Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities
Road dust (RD) resuspension is one of the main sources of particulate matter in cities with adverse impacts on air quality, health, and climate. Studies on the variability of the deposited PM10 fraction of RD (RD10) have been limited in Latin America, whereby our understanding of the central factors...
- Autores:
-
Vanegas Gracia, Johan Sebastian
Trejos, Erika M.
Aristizábal, Beatriz H.
Pereira, Guilherme M.
Hernández, Julio M.
Herrera Murillo, Jorge
Ramírez, Omar
Amato, Fulvio
Silva Oliveira, Luis Felipe
Rojas, Nestor
Zafra Mejía, Carlos Alfonso
Pachon, Jorge E.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8996
- Acceso en línea:
- https://hdl.handle.net/11323/8996
https://doi.org/10.3390/atmos12091109
https://repositorio.cuc.edu.co/
- Palabra clave:
- PM10
Dust resuspension
Sediment load
Non-exhaust emissions
Chemical profile
Enrichment factors
Colombia
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_4ecb86f266494832715ad48d44bc0fcd |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8996 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
title |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
spellingShingle |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities PM10 Dust resuspension Sediment load Non-exhaust emissions Chemical profile Enrichment factors Colombia |
title_short |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
title_full |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
title_fullStr |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
title_full_unstemmed |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
title_sort |
Spatial distribution and chemical composition of road dust in two high-altitude Latin American cities |
dc.creator.fl_str_mv |
Vanegas Gracia, Johan Sebastian Trejos, Erika M. Aristizábal, Beatriz H. Pereira, Guilherme M. Hernández, Julio M. Herrera Murillo, Jorge Ramírez, Omar Amato, Fulvio Silva Oliveira, Luis Felipe Rojas, Nestor Zafra Mejía, Carlos Alfonso Pachon, Jorge E. |
dc.contributor.author.spa.fl_str_mv |
Vanegas Gracia, Johan Sebastian Trejos, Erika M. Aristizábal, Beatriz H. Pereira, Guilherme M. Hernández, Julio M. Herrera Murillo, Jorge Ramírez, Omar Amato, Fulvio Silva Oliveira, Luis Felipe Rojas, Nestor Zafra Mejía, Carlos Alfonso Pachon, Jorge E. |
dc.subject.spa.fl_str_mv |
PM10 Dust resuspension Sediment load Non-exhaust emissions Chemical profile Enrichment factors Colombia |
topic |
PM10 Dust resuspension Sediment load Non-exhaust emissions Chemical profile Enrichment factors Colombia |
description |
Road dust (RD) resuspension is one of the main sources of particulate matter in cities with adverse impacts on air quality, health, and climate. Studies on the variability of the deposited PM10 fraction of RD (RD10) have been limited in Latin America, whereby our understanding of the central factors that control this pollutant remains incomplete. In this study, forty-one RD10 samples were collected in two Andean cities (Bogotá and Manizales) and analyzed for ions, minerals, and trace elements. RD10 levels varied between 1.8–45.7 mg/m2, with an average of 11.8 mg/m2, in Bogotá and between 0.8–26.7 mg/m2, with an average of 5.7 mg/m2, in Manizales. Minerals were the most abundant species in both cities, with a fraction significantly larger in Manizales (38%) than Bogotá (9%). The difference could be explained mainly by the complex topography and the composition of soil derived from volcanic ash in Manizales. The volcanic activity was also associated with SO4−2 and Cl−. Enrichment factors and principal component analysis were conducted to explore potential factors associated to sources of RD10. Elements such as Cu, Pb, Cr, Ni, V, Sb, and Mo were mainly associated with exhaust and non-exhaust traffic emissions. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-08-28 |
dc.date.accessioned.none.fl_str_mv |
2022-01-22T21:48:19Z |
dc.date.available.none.fl_str_mv |
