Training, anthropometric, and physiological characteristics in men recreational marathon runners: The role of sport experience

The aim of the present study was to examine the physiological and training characteristics in marathon runners with different sport experiences (defined as the number of finishes in marathon races). The anthropometry and physiological characteristics of men recreational endurance runners with three...

Full description

Autores:
Nikolaidis, Pantelis
Clemente-Suárez, Vicente Javier
Chlíbková, Daniela
Knechtle, Beat
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8324
Acceso en línea:
https://hdl.handle.net/11323/8324
https://doi.org/10.3389/fphys.2021.666201
https://repositorio.cuc.edu.co/
Palabra clave:
Body fat
Endurance training
Maximal oxygen uptake
Skinfold thickness
Sport history
Training volume
Grasa corporal
Entrenamiento de resistencia
Consumo máximo de oxígeno
Pliegue cutáneo
Historial deportivo
Entrenamiento volumen
Rights
openAccess
License
CC0 1.0 Universal
Description
Summary:The aim of the present study was to examine the physiological and training characteristics in marathon runners with different sport experiences (defined as the number of finishes in marathon races). The anthropometry and physiological characteristics of men recreational endurance runners with three or less finishes in marathon races (novice group, NOV; n = 69, age 43.5 ± 8.0 years) and four or more finishes (experienced group, EXP; n = 66, 45.2 ± 9.4 years) were compared. EXP had faster personal best marathon time (3:44 ± 0:36 vs. 4:20 ± 0:44 h:min, p < 0.001, respectively); lower flexibility (15.9 ± 9.3 vs. 19.3 ± 15.9 cm, p = 0.022), abdominal (20.6 ± 7.9 vs. 23.8 ± 9.0 mm, p = 0.030) and iliac crest skinfold thickness (16.7 ± 6.7 vs. 19.9 ± 7.9 mm, p = 0.013), and body fat assessed by bioimpedance analysis (13.0 ± 4.4 vs. 14.6 ± 4.7%, p = 0.047); more weekly training days (4.6 ± 1.4 vs. 4.1 ± 1.0 days, p = 0.038); and longer weekly running distance (58.8 ± 24.0 vs. 47.2 ± 16.1 km, p = 0.001) than NOV. The findings indicated that long-term marathon training might induce adaptations in endurance performance, body composition, and flexibility.