Weakly ω-continuous functions in bitopological spaces

In this paper, as a generalization of u-ω-continuous functions, we introduce the notion of weakly ω-continuous functions in bitopological spaces and obtain several characterizations and some of its properties.

Autores:
Carpintero, C.
Rajalakshmi, R.
Rajesh, N.
ROSAS, ENNIS
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9424
Acceso en línea:
https://hdl.handle.net/11323/9424
https://repositorio.cuc.edu.co/
Palabra clave:
Bitopological spaces
u-ω-open sets
Weakly continuous function
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_518512a7423ecaeffef3cc1d8996f6b6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9424
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Weakly ω-continuous functions in bitopological spaces
title Weakly ω-continuous functions in bitopological spaces
spellingShingle Weakly ω-continuous functions in bitopological spaces
Bitopological spaces
u-ω-open sets
Weakly continuous function
title_short Weakly ω-continuous functions in bitopological spaces
title_full Weakly ω-continuous functions in bitopological spaces
title_fullStr Weakly ω-continuous functions in bitopological spaces
title_full_unstemmed Weakly ω-continuous functions in bitopological spaces
title_sort Weakly ω-continuous functions in bitopological spaces
dc.creator.fl_str_mv Carpintero, C.
Rajalakshmi, R.
Rajesh, N.
ROSAS, ENNIS
dc.contributor.author.spa.fl_str_mv Carpintero, C.
Rajalakshmi, R.
Rajesh, N.
ROSAS, ENNIS
dc.subject.proposal.eng.fl_str_mv Bitopological spaces
u-ω-open sets
Weakly continuous function
topic Bitopological spaces
u-ω-open sets
Weakly continuous function
description In this paper, as a generalization of u-ω-continuous functions, we introduce the notion of weakly ω-continuous functions in bitopological spaces and obtain several characterizations and some of its properties.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-02T19:05:35Z
dc.date.available.none.fl_str_mv 2022-08-02T19:05:35Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 1126-8042
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9424
dc.identifier.eissn.spa.fl_str_mv 2239-0227
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1126-8042
2239-0227
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9424
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Italian Journal of Pure and Applied Mathematics
dc.relation.references.spa.fl_str_mv [1] S. Al Ghour, S. Issa, On u-ω-open and q-ω-open sets in bitopological spaces, Missouri J. Math. Sci., (24) (2012), 37-53.
[2] A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ωcontinuous functions, Int. J. Math. Math. Sci., 9 (2007), 169-179.
[3] A. Al-Omari, T. Noiri, M. S. M. Noorani, Weak and strong forms of ωcontinuous functions, Int. J. Math. Math. Sci., 9 (2009), 1-13.
[4] K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah, 9 (2003), 169-179.
[5] K. Al-Zoubi, On generalized ω-closed sets, Int. J. Math. Math. Sci., 13 (2005), 2011-2021.
[6] C. Carpintero, N. Rajesh, E. Rosas, R. Rajalakshmi, Almost ω-continuous functions in bitopological spaces, accepted in Ital. J. Pure Appl. Math., 2021.
[7] G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Calcutta Math. Soc., 79 (1987), 314-320.
[8] S. Bose, D. Sinha, Almost open, almost closed, θ-continuous and almost compact mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73 (1981), 345-354.
[9] C. G. Kariofillis, On pairwise almost compactness, Ann. Soc. Sci. Bruxelles, 100 (1986), 129-137.
[10] E. Ekici, S. Jafari, S.P. Moshokoa, On a weak form of ω-continuity, Annals Univ. Craiova, Math. Comp. Sci., 37 (2010), 38-46.
[11] H.Z. Hdeib, ω-closed mappings, Revista Colombiana Mat., 16 (1982), 65-78.
[12] H.Z. Hdeib, ω-continuous functions, Dirasat, 16 (1989), 136-142.
[13] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
[14] F. H. Khedr, S. M. Al.Areefi, T. Noiri, Precontinuity and semi-precontinuity in bitopological spaces, Indian J. Pure Appl. Math., 23 (1992), 625-633.
[15] V. Popa, T. Noiri, Some properties of weakly quasi-continuous functions in bitopological spaces, Mathematica (Cluj), 69 (2004), 105-112.
[16] E. Rosas, C. Carpintero, N. Rajesh, S. Shanthi, Near w-continuous multifunctions on bitopological spaces, Proyecciones Journal of Mathematics, 38 (2019), 691-698.