2022-01-22T21:48:19Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2073-4433 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8996 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/atmos12091109 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2073-4433 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8996 https://doi.org/10.3390/atmos12091109 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [CrossRef] 2. Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2014, 22, 2491–2504. [CrossRef] 3. Charron, A.; Polo-Rehn, L.; Besombes, J.-L.; Golly, B.; Buisson, C.; Chanut, H.; Marchand, N.; Guillaud, G.; Jaffrezo, J.-L. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. Discuss. 2019, 19, 5187–5207. [CrossRef] 4. Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [CrossRef] 5. Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmos. Environ. 2013, 67, 252–277. [CrossRef] 6. Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [CrossRef] [PubMed] 7. Alves, C.; Evtyugina, M.; Vicente, A.; Vicente, E.; Nunes, T.; Silva, P.; Duarte, M.; Pio, C.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [CrossRef] 8. Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [CrossRef] 9. Guttikunda, S. Estimating Health Impacts of Urban Air Pollution. Public Health 2008, 16. Available online: https://urbanemissions. info/wp-content/uploads/docs/SIM-06-2008.pdf (accessed on 20 August 2021). 10. Hetem, I.G.; de Fatima Andrade, M. Characterization of Fine Particulate Matter Emitted from the Resuspension of Road and Pavement Dust in the Metropolitan Area of São Paulo, Brazil. Atmosphere 2016, 7, 31. [CrossRef] 11. Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2004, 39, 699–706. [CrossRef] [PubMed] 12. Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [CrossRef] [PubMed] 13. Alves, C.A.; Vicente, E.; Vicente, A.M.; Rienda, I.C.; Tomé, M.; Querol, X.; Amato, F. Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci. Total Environ. 2020, 737, 139596. [CrossRef] 14. Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-suspension of road dust: Contribution, assessment and control through dust suppressants—A review. Int. J. Environ. Sci. Technol. 2018, 16, 1717–1728. [CrossRef] 15. Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain. Environ. Health Perspect. 2011, 119, 1781–1787. [CrossRef] 16. Meister, K.; Johansson, C.; Forsberg, B. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [CrossRef] 17. Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.; Bonnaire, N.; et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [CrossRef] 18. Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artinano, B.; Catrambone, M.; et al. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2014, 75, 151–158. [CrossRef] 19. Vlasov, D.; Kosheleva, N.; Kasimov, N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 2020, 761, 143267. [CrossRef] 20. Zhang, J.; Wu, L.; Zhang, Y.; Li, F.; Fang, X.; Mao, H. Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil. Particuology 2019, 44, 146–152. [CrossRef] 21. Pant, P.; Baker, S.J.; Shukla, A.; Maikawa, C.; Pollitt, K.G.; Harrison, R.M. The PM 10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Sci. Total Environ. 2015, 531, 445–452. [CrossRef] [PubMed] 22. Pachón, J.E.; Galvis, B.; Lombana, O.; Carmona, L.G.; Fajardo, S.; Rincón, A.; Meneses, S.; Chaparro, R.; Nedbor-Gross, R.; Henderson, B. Development and Evaluation of a Comprehensive Atmospheric Emission Inventory for Air Quality Modeling in the Megacity of Bogotá. Atmosphere 2018, 9, 49. [CrossRef] 23. Pachon, J.E.; Vanegas, S.; Saavedra, C.; Amato, F.; Silva, L.F.O.; Blanco, K.; Chaparro, R.; Casas, O.M. Evaluation of factors influencing road dust loadings in a Latin American urban center. J. Air Waste Manag. Assoc. 2021, 71, 268–280. [CrossRef] 24. Ramírez, O.; de la Campa, A.M.S.; Amato, F.; Moreno, T.; Silva, L.; de la Rosa, J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 2018, 652, 434–446. [CrossRef] 25. Ramírez, O.; da Boit, K.; Blanco, E.; Silva, L. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban. Clim. 2020, 33, 100655. [CrossRef] 26. Bogotá Cómo Vamos. Informe de Calidad de Vida En Bogotá 2018; Bogotá Cómo Vamos: Bogotá, Colombia, 2019. 27. Secretaría Distrital de Ambiente. Inventario de Emisiones de Bogotá, Contaminantes Atmosféricos 2018; Secretaría Distrital de Ambiente: Bogotá, Colombia, 2020. 28. Ramírez, O.; de la Campa, A.S.; Amato, F.; Catacolí, R.A.; Rojas, N.Y.; de la Rosa, J. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2018, 233, 142–155. [CrossRef] [PubMed] 29. DANE. Omisión Censal: Nivel Municipal y Departamental; DANE: Bogotá, Colombia, 2019. 30. Cuesta-Mosquera, A.P.; Wahl, M.; Acosta-López, J.G.; García-Reynoso, J.A.; Aristizábal-Zuluaga, B.H. Mixing layer height and slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain city. Sustain. Cities Soc. 2019, 52, 101852. [CrossRef] 31. González, C.; Gómez, C.; Rojas, N.; Acevedo, H.; Aristizábal, B. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmos. Environ. 2016, 152, 279–289. [CrossRef] 32. Universidad Nacional de Colombia. Corpocaldas Aplicación de Herramientas de Simulación Atmosférica En El Estudio de La Calidad Del Aire En Manizales—Informe Final Convenio Interadministrativo No. 107-2018; Universidad Nacional de Colombia: Bogotá, Colombia, 2019. 33. Carn, S.A.; Fioletov, V.E.; McLinden, C.; Li, C.; Krotkov, N. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, srep44095. [CrossRef] 34. Manizales Cómo Vamos. Informe de Calidad de Vida Manizales 2019; Manizales Cómo Vamos: Bogotá, Colombia, 2019. 35. Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [CrossRef] 36. Trejos, E.M.; Silva, L.F.; Hower, J.C.; Flores, E.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755. [CrossRef] 37. Murillo, J.H.; Marín, J.F.R.; Álvarez, V.M.; Arias, D.S.; Guerrero, V.H.B. Chemical characterization of filterable PM 2.5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa Rica. Atmos. Pollut. Res. 2017, 8, 709–717. [CrossRef] 38. Reimann, C.; de Caritat, P. Chemical Elements in the Environment. In Factsheets for the Geochemist and Environmental Scientist, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-72018-5. 39. Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1217–1232. [CrossRef] 40. Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Earth Sci. 2000, 39, 611–627. [CrossRef] 41. Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [CrossRef] 42. Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; González, J.C.; Querol, X. Impact of traffic intensity and pavement aggregate size on road dust particles loading. Atmos. Environ. 2013, 77, 711–717. [CrossRef] 43. Padoan, E.; Ajmone-Marsan, F.; Querol, X.; Amato, F. An empirical model to predict road dust emissions based on pavement and traffic characteristics. Environ. Pollut. 2017, 237, 713–720. [CrossRef] 44. Kong, S.; Ji, Y.; Lu, B.; Chen, L.; Han, B.; Li, Z.; Bai, Z. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos. Environ. 2011, 45, 5351–5365. [CrossRef] 45. Ramírez, O.; de la Campa, A.M.S.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Sci. Total Environ. 2020, 710, 136344. [CrossRef] 46. Vega, E.; Mugica, V.; Reyes, E.; Sánchez, G.; Chow, J.; Watson, J. Chemical composition of fugitive dust emitters in Mexico City. Atmos. Environ. 2001, 35, 4033–4039. [CrossRef] 47. Herrera Ardila, M.C. Suelos Derivados de Cenizas Volcánicas En Colombia: Estudio Fundamental e Implicaciones En Ingeniería. Rev. Int. Desastres Nat. Accid. Infraestruct. Civ. 2006, 6, 167. 48. Cheng, Y.; Lee, S.-C.; Gu, Z.; Ho, K.F.; Zhang, Y.; Huang, Y.; Chow, J.C.; Watson, J.; Cao, J.; Zhang, R. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 2013, 18, 96–104. [CrossRef] 49. Karanasiou, A.; Diapouli, E.; Cavalli, F.; Eleftheriadis, K.; Viana, M.; Alastuey, A.; Querol, X.; Reche, C. On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmos. Meas. Tech. 2011, 4, 2409–2419. [CrossRef] 50. Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.D.; de la Campa, A.M.S.; Artinano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [CrossRef] 51. Wiseman, C.L.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [CrossRef] 52. Findeter. Plan Maestro de Movilidad de Manizales; Findeter: Bogotá, Colombia, 2017. 53. Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos. Environ. 2011, 45, 1497–1505. [CrossRef] 54. Manno, E.; Varrica, D.; Dongarrà, G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmos. Environ. 2006, 40, 5929–5941. [CrossRef] 55. Liu, Y.; Xing, J.; Wang, S.; Fu, X.; Zheng, H. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 2018, 239, 544–553. [CrossRef] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Atmosphere |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2073-4433/12/9/1109 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/96edae40-1c32-4d62-be7c-696a49949c47/download https://repositorio.cuc.edu.co/bitstreams/d4c48815-6e96-4919-a1e7-714f423f52ed/download https://repositorio.cuc.edu.co/bitstreams/85d49c06-4299-4e8d-a54b-516edcf17cae/download https://repositorio.cuc.edu.co/bitstreams/022ac91c-42e1-4472-a5f2-16c140e4c5dc/download https://repositorio.cuc.edu.co/bitstreams/c92b16dd-abf2-440e-bb7e-cf8cd365a7ad/download |
bitstream.checksum.fl_str_mv |
f143d2d2e7f176d70b3134306f281359 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 6813032910f2a29e80d85452fc15fcfc 28f3be0be1c5a22c9653f70d9461d857 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166835524075520 |
spelling |
Vanegas Gracia, Johan SebastianTrejos, Erika M.Aristizábal, Beatriz H.Pereira, Guilherme M.Hernández, Julio M.Herrera Murillo, JorgeRamírez, OmarAmato, FulvioSilva Oliveira, Luis FelipeRojas, NestorZafra Mejía, Carlos AlfonsoPachon, Jorge E.2022-01-22T21:48:19Z2022-01-22T21:48:19Z2021-08-282073-4433https://hdl.handle.net/11323/8996https://doi.org/10.3390/atmos12091109Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Road dust (RD) resuspension is one of the main sources of particulate matter in cities with adverse impacts on air quality, health, and climate. Studies on the variability of the deposited PM10 fraction of RD (RD10) have been limited in Latin America, whereby our understanding of the central factors that control this pollutant remains incomplete. In this study, forty-one RD10 samples were collected in two Andean cities (Bogotá and Manizales) and analyzed for ions, minerals, and trace elements. RD10 levels varied between 1.8–45.7 mg/m2, with an average of 11.8 mg/m2, in Bogotá and between 0.8–26.7 mg/m2, with an average of 5.7 mg/m2, in Manizales. Minerals were the most abundant species in both cities, with a fraction significantly larger in Manizales (38%) than Bogotá (9%). The difference could be explained mainly by the complex topography and the composition of soil derived from volcanic ash in Manizales. The volcanic activity was also associated with SO4−2 and Cl−. Enrichment factors and principal component analysis were conducted to explore potential factors associated to sources of RD10. Elements such as Cu, Pb, Cr, Ni, V, Sb, and Mo were mainly associated with exhaust and non-exhaust traffic emissions.Vanegas Gracia, Johan Sebastian-will be generated-orcid-0000-0002-1219-6608-600Trejos, Erika M.Aristizábal, Beatriz H.Pereira, Guilherme M.Hernández, Julio M.Herrera Murillo, JorgeRamírez, OmarAmato, FulvioSilva Oliveira, Luis FelipeRojas, Nestor-will be generated-orcid-0000-0001-7804-0449-600Zafra Mejía, Carlos Alfonso-will be generated-orcid-0000-0002-4061-4897-600Pachon, Jorge E.-will be generated-orcid-0000-0002-6444-5995-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atmospherehttps://www.mdpi.com/2073-4433/12/9/1109PM10Dust resuspensionSediment loadNon-exhaust emissionsChemical profileEnrichment factorsColombiaSpatial distribution and chemical composition of road dust in two high-altitude Latin American citiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [CrossRef]2. Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2014, 22, 2491–2504. [CrossRef]3. Charron, A.; Polo-Rehn, L.; Besombes, J.-L.; Golly, B.; Buisson, C.; Chanut, H.; Marchand, N.; Guillaud, G.; Jaffrezo, J.-L. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. Discuss. 2019, 19, 5187–5207. [CrossRef]4. Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [CrossRef]5. Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmos. Environ. 2013, 67, 252–277. [CrossRef]6. Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [CrossRef] [PubMed]7. Alves, C.; Evtyugina, M.; Vicente, A.; Vicente, E.; Nunes, T.; Silva, P.; Duarte, M.; Pio, C.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [CrossRef]8. Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [CrossRef]9. Guttikunda, S. Estimating Health Impacts of Urban Air Pollution. Public Health 2008, 16. Available online: https://urbanemissions. info/wp-content/uploads/docs/SIM-06-2008.pdf (accessed on 20 August 2021).10. Hetem, I.G.; de Fatima Andrade, M. Characterization of Fine Particulate Matter Emitted from the Resuspension of Road and Pavement Dust in the Metropolitan Area of São Paulo, Brazil. Atmosphere 2016, 7, 31. [CrossRef]11. Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2004, 39, 699–706. [CrossRef] [PubMed]12. Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [CrossRef] [PubMed]13. Alves, C.A.; Vicente, E.; Vicente, A.M.; Rienda, I.C.; Tomé, M.; Querol, X.; Amato, F. Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci. Total Environ. 2020, 737, 139596. [CrossRef]14. Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-suspension of road dust: Contribution, assessment and control through dust suppressants—A review. Int. J. Environ. Sci. Technol. 2018, 16, 1717–1728. [CrossRef]15. Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain. Environ. Health Perspect. 2011, 119, 1781–1787. [CrossRef]16. Meister, K.; Johansson, C.; Forsberg, B. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [CrossRef]17. Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.; Bonnaire, N.; et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [CrossRef]18. Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artinano, B.; Catrambone, M.; et al. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2014, 75, 151–158. [CrossRef]19. Vlasov, D.; Kosheleva, N.; Kasimov, N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 2020, 761, 143267. [CrossRef]20. Zhang, J.; Wu, L.; Zhang, Y.; Li, F.; Fang, X.; Mao, H. Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil. Particuology 2019, 44, 146–152. [CrossRef]21. Pant, P.; Baker, S.J.; Shukla, A.; Maikawa, C.; Pollitt, K.G.; Harrison, R.M. The PM 10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Sci. Total Environ. 2015, 531, 445–452. [CrossRef] [PubMed]22. Pachón, J.E.; Galvis, B.; Lombana, O.; Carmona, L.G.; Fajardo, S.; Rincón, A.; Meneses, S.; Chaparro, R.; Nedbor-Gross, R.; Henderson, B. Development and Evaluation of a Comprehensive Atmospheric Emission Inventory for Air Quality Modeling in the Megacity of Bogotá. Atmosphere 2018, 9, 49. [CrossRef]23. Pachon, J.E.; Vanegas, S.; Saavedra, C.; Amato, F.; Silva, L.F.O.; Blanco, K.; Chaparro, R.; Casas, O.M. Evaluation of factors influencing road dust loadings in a Latin American urban center. J. Air Waste Manag. Assoc. 2021, 71, 268–280. [CrossRef]24. Ramírez, O.; de la Campa, A.M.S.; Amato, F.; Moreno, T.; Silva, L.; de la Rosa, J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 2018, 652, 434–446. [CrossRef]25. Ramírez, O.; da Boit, K.; Blanco, E.; Silva, L. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban. Clim. 2020, 33, 100655. [CrossRef]26. Bogotá Cómo Vamos. Informe de Calidad de Vida En Bogotá 2018; Bogotá Cómo Vamos: Bogotá, Colombia, 2019.27. Secretaría Distrital de Ambiente. Inventario de Emisiones de Bogotá, Contaminantes Atmosféricos 2018; Secretaría Distrital de Ambiente: Bogotá, Colombia, 2020.28. Ramírez, O.; de la Campa, A.S.; Amato, F.; Catacolí, R.A.; Rojas, N.Y.; de la Rosa, J. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2018, 233, 142–155. [CrossRef] [PubMed]29. DANE. Omisión Censal: Nivel Municipal y Departamental; DANE: Bogotá, Colombia, 2019.30. Cuesta-Mosquera, A.P.; Wahl, M.; Acosta-López, J.G.; García-Reynoso, J.A.; Aristizábal-Zuluaga, B.H. Mixing layer height and slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain city. Sustain. Cities Soc. 2019, 52, 101852. [CrossRef]31. González, C.; Gómez, C.; Rojas, N.; Acevedo, H.; Aristizábal, B. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmos. Environ. 2016, 152, 279–289. [CrossRef]32. Universidad Nacional de Colombia. Corpocaldas Aplicación de Herramientas de Simulación Atmosférica En El Estudio de La Calidad Del Aire En Manizales—Informe Final Convenio Interadministrativo No. 107-2018; Universidad Nacional de Colombia: Bogotá, Colombia, 2019.33. Carn, S.A.; Fioletov, V.E.; McLinden, C.; Li, C.; Krotkov, N. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, srep44095. [CrossRef]34. Manizales Cómo Vamos. Informe de Calidad de Vida Manizales 2019; Manizales Cómo Vamos: Bogotá, Colombia, 2019.35. Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [CrossRef]36. Trejos, E.M.; Silva, L.F.; Hower, J.C.; Flores, E.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755. [CrossRef]37. Murillo, J.H.; Marín, J.F.R.; Álvarez, V.M.; Arias, D.S.; Guerrero, V.H.B. Chemical characterization of filterable PM 2.5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa Rica. Atmos. Pollut. Res. 2017, 8, 709–717. [CrossRef]38. Reimann, C.; de Caritat, P. Chemical Elements in the Environment. In Factsheets for the Geochemist and Environmental Scientist, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-72018-5.39. Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1217–1232. [CrossRef]40. Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Earth Sci. 2000, 39, 611–627. [CrossRef]41. Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [CrossRef]42. Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; González, J.C.; Querol, X. Impact of traffic intensity and pavement aggregate size on road dust particles loading. Atmos. Environ. 2013, 77, 711–717. [CrossRef]43. Padoan, E.; Ajmone-Marsan, F.; Querol, X.; Amato, F. An empirical model to predict road dust emissions based on pavement and traffic characteristics. Environ. Pollut. 2017, 237, 713–720. [CrossRef]44. Kong, S.; Ji, Y.; Lu, B.; Chen, L.; Han, B.; Li, Z.; Bai, Z. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos. Environ. 2011, 45, 5351–5365. [CrossRef]45. Ramírez, O.; de la Campa, A.M.S.; Sánchez-Rodas, D.; de la Rosa, J.D. Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Sci. Total Environ. 2020, 710, 136344. [CrossRef]46. Vega, E.; Mugica, V.; Reyes, E.; Sánchez, G.; Chow, J.; Watson, J. Chemical composition of fugitive dust emitters in Mexico City. Atmos. Environ. 2001, 35, 4033–4039. [CrossRef]47. Herrera Ardila, M.C. Suelos Derivados de Cenizas Volcánicas En Colombia: Estudio Fundamental e Implicaciones En Ingeniería. Rev. Int. Desastres Nat. Accid. Infraestruct. Civ. 2006, 6, 167.48. Cheng, Y.; Lee, S.-C.; Gu, Z.; Ho, K.F.; Zhang, Y.; Huang, Y.; Chow, J.C.; Watson, J.; Cao, J.; Zhang, R. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 2013, 18, 96–104. [CrossRef]49. Karanasiou, A.; Diapouli, E.; Cavalli, F.; Eleftheriadis, K.; Viana, M.; Alastuey, A.; Querol, X.; Reche, C. On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmos. Meas. Tech. 2011, 4, 2409–2419. [CrossRef]50. Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.D.; de la Campa, A.M.S.; Artinano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [CrossRef]51. Wiseman, C.L.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [CrossRef]52. Findeter. Plan Maestro de Movilidad de Manizales; Findeter: Bogotá, Colombia, 2017.53. Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos. Environ. 2011, 45, 1497–1505. [CrossRef]54. Manno, E.; Varrica, D.; Dongarrà, G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmos. Environ. 2006, 40, 5929–5941. [CrossRef]55. Liu, Y.; Xing, J.; Wang, S.; Fu, X.; Zheng, H. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 2018, 239, 544–553. [CrossRef]PublicationORIGINALSpatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities.pdfSpatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities.pdfapplication/pdf4332396https://repositorio.cuc.edu.co/bitstreams/96edae40-1c32-4d62-be7c-696a49949c47/downloadf143d2d2e7f176d70b3134306f281359MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d4c48815-6e96-4919-a1e7-714f423f52ed/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/85d49c06-4299-4e8d-a54b-516edcf17cae/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSpatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities.pdf.jpgSpatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities.pdf.jpgimage/jpeg73716https://repositorio.cuc.edu.co/bitstreams/022ac91c-42e1-4472-a5f2-16c140e4c5dc/download6813032910f2a29e80d85452fc15fcfcMD54TEXTSpatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities.pdf.txtSpatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities.pdf.txttext/plain70940https://repositorio.cuc.edu.co/bitstreams/c92b16dd-abf2-440e-bb7e-cf8cd365a7ad/download28f3be0be1c5a22c9653f70d9461d857MD5511323/8996oai:repositorio.cuc.edu.co:11323/89962024-09-17 14:15:56.088http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |