Global atlas of solar and wind resources temporal complementarity
The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based...
- Autores:
-
Kapica, Jacek
Canales, Fausto
Jurasz, Jakub
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8859
- Acceso en línea:
- https://hdl.handle.net/11323/8859
https://doi.org/10.1016/j.enconman.2021.114692
https://repositorio.cuc.edu.co/
- Palabra clave:
- Renewable energy
Variable renewables
Complementarity
Hybrid power systems
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_4fa60e42efa7d46a9deac9054ce35291 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8859 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Global atlas of solar and wind resources temporal complementarity |
title |
Global atlas of solar and wind resources temporal complementarity |
spellingShingle |
Global atlas of solar and wind resources temporal complementarity Renewable energy Variable renewables Complementarity Hybrid power systems |
title_short |
Global atlas of solar and wind resources temporal complementarity |
title_full |
Global atlas of solar and wind resources temporal complementarity |
title_fullStr |
Global atlas of solar and wind resources temporal complementarity |
title_full_unstemmed |
Global atlas of solar and wind resources temporal complementarity |
title_sort |
Global atlas of solar and wind resources temporal complementarity |
dc.creator.fl_str_mv |
Kapica, Jacek Canales, Fausto Jurasz, Jakub |
dc.contributor.author.spa.fl_str_mv |
Kapica, Jacek Canales, Fausto Jurasz, Jakub |
dc.subject.spa.fl_str_mv |
Renewable energy Variable renewables Complementarity Hybrid power systems |
topic |
Renewable energy Variable renewables Complementarity Hybrid power systems |
description |
The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall’s Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-10T19:57:27Z |
dc.date.available.none.fl_str_mv |
2021-11-10T19:57:27Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0196-8904 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8859 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.enconman.2021.114692 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0196-8904 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8859 https://doi.org/10.1016/j.enconman.2021.114692 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Rogelj J, Den Elzen M, Hohne ¨ N, Fransen T, Fekete H, Winkler H, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ◦C. Nature 2016;534:631–9. https://doi.org/10.1038/nature18307. [2] Aghahosseini A, Bogdanov D, Barbosa LSNS, Breyer C. Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renew Sustain Energy Rev 2019;105:187–205. https:// doi.org/10.1016/j.rser.2019.01.046. [3] Fragoso-Altamirano.. M´exico y su transicion ´ energ´etica: un cambio en pro de la energía Renovable. Lat Am Dev Energy Eng 2020;1:26–42. [4] Denholm P, Brinkman G, Mai T. How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Policy 2018;115:249–57. https://doi.org/10.1016/j.enpol.2018.01.023. [5] Sims REH. Renewable energy: A response to climate change. Sol Energy 2004;76(1- 3):9–17. https://doi.org/10.1016/S0038-092X(03)00101-4. [6] Bilgili M, Bilirgen H, Ozbek A, Ekinci F, Demirdelen T. The role of hydropower installations for sustainable energy development in Turkey and the World. Renew Energy 2018;126:755–64. https://doi.org/10.1016/j.renene.2018.03.089. [7] Canales FA, Beluco A, Mendes CAB. Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER). Int J Sustain Energy 2017;36: 654–67. https://doi.org/10.1080/14786451.2015.1080706. [8] Tarroja B, Forrest K, Chiang F, AghaKouchak A, Samuelsen S. Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California. Appl Energy 2019;237:353–66. https://doi.org/10.1016/j. apenergy.2018.12.079. [9] Silva JS, Canales FA, Beluco A. A “feasibility space” as a goal to be achieved in the development of new technologies for converting renewable energies. MethodsX 2020;7. https://doi.org/10.1016/j.mex.2020.100960. [10] International Renewable Energy Agency. Global Renewables Outlook: Energy transformation 2050. Abu Dhabi: IRENA; 2020. [11] European Network of Transmission System Operators for Electricity. ENTSO-E transparency platform 2021. https://transparency.entsoe.eu/dashboard/show (accessed February 3, 2021). [12] Javed MS, Ma T, Jurasz J, Canales FA, Lin S, Ahmed S, et al. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renew Energy 2021;164:1376–94. https://doi. org/10.1016/j.renene.2020.10.063. [13] Canales FA, Jurasz JK, Guezgouz M, Beluco A. Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustain Energy Technol Assessments 2021;44:101062. https://doi. org/10.1016/j.seta.2021.101062. [14] Solomon AA, Bogdanov D, Breyer C. Curtailment-storage-penetration nexus in the energy transition. Appl Energy 2019;235:1351–68. https://doi.org/10.1016/j. apenergy.2018.11.069. [15] Sovacool BK. The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Util Policy 2009;17:288–96. https://doi.org/10.1016/j.jup.2008.07.001. [16] Heard BP, Brook BW, Wigley TML, Bradshaw CJA. Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. Renew Sustain Energy Rev 2017;76:1122–33. https://doi.org/10.1016/j. rser.2017.03.114. [17] Schlott M, Kies A, Brown T, Schramm S, Greiner M. The impact of climate change on a cost-optimal highly renewable European electricity network. Appl Energy 2018;230:1645–59. https://doi.org/10.1016/j.apenergy.2018.09.084. [18] Fasihi M, Breyer C. Baseload electricity and hydrogen supply based on hybrid PVwind power plants. J Clean Prod 2020;243:118466. https://doi.org/10.1016/j. jclepro.2019.118466. [19] Jurasz J, Canales FA, Kies A, Guezgouz M, Beluco A. A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol Energy 2020;195:703–24. https://doi.org/10.1016/ j.solener.2019.11.087. [20] Weschenfelder F, de Novaes Pires Leite G, Araújo da Costa AC, de Castro Vilela O, Ribeiro CM, Villa Ochoa AA, et al. A review on the complementarity between gridconnected solar and wind power systems. J Clean Prod 2020;257:120617. https:// doi.org/10.1016/j.jclepro.2020.120617. [21] Bandoc G, Pr˘ av˘ alie R, Patriche C, Degeratu M. Spatial assessment of wind power potential at global scale. A geographical approach. J Clean Prod 2018;200: 1065–86. https://doi.org/10.1016/j.jclepro.2018.07.288. [22] Prav˘ ˘ alie R, Patriche C, Bandoc G. Spatial assessment of solar energy potential at global scale. A geographical approach. J Clean Prod 2019;209:692–721. https:// doi.org/10.1016/j.jclepro.2018.10.239. [23] D’Isidoro M, Briganti G, Vitali L, Righini G, Adani M, Guarnieri G, et al. Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution. Renew Energy 2020;158: 114–29. https://doi.org/10.1016/j.renene.2020.05.106. [24] Guezgouz M, Jurasz J, Chouai M, Bloomfield H, Bekkouche B. Assessment of solar and wind energy complementarity in Algeria. Energy Convers Manag 2021;238: 114170. https://doi.org/10.1016/j.enconman.2021.114170. [25] Beluco A, de Souza PK, Krenzinger A. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renew Energy 2008;33: 2157–65. https://doi.org/10.1016/j.renene.2008.01.019. [26] Cant˜ ao MP, Bessa MR, Bettega R, Detzel DHM, Lima JM. Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps. Renew Energy 2017;101:1215–25. https://doi.org/10.1016/j.renene.2016.10.012. [27] Bett PE, Thornton HE. The climatological relationships between wind and solar energy supply in Britain. Renew Energy 2016;87:96–110. https://doi.org/ 10.1016/j.renene.2015.10.006. [28] Ren G, Wan J, Liu J, Yu D. Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy 2019;177:262–75. https://doi. org/10.1016/j.energy.2019.04.023. [29] Silva AR, Pimenta FM, Assireu AT, Spyrides MHC. Complementarity of Brazil’s hydro and offshore wind power. Renew Sustain Energy Rev 2016;56:413–27. https://doi.org/10.1016/j.rser.2015.11.045. [30] Santos-Alamillos FJ, Pozo-V´ azquez D, Ruiz-Arias JA, Lara-Fanego V, TovarPescador J. A methodology for evaluating the spatial variability of wind energy resources: application to assess the potential contribution of wind energy to baseload power. Renew Energy 2014;69:147–56. https://doi.org/10.1016/j. renene.2014.03.006. [31] Santos-Alamillos FJ, Pozo-V´ azquez D, Ruiz-Arias JA, Von Bremen L, TovarPescador J. Combining wind farms with concentrating solar plants to provide stable renewable power. Renew Energy 2015;76:539–50. https://doi.org/10.1016/ j.renene.2014.11.055. [32] Zhang H, Cao Y, Zhang Y, Terzija V. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Appl Energy 2018; 216:172–82. https://doi.org/10.1016/j.apenergy.2018.02.094. [33] Santos-Alamillos FJ, Tovar-Pescador J, Lara-Fanego V, Ruiz-Arias JA, PozoVazquez ´ D. Analysis of spatiotemporal balancing between wind and solar energy resources in the Southern Iberian Peninsula. J Appl Meteorol Climatol 2012;51: 2005–24. https://doi.org/10.1175/jamc-d-11-0189.1. [34] Li W, Stadler S, Ramakumar R. Modeling and assessment of wind and insolation resources with a focus on their complementary nature: a case study of Oklahoma. Ann Assoc Am Geogr 2011;101:717–29. https://doi.org/10.1080/ 00045608.2011.567926. [35] Canales FA, Jurasz J, Kies A, Beluco A, Arrieta-Castro M, Peralta-Cayon ´ A. Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming. MethodsX 2020;7: 100871. https://doi.org/10.1016/j.mex.2020.100871. [36] Ramirez Camargo L, Zink R, Dorner W. Spatiotemporal modeling for assessing complementarity of renewable energy sources in distributed energy systems. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2015;II-4/W2:147–54. https://doi.org/ 10.5194/isprsannals-II-4-W2-147-2015. [37] Sterl S, Vanderkelen I, Chawanda CJ, Russo D, Brecha RJ, van Griensven A, et al. Smart renewable electricity portfolios in West Africa. Nat Sustain 2020;3:710–9. https://doi.org/10.1038/s41893-020-0539-0. [38] The World Bank. Renewable Energy Potential in Selected Countries. Washington, DC: 2005. [39] Chattopadhyay K, Kies A, Lorenz E, von Bremen L, Heinemann D. The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system. Renew Energy 2017;113:176–89. https:// doi.org/10.1016/j.renene.2017.05.069. [40] Berrill P, Arvesen A, Scholz Y, Gils HC, Hertwich EG. Environmental impacts of high penetration renewable energy scenarios for Europe. Environ Res Lett 2016;11: 14012. https://doi.org/10.1088/1748-9326/11/1/014012. [41] Viviescas C, Lima L, Diuana FA, Vasquez E, Ludovique C, Silva GN, et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renew Sustain Energy Rev 2019;113. https://doi.org/10.1016/j. rser.2019.06.039. [42] Sterl S, Liersch S, Koch H, van Lipzig NPM, Thiery W. A new approach for assessing synergies of solar and wind power: implications for West Africa. Environ Res Lett 2018;13:094009. https://doi.org/10.1088/1748-9326/aad8f6. [43] Hansen K, Breyer C, Lund H. Status and perspectives on 100% renewable energy systems. Energy 2019;175:471–80. https://doi.org/10.1016/j. energy.2019.03.092. [44] Schindler D, Schmidt-Rohr S, Jung C. On the spatiotemporal complementarity of the European onshore wind resource. Energy Convers Manag 2021;237:114098. https://doi.org/10.1016/j.enconman.2021.114098. [45] Steinke F, Wolfrum P, Hoffmann C. Grid vs. storage in a 100% renewable Europe. Renew. Energy 2013;50:826–32. https://doi.org/10.1016/j.renene.2012.07.044. [46] Miglietta MM, Huld T, Monforti-Ferrario F. Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective. J Appl Meteorol Climatol 2017;56:217–34. https://doi.org/10.1175/ JAMC-D-16-0031.1. [47] Cox S, Lopez A, Watson A, Grue N, Leisch JE. Renewable Energy Data, Analysis, and Decisions: A Guide for Practitioners. Golden: National Renewable Energy Laboratory (NREL); 2018. [48] World Meteorological Organization. Technical regulations. Basic Documents No. 2 Volume I – General Meteorological Standards and Recommended Practices. vol. I. Geneva: World Meteorological Organization; 2019. [49] Ramirez Camargo L, Gruber K, Nitsch F. Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems. Renew Energy 2019;133:1468–78. https://doi.org/10.1016/j.renene.2018.09.015. [50] Sobrino JA, Julien Y, García-Monteiro S. Surface temperature of the planet earth from satellite data. Remote Sens 2020;12:1–10. https://doi.org/10.3390/ rs12020218. [51] National Aeronautics and Space Administration. NASA POWER | Prediction Of Worldwide Energy Resources 2020. https://power.larc.nasa.gov/. [52] Kapica J. Wind and photovoltaic potential in Europe in the context of mid-term energy storage. J Renew Sustain Energy 2020;12:034101. https://doi.org/ 10.1063/1.5131560. [53] Soulouknga MH, Doka SY, Revanna N, Djongyang N, Kofane TC. Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renew Energy 2018;121:1–8. https://doi.org/10.1016/j. renene.2018.01.002. [54] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. 4th Ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2013. [55] El Mghouchi Y, El Bouardi A, Choulli Z, Ajzoul T. New model to estimate and evaluate the solar radiation. Int J Sustain Built Environ 2014;3:225–34. https:// doi.org/10.1016/j.ijsbe.2014.11.001. [56] Schuster CS. The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation. Renew Energy 2020;152:1186–91. https:// doi.org/10.1016/j.renene.2020.01.076. [57] Denault M, Dupuis D, Couture-Cardinal S. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy 2009;37: 5376–84. https://doi.org/10.1016/j.enpol.2009.07.064. [58] Xu L, Wang Z, Liu Y. The spatial and temporal variation features of wind-sun complementarity in China. Energy Convers Manag 2017;154:138–48. https://doi. org/10.1016/j.enconman.2017.10.031. [59] Han S, Zhang L, Liu Y, Zhang H, Yan J, Li L, et al. Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio. Appl Energy 2019;236:973–84. https://doi.org/10.1016/j. apenergy.2018.12.059. [60] Kendall MG. Rank correlation methods. Oxford, England: Griffin; 1948. [61] van Doorn J, Ly A, Marsman M, Wagenmakers E-J. Bayesian Inference for Kendall’s Rank Correlation Coefficient. Am Stat 2018;72:303–8. https://doi.org/10.1080/ 00031305.2016.1264998. [62] Heide D, von Bremen L, Greiner M, Hoffmann C, Speckmann M, Bofinger S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew Energy 2010;35:2483–9. https://doi.org/10.1016/j. renene.2010.03.012. [63] Jurasz J, Beluco A, Canales FA. The impact of complementarity on power supply reliability of small scale hybrid energy systems. Energy 2018;161:737–43. https:// doi.org/10.1016/j.energy.2018.07.182. [64] Stackhouse Jr PW, Zhang T, Westberg D, Barnett AJ, Bristow T, Macpherson B, et al. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, & Validation). Norfolk, VA: NASA Langley Research Center; 2018. [65] Chatzivasileiadis S, Ernst D, Andersson G. The Global Grid. Renew Energy 2013;57: 372–83. https://doi.org/10.1016/j.renene.2013.01.032. [66] Canales FA, Jurasz J, Beluco A, Kies A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020;192:116637. https://doi.org/10.1016/j. energy.2019.116637. [67] Liu L, Wang Z, Wang Y, Wang J, Chang R, He G, et al. Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China. Renew Sustain Energy Rev 2020;132:110151. https://doi.org/10.1016/j. rser.2020.110151. [68] Prasad AA, Taylor RA, Kay M. Assessment of solar and wind resource synergy in Australia. Appl Energy 2017;190:354–67. https://doi.org/10.1016/j. apenergy.2016.12.135. [69] Dupont E, Jeanmart H. Global potential of wind and solar energy with physical and energy return on investment (EROI) constraints; application at the European level (EU 28 countries). ECOS 2019 - Proc. 32nd Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst., 2019, p. 489–503. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Energy Conversion and Management |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0196890421008682?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c5e32693-e18f-4c0e-b2bb-3cdc69f63a71/download https://repositorio.cuc.edu.co/bitstreams/223967d1-415c-413b-874f-52591d69eed4/download https://repositorio.cuc.edu.co/bitstreams/70627eca-5d31-4f5e-b1f5-9bd1dfa52a5e/download https://repositorio.cuc.edu.co/bitstreams/26d62ef4-b7d3-4e36-84e0-10f722355760/download https://repositorio.cuc.edu.co/bitstreams/b799cf4d-4f78-4992-a98b-cf49f979ccb8/download |
