwidth estimation error through clustering with K-means

There are different tools to estimate the end to end available bandwidth (AB). These tools use techniques which send pairs of packets to the network and observe changes in dispersion or propagation delays to infer the value of the AB. Given the fractal nature of Internet traffic, these observations...

Full description

Autores:
Guerrero, Cesar D.
Salcedo Morillo, Dixon David
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/805
Acceso en línea:
http://hdl.handle.net/11323/805
https://repositorio.cuc.edu.co/
Palabra clave:
Available bandwidth
Available Bandwidth Estimation
Clustering Techniques
Cross-Traffic
End-To-End Capacity
Estimation Errors
Internet Traffic
Propagation Delays
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_518919d158785325c82e8f2ea1576407
oai_identifier_str oai:repositorio.cuc.edu.co:11323/805
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv On the reduction of the available bandwidth estimation error through clustering with K-means
title On the reduction of the available bandwidth estimation error through clustering with K-means
spellingShingle On the reduction of the available bandwidth estimation error through clustering with K-means
Available bandwidth
Available Bandwidth Estimation
Clustering Techniques
Cross-Traffic
End-To-End Capacity
Estimation Errors
Internet Traffic
Propagation Delays
title_short On the reduction of the available bandwidth estimation error through clustering with K-means
title_full On the reduction of the available bandwidth estimation error through clustering with K-means
title_fullStr On the reduction of the available bandwidth estimation error through clustering with K-means
title_full_unstemmed On the reduction of the available bandwidth estimation error through clustering with K-means
title_sort On the reduction of the available bandwidth estimation error through clustering with K-means
dc.creator.fl_str_mv Guerrero, Cesar D.
Salcedo Morillo, Dixon David
dc.contributor.author.spa.fl_str_mv Guerrero, Cesar D.
Salcedo Morillo, Dixon David
dc.subject.eng.fl_str_mv Available bandwidth
Available Bandwidth Estimation
Clustering Techniques
Cross-Traffic
End-To-End Capacity
Estimation Errors
Internet Traffic
Propagation Delays
topic Available bandwidth
Available Bandwidth Estimation
Clustering Techniques
Cross-Traffic
End-To-End Capacity
Estimation Errors
Internet Traffic
Propagation Delays
description There are different tools to estimate the end to end available bandwidth (AB). These tools use techniques which send pairs of packets to the network and observe changes in dispersion or propagation delays to infer the value of the AB. Given the fractal nature of Internet traffic, these observations are prompt to errors affecting the accuracy of the estimation. This article presents the application of a clustering technique to reduce the estimation error due to wrong observations of the available bandwidth in the network. The clustering technique used is K-means which is applied to a tool called Traceband that is originally based on a Hidden Markov Model to perform the estimation. It is shown that using K-means in Traceband can improve its accuracy in 67.45 % when the cross traffic is about 70% of the end-to-end capacity.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-11-07
dc.date.accessioned.none.fl_str_mv 2018-11-09T16:44:55Z
dc.date.available.none.fl_str_mv 2018-11-09T16:44:55Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-146735080-8
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/805
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-146735080-8
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/805
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv IEEE
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/3fc647ca-fa6c-43d2-8a43-67810de7c8f6/download
https://repositorio.cuc.edu.co/bitstreams/a1c51b95-112f-412f-a8f6-bffd658cbcae/download
https://repositorio.cuc.edu.co/bitstreams/90cf35e8-ee5b-4d5e-9a2c-25159f16de95/download
https://repositorio.cuc.edu.co/bitstreams/e9c563df-ac98-42c2-9fd5-5c6e96f743b8/download
bitstream.checksum.fl_str_mv 559a510b142cdcdc44459a0de7540c0d
8a4605be74aa9ea9d79846c1fba20a33
10c29c21fd5a1f7fb3f06b270e27f191
b47e54069071f4aa71bd581539098669
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760662447128576
spelling Guerrero, Cesar D.Salcedo Morillo, Dixon David2018-11-09T16:44:55Z2018-11-09T16:44:55Z2012-11-07978-146735080-8http://hdl.handle.net/11323/805Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/There are different tools to estimate the end to end available bandwidth (AB). These tools use techniques which send pairs of packets to the network and observe changes in dispersion or propagation delays to infer the value of the AB. Given the fractal nature of Internet traffic, these observations are prompt to errors affecting the accuracy of the estimation. This article presents the application of a clustering technique to reduce the estimation error due to wrong observations of the available bandwidth in the network. The clustering technique used is K-means which is applied to a tool called Traceband that is originally based on a Hidden Markov Model to perform the estimation. It is shown that using K-means in Traceband can improve its accuracy in 67.45 % when the cross traffic is about 70% of the end-to-end capacity.Guerrero, Cesar D.-9d747112-630a-4a1c-ab0e-0923bd2f4e8e-0Salcedo Morillo, Dixon David-0000-0002-3762-8462-600engIEEEAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Available bandwidthAvailable Bandwidth EstimationClustering TechniquesCross-TrafficEnd-To-End CapacityEstimation ErrorsInternet TrafficPropagation DelaysOn the reduction of the available bandwidth estimation error through clustering with K-meansArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALOn the Reduction of the Available.pdfOn the Reduction of the Available.pdfapplication/pdf677191https://repositorio.cuc.edu.co/bitstreams/3fc647ca-fa6c-43d2-8a43-67810de7c8f6/download559a510b142cdcdc44459a0de7540c0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a1c51b95-112f-412f-a8f6-bffd658cbcae/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn the Reduction of the Available.pdf.jpgOn the Reduction of the Available.pdf.jpgimage/jpeg77772https://repositorio.cuc.edu.co/bitstreams/90cf35e8-ee5b-4d5e-9a2c-25159f16de95/download10c29c21fd5a1f7fb3f06b270e27f191MD54TEXTOn the Reduction of the Available.pdf.txtOn the Reduction of the Available.pdf.txttext/plain22362https://repositorio.cuc.edu.co/bitstreams/e9c563df-ac98-42c2-9fd5-5c6e96f743b8/downloadb47e54069071f4aa71bd581539098669MD5511323/805oai:repositorio.cuc.edu.co:11323/8052024-09-16 16:36:30.662open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=