[17] A. R. Singal, S. P. Arya, On pairwise almost regular spaces, Glasnik Mat. Ser. III, 26 (1971), 335-343.
dc.relation.citationendpage.spa.fl_str_mv 412
dc.relation.citationstartpage.spa.fl_str_mv 401
dc.relation.citationvolume.spa.fl_str_mv 47
dc.rights.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
© Copyright 2022 Elsevier B.V., All rights reserved.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
© Copyright 2022 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Forum Societa Editrice Universitaria Udinese srl
dc.publisher.place.spa.fl_str_mv Italy
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85130154648&origin=inward&txGid=33b6dbfa6ee0acc24c825733199dbcf7&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1,FEATURE_EXPORT_REDESIGN:0
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d0590ee1-e27d-4b9d-b91b-eca200bc9df9/download
https://repositorio.cuc.edu.co/bitstreams/8f89cca6-c24d-4715-b5fc-055e017192af/download
https://repositorio.cuc.edu.co/bitstreams/5f12e0bf-9b8b-43c2-9118-2e00cba439a9/download
https://repositorio.cuc.edu.co/bitstreams/4fcf7d4f-8cd8-4d46-9cfe-80668de93113/download
bitstream.checksum.fl_str_mv 4d466e90437f218f32b973b517e606f2
e30e9215131d99561d40d6b0abbe9bad
c16d95df0a80bbcd5ada3dc292442011
247ed1978cf4d9ecc3f49f757e1b4936
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760730986250240
spelling Carpintero, C.Rajalakshmi, R.Rajesh, N.ROSAS, ENNIS2022-08-02T19:05:35Z2022-08-02T19:05:35Z20221126-8042https://hdl.handle.net/11323/94242239-0227Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, as a generalization of u-ω-continuous functions, we introduce the notion of weakly ω-continuous functions in bitopological spaces and obtain several characterizations and some of its properties.11 páginasapplication/pdfengForum Societa Editrice Universitaria Udinese srlItalyAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)© Copyright 2022 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Weakly ω-continuous functions in bitopological spacesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.scopus.com/record/display.uri?eid=2-s2.0-85130154648&origin=inward&txGid=33b6dbfa6ee0acc24c825733199dbcf7&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1,FEATURE_EXPORT_REDESIGN:0Italian Journal of Pure and Applied Mathematics[1] S. Al Ghour, S. Issa, On u-ω-open and q-ω-open sets in bitopological spaces, Missouri J. Math. Sci., (24) (2012), 37-53.[2] A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ωcontinuous functions, Int. J. Math. Math. Sci., 9 (2007), 169-179.[3] A. Al-Omari, T. Noiri, M. S. M. Noorani, Weak and strong forms of ωcontinuous functions, Int. J. Math. Math. Sci., 9 (2009), 1-13.[4] K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah, 9 (2003), 169-179.[5] K. Al-Zoubi, On generalized ω-closed sets, Int. J. Math. Math. Sci., 13 (2005), 2011-2021.[6] C. Carpintero, N. Rajesh, E. Rosas, R. Rajalakshmi, Almost ω-continuous functions in bitopological spaces, accepted in Ital. J. Pure Appl. Math., 2021.[7] G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Calcutta Math. Soc., 79 (1987), 314-320.[8] S. Bose, D. Sinha, Almost open, almost closed, θ-continuous and almost compact mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73 (1981), 345-354.[9] C. G. Kariofillis, On pairwise almost compactness, Ann. Soc. Sci. Bruxelles, 100 (1986), 129-137.[10] E. Ekici, S. Jafari, S.P. Moshokoa, On a weak form of ω-continuity, Annals Univ. Craiova, Math. Comp. Sci., 37 (2010), 38-46.[11] H.Z. Hdeib, ω-closed mappings, Revista Colombiana Mat., 16 (1982), 65-78.[12] H.Z. Hdeib, ω-continuous functions, Dirasat, 16 (1989), 136-142.[13] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.[14] F. H. Khedr, S. M. Al.Areefi, T. Noiri, Precontinuity and semi-precontinuity in bitopological spaces, Indian J. Pure Appl. Math., 23 (1992), 625-633.[15] V. Popa, T. Noiri, Some properties of weakly quasi-continuous functions in bitopological spaces, Mathematica (Cluj), 69 (2004), 105-112.[16] E. Rosas, C. Carpintero, N. Rajesh, S. Shanthi, Near w-continuous multifunctions on bitopological spaces, Proyecciones Journal of Mathematics, 38 (2019), 691-698.[17] A. R. Singal, S. P. Arya, On pairwise almost regular spaces, Glasnik Mat. Ser. III, 26 (1971), 335-343.41240147Bitopological spacesu-ω-open setsWeakly continuous functionPublicationORIGINALWeakly ω-continuous functions in bitopological spaces.pdfWeakly ω-continuous functions in bitopological spaces.pdfapplication/pdf252154https://repositorio.cuc.edu.co/bitstreams/d0590ee1-e27d-4b9d-b91b-eca200bc9df9/download4d466e90437f218f32b973b517e606f2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8f89cca6-c24d-4715-b5fc-055e017192af/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTWeakly ω-continuous functions in bitopological spaces.pdf.txtWeakly ω-continuous functions in bitopological spaces.pdf.txttext/plain24077https://repositorio.cuc.edu.co/bitstreams/5f12e0bf-9b8b-43c2-9118-2e00cba439a9/downloadc16d95df0a80bbcd5ada3dc292442011MD53THUMBNAILWeakly ω-continuous functions in bitopological spaces.pdf.jpgWeakly ω-continuous functions in bitopological spaces.pdf.jpgimage/jpeg8034https://repositorio.cuc.edu.co/bitstreams/4fcf7d4f-8cd8-4d46-9cfe-80668de93113/download247ed1978cf4d9ecc3f49f757e1b4936MD5411323/9424oai:repositorio.cuc.edu.co:11323/94242024-09-17 10:51:34.245https://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==