bitstream.checksum.fl_str_mv |
39fe612ac2e69c6f6c48b03be3c57e3f 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 352c593fae6c1725413606d5b27fabbb ead8e08b853fdd96797d459f86a1ecb0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760709396070400 |
spelling |
Kapica, JacekCanales, FaustoJurasz, Jakub2021-11-10T19:57:27Z2021-11-10T19:57:27Z20210196-8904https://hdl.handle.net/11323/8859https://doi.org/10.1016/j.enconman.2021.114692Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall’s Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced.Kapica, Jacek-will be generated-orcid-0000-0001-8378-0249-600Canales, Fausto-will be generated-orcid-0000-0002-6858-1855-600Jurasz, Jakubapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy Conversion and Managementhttps://www.sciencedirect.com/science/article/pii/S0196890421008682?via%3DihubRenewable energyVariable renewablesComplementarityHybrid power systemsGlobal atlas of solar and wind resources temporal complementarityPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] Rogelj J, Den Elzen M, Hohne ¨ N, Fransen T, Fekete H, Winkler H, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ◦C. Nature 2016;534:631–9. https://doi.org/10.1038/nature18307.[2] Aghahosseini A, Bogdanov D, Barbosa LSNS, Breyer C. Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renew Sustain Energy Rev 2019;105:187–205. https:// doi.org/10.1016/j.rser.2019.01.046.[3] Fragoso-Altamirano.. M´exico y su transicion ´ energ´etica: un cambio en pro de la energía Renovable. Lat Am Dev Energy Eng 2020;1:26–42.[4] Denholm P, Brinkman G, Mai T. How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Policy 2018;115:249–57. https://doi.org/10.1016/j.enpol.2018.01.023.[5] Sims REH. Renewable energy: A response to climate change. Sol Energy 2004;76(1- 3):9–17. https://doi.org/10.1016/S0038-092X(03)00101-4.[6] Bilgili M, Bilirgen H, Ozbek A, Ekinci F, Demirdelen T. The role of hydropower installations for sustainable energy development in Turkey and the World. Renew Energy 2018;126:755–64. https://doi.org/10.1016/j.renene.2018.03.089.[7] Canales FA, Beluco A, Mendes CAB. Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER). Int J Sustain Energy 2017;36: 654–67. https://doi.org/10.1080/14786451.2015.1080706.[8] Tarroja B, Forrest K, Chiang F, AghaKouchak A, Samuelsen S. Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California. Appl Energy 2019;237:353–66. https://doi.org/10.1016/j. apenergy.2018.12.079.[9] Silva JS, Canales FA, Beluco A. A “feasibility space” as a goal to be achieved in the development of new technologies for converting renewable energies. MethodsX 2020;7. https://doi.org/10.1016/j.mex.2020.100960.[10] International Renewable Energy Agency. Global Renewables Outlook: Energy transformation 2050. Abu Dhabi: IRENA; 2020.[11] European Network of Transmission System Operators for Electricity. ENTSO-E transparency platform 2021. https://transparency.entsoe.eu/dashboard/show (accessed February 3, 2021).[12] Javed MS, Ma T, Jurasz J, Canales FA, Lin S, Ahmed S, et al. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renew Energy 2021;164:1376–94. https://doi. org/10.1016/j.renene.2020.10.063.[13] Canales FA, Jurasz JK, Guezgouz M, Beluco A. Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustain Energy Technol Assessments 2021;44:101062. https://doi. org/10.1016/j.seta.2021.101062.[14] Solomon AA, Bogdanov D, Breyer C. Curtailment-storage-penetration nexus in the energy transition. Appl Energy 2019;235:1351–68. https://doi.org/10.1016/j. apenergy.2018.11.069.[15] Sovacool BK. The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Util Policy 2009;17:288–96. https://doi.org/10.1016/j.jup.2008.07.001.[16] Heard BP, Brook BW, Wigley TML, Bradshaw CJA. Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. Renew Sustain Energy Rev 2017;76:1122–33. https://doi.org/10.1016/j. rser.2017.03.114.[17] Schlott M, Kies A, Brown T, Schramm S, Greiner M. The impact of climate change on a cost-optimal highly renewable European electricity network. Appl Energy 2018;230:1645–59. https://doi.org/10.1016/j.apenergy.2018.09.084.[18] Fasihi M, Breyer C. Baseload electricity and hydrogen supply based on hybrid PVwind power plants. J Clean Prod 2020;243:118466. https://doi.org/10.1016/j. jclepro.2019.118466.[19] Jurasz J, Canales FA, Kies A, Guezgouz M, Beluco A. A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol Energy 2020;195:703–24. https://doi.org/10.1016/ j.solener.2019.11.087.[20] Weschenfelder F, de Novaes Pires Leite G, Araújo da Costa AC, de Castro Vilela O, Ribeiro CM, Villa Ochoa AA, et al. A review on the complementarity between gridconnected solar and wind power systems. J Clean Prod 2020;257:120617. https:// doi.org/10.1016/j.jclepro.2020.120617.[21] Bandoc G, Pr˘ av˘ alie R, Patriche C, Degeratu M. Spatial assessment of wind power potential at global scale. A geographical approach. J Clean Prod 2018;200: 1065–86. https://doi.org/10.1016/j.jclepro.2018.07.288.[22] Prav˘ ˘ alie R, Patriche C, Bandoc G. Spatial assessment of solar energy potential at global scale. A geographical approach. J Clean Prod 2019;209:692–721. https:// doi.org/10.1016/j.jclepro.2018.10.239.[23] D’Isidoro M, Briganti G, Vitali L, Righini G, Adani M, Guarnieri G, et al. Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution. Renew Energy 2020;158: 114–29. https://doi.org/10.1016/j.renene.2020.05.106.[24] Guezgouz M, Jurasz J, Chouai M, Bloomfield H, Bekkouche B. Assessment of solar and wind energy complementarity in Algeria. Energy Convers Manag 2021;238: 114170. https://doi.org/10.1016/j.enconman.2021.114170.[25] Beluco A, de Souza PK, Krenzinger A. A dimensionless index evaluating the time complementarity between solar and hydraulic energies. Renew Energy 2008;33: 2157–65. https://doi.org/10.1016/j.renene.2008.01.019.[26] Cant˜ ao MP, Bessa MR, Bettega R, Detzel DHM, Lima JM. Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps. Renew Energy 2017;101:1215–25. https://doi.org/10.1016/j.renene.2016.10.012.[27] Bett PE, Thornton HE. The climatological relationships between wind and solar energy supply in Britain. Renew Energy 2016;87:96–110. https://doi.org/ 10.1016/j.renene.2015.10.006.[28] Ren G, Wan J, Liu J, Yu D. Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy 2019;177:262–75. https://doi. org/10.1016/j.energy.2019.04.023.[29] Silva AR, Pimenta FM, Assireu AT, Spyrides MHC. Complementarity of Brazil’s hydro and offshore wind power. Renew Sustain Energy Rev 2016;56:413–27. https://doi.org/10.1016/j.rser.2015.11.045.[30] Santos-Alamillos FJ, Pozo-V´ azquez D, Ruiz-Arias JA, Lara-Fanego V, TovarPescador J. A methodology for evaluating the spatial variability of wind energy resources: application to assess the potential contribution of wind energy to baseload power. Renew Energy 2014;69:147–56. https://doi.org/10.1016/j. renene.2014.03.006.[31] Santos-Alamillos FJ, Pozo-V´ azquez D, Ruiz-Arias JA, Von Bremen L, TovarPescador J. Combining wind farms with concentrating solar plants to provide stable renewable power. Renew Energy 2015;76:539–50. https://doi.org/10.1016/ j.renene.2014.11.055.[32] Zhang H, Cao Y, Zhang Y, Terzija V. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Appl Energy 2018; 216:172–82. https://doi.org/10.1016/j.apenergy.2018.02.094.[33] Santos-Alamillos FJ, Tovar-Pescador J, Lara-Fanego V, Ruiz-Arias JA, PozoVazquez ´ D. Analysis of spatiotemporal balancing between wind and solar energy resources in the Southern Iberian Peninsula. J Appl Meteorol Climatol 2012;51: 2005–24. https://doi.org/10.1175/jamc-d-11-0189.1.[34] Li W, Stadler S, Ramakumar R. Modeling and assessment of wind and insolation resources with a focus on their complementary nature: a case study of Oklahoma. Ann Assoc Am Geogr 2011;101:717–29. https://doi.org/10.1080/ 00045608.2011.567926.[35] Canales FA, Jurasz J, Kies A, Beluco A, Arrieta-Castro M, Peralta-Cayon ´ A. Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming. MethodsX 2020;7: 100871. https://doi.org/10.1016/j.mex.2020.100871.[36] Ramirez Camargo L, Zink R, Dorner W. Spatiotemporal modeling for assessing complementarity of renewable energy sources in distributed energy systems. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2015;II-4/W2:147–54. https://doi.org/ 10.5194/isprsannals-II-4-W2-147-2015.[37] Sterl S, Vanderkelen I, Chawanda CJ, Russo D, Brecha RJ, van Griensven A, et al. Smart renewable electricity portfolios in West Africa. Nat Sustain 2020;3:710–9. https://doi.org/10.1038/s41893-020-0539-0.[38] The World Bank. Renewable Energy Potential in Selected Countries. Washington, DC: 2005.[39] Chattopadhyay K, Kies A, Lorenz E, von Bremen L, Heinemann D. The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system. Renew Energy 2017;113:176–89. https:// doi.org/10.1016/j.renene.2017.05.069.[40] Berrill P, Arvesen A, Scholz Y, Gils HC, Hertwich EG. Environmental impacts of high penetration renewable energy scenarios for Europe. Environ Res Lett 2016;11: 14012. https://doi.org/10.1088/1748-9326/11/1/014012.[41] Viviescas C, Lima L, Diuana FA, Vasquez E, Ludovique C, Silva GN, et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renew Sustain Energy Rev 2019;113. https://doi.org/10.1016/j. rser.2019.06.039.[42] Sterl S, Liersch S, Koch H, van Lipzig NPM, Thiery W. A new approach for assessing synergies of solar and wind power: implications for West Africa. Environ Res Lett 2018;13:094009. https://doi.org/10.1088/1748-9326/aad8f6.[43] Hansen K, Breyer C, Lund H. Status and perspectives on 100% renewable energy systems. Energy 2019;175:471–80. https://doi.org/10.1016/j. energy.2019.03.092.[44] Schindler D, Schmidt-Rohr S, Jung C. On the spatiotemporal complementarity of the European onshore wind resource. Energy Convers Manag 2021;237:114098. https://doi.org/10.1016/j.enconman.2021.114098.[45] Steinke F, Wolfrum P, Hoffmann C. Grid vs. storage in a 100% renewable Europe. Renew. Energy 2013;50:826–32. https://doi.org/10.1016/j.renene.2012.07.044.[46] Miglietta MM, Huld T, Monforti-Ferrario F. Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective. J Appl Meteorol Climatol 2017;56:217–34. https://doi.org/10.1175/ JAMC-D-16-0031.1.[47] Cox S, Lopez A, Watson A, Grue N, Leisch JE. Renewable Energy Data, Analysis, and Decisions: A Guide for Practitioners. Golden: National Renewable Energy Laboratory (NREL); 2018.[48] World Meteorological Organization. Technical regulations. Basic Documents No. 2 Volume I – General Meteorological Standards and Recommended Practices. vol. I. Geneva: World Meteorological Organization; 2019.[49] Ramirez Camargo L, Gruber K, Nitsch F. Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems. Renew Energy 2019;133:1468–78. https://doi.org/10.1016/j.renene.2018.09.015.[50] Sobrino JA, Julien Y, García-Monteiro S. Surface temperature of the planet earth from satellite data. Remote Sens 2020;12:1–10. https://doi.org/10.3390/ rs12020218.[51] National Aeronautics and Space Administration. NASA POWER | Prediction Of Worldwide Energy Resources 2020. https://power.larc.nasa.gov/.[52] Kapica J. Wind and photovoltaic potential in Europe in the context of mid-term energy storage. J Renew Sustain Energy 2020;12:034101. https://doi.org/ 10.1063/1.5131560.[53] Soulouknga MH, Doka SY, Revanna N, Djongyang N, Kofane TC. Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renew Energy 2018;121:1–8. https://doi.org/10.1016/j. renene.2018.01.002.[54] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. 4th Ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2013.[55] El Mghouchi Y, El Bouardi A, Choulli Z, Ajzoul T. New model to estimate and evaluate the solar radiation. Int J Sustain Built Environ 2014;3:225–34. https:// doi.org/10.1016/j.ijsbe.2014.11.001.[56] Schuster CS. The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation. Renew Energy 2020;152:1186–91. https:// doi.org/10.1016/j.renene.2020.01.076.[57] Denault M, Dupuis D, Couture-Cardinal S. Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy 2009;37: 5376–84. https://doi.org/10.1016/j.enpol.2009.07.064.[58] Xu L, Wang Z, Liu Y. The spatial and temporal variation features of wind-sun complementarity in China. Energy Convers Manag 2017;154:138–48. https://doi. org/10.1016/j.enconman.2017.10.031.[59] Han S, Zhang L, Liu Y, Zhang H, Yan J, Li L, et al. Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio. Appl Energy 2019;236:973–84. https://doi.org/10.1016/j. apenergy.2018.12.059.[60] Kendall MG. Rank correlation methods. Oxford, England: Griffin; 1948.[61] van Doorn J, Ly A, Marsman M, Wagenmakers E-J. Bayesian Inference for Kendall’s Rank Correlation Coefficient. Am Stat 2018;72:303–8. https://doi.org/10.1080/ 00031305.2016.1264998.[62] Heide D, von Bremen L, Greiner M, Hoffmann C, Speckmann M, Bofinger S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew Energy 2010;35:2483–9. https://doi.org/10.1016/j. renene.2010.03.012.[63] Jurasz J, Beluco A, Canales FA. The impact of complementarity on power supply reliability of small scale hybrid energy systems. Energy 2018;161:737–43. https:// doi.org/10.1016/j.energy.2018.07.182.[64] Stackhouse Jr PW, Zhang T, Westberg D, Barnett AJ, Bristow T, Macpherson B, et al. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, & Validation). Norfolk, VA: NASA Langley Research Center; 2018.[65] Chatzivasileiadis S, Ernst D, Andersson G. The Global Grid. Renew Energy 2013;57: 372–83. https://doi.org/10.1016/j.renene.2013.01.032.[66] Canales FA, Jurasz J, Beluco A, Kies A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020;192:116637. https://doi.org/10.1016/j. energy.2019.116637.[67] Liu L, Wang Z, Wang Y, Wang J, Chang R, He G, et al. Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China. Renew Sustain Energy Rev 2020;132:110151. https://doi.org/10.1016/j. rser.2020.110151.[68] Prasad AA, Taylor RA, Kay M. Assessment of solar and wind resource synergy in Australia. Appl Energy 2017;190:354–67. https://doi.org/10.1016/j. apenergy.2016.12.135.[69] Dupont E, Jeanmart H. Global potential of wind and solar energy with physical and energy return on investment (EROI) constraints; application at the European level (EU 28 countries). ECOS 2019 - Proc. 32nd Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst., 2019, p. 489–503.PublicationORIGINALGlobal atlas of solar and wind resources temporal complementarity.pdfGlobal atlas of solar and wind resources temporal complementarity.pdfapplication/pdf50673https://repositorio.cuc.edu.co/bitstreams/c5e32693-e18f-4c0e-b2bb-3cdc69f63a71/download39fe612ac2e69c6f6c48b03be3c57e3fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/223967d1-415c-413b-874f-52591d69eed4/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/70627eca-5d31-4f5e-b1f5-9bd1dfa52a5e/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGlobal atlas of solar and wind resources temporal complementarity.pdf.jpgGlobal atlas of solar and wind resources temporal complementarity.pdf.jpgimage/jpeg57689https://repositorio.cuc.edu.co/bitstreams/26d62ef4-b7d3-4e36-84e0-10f722355760/download352c593fae6c1725413606d5b27fabbbMD54TEXTGlobal atlas of solar and wind resources temporal complementarity.pdf.txtGlobal atlas of solar and wind resources temporal complementarity.pdf.txttext/plain1838https://repositorio.cuc.edu.co/bitstreams/b799cf4d-4f78-4992-a98b-cf49f979ccb8/downloadead8e08b853fdd96797d459f86a1ecb0MD5511323/8859oai:repositorio.cuc.edu.co:11323/88592024-09-17 10:44:39.708http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |