Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides

Nucleic acid derivatives are involved in cell growth and replication, but they are also particularly important as building blocks for RNA and DNA synthesis. In nature, purine and pyrimidine nucleotides are synthesized through two distinct pathways, de novo and salvage pathways, both depending on 5-p...

Full description

Autores:
Fernández-Lucas, Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8774
Acceso en línea:
https://hdl.handle.net/11323/8774
https://doi.org/10.3390/biom11081147
https://repositorio.cuc.edu.co/
Palabra clave:
Biotechnological applications
Biomedical applications
Nucleosides
Nucleotides
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_503e09e78254555f1c30a30d834403fd
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8774
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
title Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
spellingShingle Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
Biotechnological applications
Biomedical applications
Nucleosides
Nucleotides
title_short Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
title_full Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
title_fullStr Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
title_full_unstemmed Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
title_sort Biotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotides
dc.creator.fl_str_mv Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Biotechnological applications
Biomedical applications
Nucleosides
Nucleotides
topic Biotechnological applications
Biomedical applications
Nucleosides
Nucleotides
description Nucleic acid derivatives are involved in cell growth and replication, but they are also particularly important as building blocks for RNA and DNA synthesis. In nature, purine and pyrimidine nucleotides are synthesized through two distinct pathways, de novo and salvage pathways, both depending on 5-phospho-α-D-ribose 1-diphosphate (PRPP) as a key element [1,2]. In the de novo pathway, purine and pyrimidine nucleotides are synthesized from simple molecules such as glycine, glutamine, or aspartate. In contrast, the salvage pathway employs scavenged preformed endogenous or exogenous nucleobases to generate the corresponding nucleoside-50 -monophosphates (NMPs) [3]. Both metabolic routes, de novo and salvage pathways, lead to the synthesis of NMPs, which are subsequently phosphorylated to obtain the corresponding nucleoside-50 -di (NDPs) and triphosphates (NTPs). Moreover, all organisms also generate (20 -deoxy)nucleoside-50 -diphosphates (dNDPs) from NDPs [4], which will be converted to 20 -deoxyribonucleotides (dNTPs), as precursors for DNA synthesis. Additionally, nucleotide derivatives are involved in cell signaling (cyclic nucleotides, cNMPs or c-di-NMPs) [5] and a multitude of different biochemical processes, acting as cofactors (NADP+ ) or energy sources (ATP).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-04T19:43:32Z
dc.date.available.none.fl_str_mv 2021-10-04T19:43:32Z
dc.date.issued.none.fl_str_mv 2021-08-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2218-273X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8774
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/biom11081147
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2218-273X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8774
https://doi.org/10.3390/biom11081147
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. el Kouni, M.H. Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol. Ther. 2003, 99, 283–309. [CrossRef]
2. Del Arco, J.; Fernández-Lucas, J. Purine and pyrimidine salvage pathway in thermophiles: A valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 2018, 102, 7805–7820. [CrossRef] [PubMed]
3. Del Arco, J.; Fernandez-Lucas, J. Purine and pyrimidine phosphoribosyltransferases: A versatile tool for enzymatic synthesis of nucleoside-50 -monophosphates. Curr. Pharm. Des. 2017, 23, 6898–6912. [CrossRef] [PubMed]
4. Loderer, C.; Jonna, V.R.; Crona, M.; Grinberg, I.R.; Sahlin, M.; Hofer, A.; Lundin, D.; Sjöberg, B.M. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover. J. Biol. Chem. 2017, 292, 19044–19054. [CrossRef] [PubMed]
5. Caricati-Neto, A.; García, A.G.; Bergantin, L.B. Pharmacological implications of the Ca2+/cAMP signaling interaction: From risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol. Res. Perspect. 2015, 3, e00181. [CrossRef]
6. Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 2009, 109, 2880–2893. [CrossRef] [PubMed]
7. Fernández-Lucas, J.; Camarasa, M.J. (Eds.) Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives; John Wiley & Sons: Hoboken, NJ, USA, 2019. [CrossRef]
8. Kayushin, A.L.; Tokunova, J.A.; Fateev, I.V.; Arnautova, A.O.; Berzina, M.Y.; Paramonov, A.S.; Lutonina, O.I.; Dorofeeva, E.V.; Antonov, K.V.; Esipov, R.S.; et al. Radical dehalogenation and purine nucleoside phosphorylase E. coli: How does an admixture of 20, 30 -anhydroinosine hinder 2-fluoro-cordycepin synthesis. Biomolecules 2021, 11, 539. [CrossRef] [PubMed]
9. Rivero, C.W.; García, N.S.; Fernández-Lucas, J.; Betancor, L.; Romanelli, G.P.; Trelles, J.A. Green production of cladribine by using immobilized 20 -deoxyribosyltransferase from Lactobacillus delbrueckii stabilized through a double covalent/entrapment technology. Biomolecules 2021, 11, 657. [CrossRef] [PubMed]
10. Sverkeli, L.J.; Hayat, F.; Migaud, M.E.; Ziegler, M. Enzymatic and chemical syntheses of vacor analogs of nicotinamide riboside, NMN and NAD. Biomolecules 2021, 11, 1044. [CrossRef]
11. Fateev, I.V.; Kostromina, M.A.; Abramchik, Y.A.; Eletskaya, B.Z.; Mikheeva, O.O.; Lukoshin, D.D.; Zayats, E.A.; Berzina, M.Y.; Dorofeeva, E.V.; Paramonov, A.S.; et al. Multi-enzymatic cascades in the synthesis of modified nucleosides: Comparison of the thermophilic and mesophilic pathways. Biomolecules 2021, 11, 586. [CrossRef] [PubMed]
12. Frisch, J.; Marši´c, T.; Loderer, C.A. Novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 2021, 11, 346. [CrossRef] [PubMed]
13. Becker, M.; Nikel, P.; Andexer, J.N.; Lütz, S.; Rosenthal, K.A. Multi-enzyme cascade reaction for the production of 2’3’-cGAMP. Biomolecules 2021, 11, 590. [CrossRef] [PubMed]
14. Acosta, J.; Pérez, E.; Sánchez-Murcia, P.A.; Fillat, C.; Fernández-Lucas, J. Molecular basis of ndt-mediated activation of nucleosidebased prodrugs and application in suicide gene therapy. Biomolecules 2021, 11, 120. [CrossRef] [PubMed]
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Biomolecules
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2218-273X/11/8/1147
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9646959c-4bfb-4e30-8bc5-6c9681e55052/download
https://repositorio.cuc.edu.co/bitstreams/24bd1cae-4734-485f-b008-79ec718c3d6b/download
https://repositorio.cuc.edu.co/bitstreams/450532c2-0c43-4bd3-ac56-1b976f45e247/download
https://repositorio.cuc.edu.co/bitstreams/343da049-6c23-4c87-831c-4563a6d7771a/download
https://repositorio.cuc.edu.co/bitstreams/8eb2bd60-164f-40fd-b4cb-a5575efbb215/download
bitstream.checksum.fl_str_mv d329fb3f805ca2f96f610b1158c934e2
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
998f5c757cd0c4ec833c5b123d18bb11
d696120a50f60fc66d593039ba0a5b0e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166911552126976
spelling Fernández-Lucas, Jesús2021-10-04T19:43:32Z2021-10-04T19:43:32Z2021-08-032218-273Xhttps://hdl.handle.net/11323/8774https://doi.org/10.3390/biom11081147Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nucleic acid derivatives are involved in cell growth and replication, but they are also particularly important as building blocks for RNA and DNA synthesis. In nature, purine and pyrimidine nucleotides are synthesized through two distinct pathways, de novo and salvage pathways, both depending on 5-phospho-α-D-ribose 1-diphosphate (PRPP) as a key element [1,2]. In the de novo pathway, purine and pyrimidine nucleotides are synthesized from simple molecules such as glycine, glutamine, or aspartate. In contrast, the salvage pathway employs scavenged preformed endogenous or exogenous nucleobases to generate the corresponding nucleoside-50 -monophosphates (NMPs) [3]. Both metabolic routes, de novo and salvage pathways, lead to the synthesis of NMPs, which are subsequently phosphorylated to obtain the corresponding nucleoside-50 -di (NDPs) and triphosphates (NTPs). Moreover, all organisms also generate (20 -deoxy)nucleoside-50 -diphosphates (dNDPs) from NDPs [4], which will be converted to 20 -deoxyribonucleotides (dNTPs), as precursors for DNA synthesis. Additionally, nucleotide derivatives are involved in cell signaling (cyclic nucleotides, cNMPs or c-di-NMPs) [5] and a multitude of different biochemical processes, acting as cofactors (NADP+ ) or energy sources (ATP).Fernández-Lucas, Jesús-will be generated-orcid-0000-0001-7045-8306-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Biomoleculeshttps://www.mdpi.com/2218-273X/11/8/1147Biotechnological applicationsBiomedical applicationsNucleosidesNucleotidesBiotechnological and biomedical applications of enzymes involved in the synthesis of nucleosides and nucleotidesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. el Kouni, M.H. Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol. Ther. 2003, 99, 283–309. [CrossRef]2. Del Arco, J.; Fernández-Lucas, J. Purine and pyrimidine salvage pathway in thermophiles: A valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 2018, 102, 7805–7820. [CrossRef] [PubMed]3. Del Arco, J.; Fernandez-Lucas, J. Purine and pyrimidine phosphoribosyltransferases: A versatile tool for enzymatic synthesis of nucleoside-50 -monophosphates. Curr. Pharm. Des. 2017, 23, 6898–6912. [CrossRef] [PubMed]4. Loderer, C.; Jonna, V.R.; Crona, M.; Grinberg, I.R.; Sahlin, M.; Hofer, A.; Lundin, D.; Sjöberg, B.M. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover. J. Biol. Chem. 2017, 292, 19044–19054. [CrossRef] [PubMed]5. Caricati-Neto, A.; García, A.G.; Bergantin, L.B. Pharmacological implications of the Ca2+/cAMP signaling interaction: From risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol. Res. Perspect. 2015, 3, e00181. [CrossRef]6. Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 2009, 109, 2880–2893. [CrossRef] [PubMed]7. Fernández-Lucas, J.; Camarasa, M.J. (Eds.) Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives; John Wiley & Sons: Hoboken, NJ, USA, 2019. [CrossRef]8. Kayushin, A.L.; Tokunova, J.A.; Fateev, I.V.; Arnautova, A.O.; Berzina, M.Y.; Paramonov, A.S.; Lutonina, O.I.; Dorofeeva, E.V.; Antonov, K.V.; Esipov, R.S.; et al. Radical dehalogenation and purine nucleoside phosphorylase E. coli: How does an admixture of 20, 30 -anhydroinosine hinder 2-fluoro-cordycepin synthesis. Biomolecules 2021, 11, 539. [CrossRef] [PubMed]9. Rivero, C.W.; García, N.S.; Fernández-Lucas, J.; Betancor, L.; Romanelli, G.P.; Trelles, J.A. Green production of cladribine by using immobilized 20 -deoxyribosyltransferase from Lactobacillus delbrueckii stabilized through a double covalent/entrapment technology. Biomolecules 2021, 11, 657. [CrossRef] [PubMed]10. Sverkeli, L.J.; Hayat, F.; Migaud, M.E.; Ziegler, M. Enzymatic and chemical syntheses of vacor analogs of nicotinamide riboside, NMN and NAD. Biomolecules 2021, 11, 1044. [CrossRef]11. Fateev, I.V.; Kostromina, M.A.; Abramchik, Y.A.; Eletskaya, B.Z.; Mikheeva, O.O.; Lukoshin, D.D.; Zayats, E.A.; Berzina, M.Y.; Dorofeeva, E.V.; Paramonov, A.S.; et al. Multi-enzymatic cascades in the synthesis of modified nucleosides: Comparison of the thermophilic and mesophilic pathways. Biomolecules 2021, 11, 586. [CrossRef] [PubMed]12. Frisch, J.; Marši´c, T.; Loderer, C.A. Novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate. Biomolecules 2021, 11, 346. [CrossRef] [PubMed]13. Becker, M.; Nikel, P.; Andexer, J.N.; Lütz, S.; Rosenthal, K.A. Multi-enzyme cascade reaction for the production of 2’3’-cGAMP. Biomolecules 2021, 11, 590. [CrossRef] [PubMed]14. Acosta, J.; Pérez, E.; Sánchez-Murcia, P.A.; Fillat, C.; Fernández-Lucas, J. Molecular basis of ndt-mediated activation of nucleosidebased prodrugs and application in suicide gene therapy. Biomolecules 2021, 11, 120. [CrossRef] [PubMed]PublicationORIGINALBiotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.pdfBiotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.pdfapplication/pdf212511https://repositorio.cuc.edu.co/bitstreams/9646959c-4bfb-4e30-8bc5-6c9681e55052/downloadd329fb3f805ca2f96f610b1158c934e2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/24bd1cae-4734-485f-b008-79ec718c3d6b/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/450532c2-0c43-4bd3-ac56-1b976f45e247/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILBiotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.pdf.jpgBiotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.pdf.jpgimage/jpeg77166https://repositorio.cuc.edu.co/bitstreams/343da049-6c23-4c87-831c-4563a6d7771a/download998f5c757cd0c4ec833c5b123d18bb11MD54TEXTBiotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.pdf.txtBiotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.pdf.txttext/plain9979https://repositorio.cuc.edu.co/bitstreams/8eb2bd60-164f-40fd-b4cb-a5575efbb215/downloadd696120a50f60fc66d593039ba0a5b0eMD5511323/8774oai:repositorio.cuc.edu.co:11323/87742024-09-17 14:25:21.082http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==