Bitopological weak continuous multifunctions

In this paper, we introduce and study the concept of a new type of weak continuous multifunctions between bitopological spaces.

Autores:
Carpintero, Carlos R
Rajesh, Neelamegarajan
ROSAS, ENNIS
Rajalakshmi, Raji
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9474
Acceso en línea:
https://hdl.handle.net/11323/9474
https://repositorio.cuc.edu.co/
Palabra clave:
Bitopological spaces
Open set
(i; j)-upper weakly continuous function
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_4e96c67fa508ad579a3f7c58c84dab0f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9474
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Bitopological weak continuous multifunctions
title Bitopological weak continuous multifunctions
spellingShingle Bitopological weak continuous multifunctions
Bitopological spaces
Open set
(i; j)-upper weakly continuous function
title_short Bitopological weak continuous multifunctions
title_full Bitopological weak continuous multifunctions
title_fullStr Bitopological weak continuous multifunctions
title_full_unstemmed Bitopological weak continuous multifunctions
title_sort Bitopological weak continuous multifunctions
dc.creator.fl_str_mv Carpintero, Carlos R
Rajesh, Neelamegarajan
ROSAS, ENNIS
Rajalakshmi, Raji
dc.contributor.author.spa.fl_str_mv Carpintero, Carlos R
Rajesh, Neelamegarajan
ROSAS, ENNIS
Rajalakshmi, Raji
dc.subject.proposal.eng.fl_str_mv Bitopological spaces
Open set
(i; j)-upper weakly continuous function
topic Bitopological spaces
Open set
(i; j)-upper weakly continuous function
description In this paper, we introduce and study the concept of a new type of weak continuous multifunctions between bitopological spaces.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-24T23:59:09Z
dc.date.available.none.fl_str_mv 2022-08-24T23:59:09Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 2346-8092
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9474
dc.identifier.eissn.spa.fl_str_mv 2588-9028
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2346-8092
2588-9028
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9474
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Transactions of A. Razmadze Mathematical Institute
dc.relation.references.spa.fl_str_mv 1. S. Al-Ghour, S. Issa, On u-ω-open and q-ω-open sets in bitopological spaces. Missouri J. Math. Sci. 24 (2012), no. 1, 37–53.
2. A. Al-Omari, T. Noiri, M. S. M. Noorani, Weak and strong forms of ω-continuous functions. Int. J. Math. Math. Sci. 2009, Art. ID 174042, 12 pp.
3. A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ω-continuous functions. Int. J. Math. Math. Sci. 2007, Article ID 40469, 13 pp.
4. K. Al-Zoubi, On generalized ω-closed sets. Int. J. Math. Math. Sci. 13 (2005), 2011–2021.
5. K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets. Al-Manarah 9 (2003), 169–179.
6. T. Banzaru, Multivalued mappings and M-product spaces. (Romanian) Bul. ti. Tehn. Inst. Politehn. Timioara Ser. Mat.-Fiz.-Mec. Teoret. Apl. 17(31) (1972), no. 1, 17–23.
7. S. Bose, S. P. Sinha, Almost open, almost closed, θ-continuous and almost quasicompact mappings in bitopological spaces. Bull. Calcutta Math. Soc. 73 (1981), no. 6, 345–354.
8. E. Ekici, S. Jafari, S. P. Moshokoa, On a weaker form of ω-continuity. An. Univ. Craiova Ser. Mat. Inform. 37 (2010), no. 2, 38–46.
9. H. Z. Hdeib, ω-closed mappings. Rev. Colombiana Mat. 16 (1982), no. 1-2, 65–78.
10. H. Z. Hdeib, ω-continuous functions. Dirasat, 16 (1989), no. 2, 136–142.
11. C. G. Kariofillis, On pairwise almost compactness. Ann. Soc. Sci. Bruxelles Sr. I 100 (1986), no. 4, 129–137 (1988).
12. F. H. Khedr, S. M. Al. Areefi, T. Noiri, Precontinuity and semiprecontinuity in bitopological spaces. Indian J. Pure Appl. Math. 23 (1992), no. 9, 625–633.
13. E. Rosas, C. Carpintero, N. Rajesh, S. Shanthi, Near ω-continuous multifunctions on bitopological spaces. royecciones 38 (2019), no. 4, 691–698.
14. A. Rychlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces. Novi Sad J. Math. 38 (2008), no. 2, 5–14.
dc.relation.citationendpage.spa.fl_str_mv 335
dc.relation.citationstartpage.spa.fl_str_mv 331
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationvolume.spa.fl_str_mv 175
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© Copyright 2019, Razmadze Mathematical Institute.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© Copyright 2019, Razmadze Mathematical Institute.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 5 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Georgia
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://rmi.ge/transactions/TRMI-volumes/175-3/v175(3)-5.pdf
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/069ce974-c2b4-4276-99c0-1032b799cc6e/download
https://repositorio.cuc.edu.co/bitstreams/4f5ac9c5-a98f-4fac-acaf-a1e00576b0d9/download
https://repositorio.cuc.edu.co/bitstreams/058a816c-a618-48bd-a06c-f6e1ac8526ba/download
https://repositorio.cuc.edu.co/bitstreams/dd5271b3-7d5d-4188-8023-77da9aa4d9f6/download
bitstream.checksum.fl_str_mv 3c7e278a50a2baacf7f527ecd12a7575
e30e9215131d99561d40d6b0abbe9bad
961e2e400b543e058e75401126802522
2da880f90ce7ec00c9200aee1e286af2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760843916836864
spelling Carpintero, Carlos RRajesh, NeelamegarajanROSAS, ENNISRajalakshmi, Raji2022-08-24T23:59:09Z2022-08-24T23:59:09Z20212346-8092https://hdl.handle.net/11323/94742588-9028Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, we introduce and study the concept of a new type of weak continuous multifunctions between bitopological spaces.5 páginasapplication/pdfengElsevier BVGeorgiaAtribución 4.0 Internacional (CC BY 4.0)© Copyright 2019, Razmadze Mathematical Institute.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bitopological weak continuous multifunctionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://rmi.ge/transactions/TRMI-volumes/175-3/v175(3)-5.pdfTransactions of A. Razmadze Mathematical Institute1. S. Al-Ghour, S. Issa, On u-ω-open and q-ω-open sets in bitopological spaces. Missouri J. Math. Sci. 24 (2012), no. 1, 37–53.2. A. Al-Omari, T. Noiri, M. S. M. Noorani, Weak and strong forms of ω-continuous functions. Int. J. Math. Math. Sci. 2009, Art. ID 174042, 12 pp.3. A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ω-continuous functions. Int. J. Math. Math. Sci. 2007, Article ID 40469, 13 pp.4. K. Al-Zoubi, On generalized ω-closed sets. Int. J. Math. Math. Sci. 13 (2005), 2011–2021.5. K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets. Al-Manarah 9 (2003), 169–179.6. T. Banzaru, Multivalued mappings and M-product spaces. (Romanian) Bul. ti. Tehn. Inst. Politehn. Timioara Ser. Mat.-Fiz.-Mec. Teoret. Apl. 17(31) (1972), no. 1, 17–23.7. S. Bose, S. P. Sinha, Almost open, almost closed, θ-continuous and almost quasicompact mappings in bitopological spaces. Bull. Calcutta Math. Soc. 73 (1981), no. 6, 345–354.8. E. Ekici, S. Jafari, S. P. Moshokoa, On a weaker form of ω-continuity. An. Univ. Craiova Ser. Mat. Inform. 37 (2010), no. 2, 38–46.9. H. Z. Hdeib, ω-closed mappings. Rev. Colombiana Mat. 16 (1982), no. 1-2, 65–78.10. H. Z. Hdeib, ω-continuous functions. Dirasat, 16 (1989), no. 2, 136–142.11. C. G. Kariofillis, On pairwise almost compactness. Ann. Soc. Sci. Bruxelles Sr. I 100 (1986), no. 4, 129–137 (1988).12. F. H. Khedr, S. M. Al. Areefi, T. Noiri, Precontinuity and semiprecontinuity in bitopological spaces. Indian J. Pure Appl. Math. 23 (1992), no. 9, 625–633.13. E. Rosas, C. Carpintero, N. Rajesh, S. Shanthi, Near ω-continuous multifunctions on bitopological spaces. royecciones 38 (2019), no. 4, 691–698.14. A. Rychlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces. Novi Sad J. Math. 38 (2008), no. 2, 5–14.3353313175Bitopological spacesOpen set(i; j)-upper weakly continuous functionPublicationORIGINALBITOPOLOGICAL WEAK CONTINUOUS MULTIFUNCTIONS.pdfBITOPOLOGICAL WEAK CONTINUOUS MULTIFUNCTIONS.pdfapplication/pdf251095https://repositorio.cuc.edu.co/bitstreams/069ce974-c2b4-4276-99c0-1032b799cc6e/download3c7e278a50a2baacf7f527ecd12a7575MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/4f5ac9c5-a98f-4fac-acaf-a1e00576b0d9/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTBITOPOLOGICAL WEAK CONTINUOUS MULTIFUNCTIONS.pdf.txtBITOPOLOGICAL WEAK CONTINUOUS MULTIFUNCTIONS.pdf.txttext/plain17703https://repositorio.cuc.edu.co/bitstreams/058a816c-a618-48bd-a06c-f6e1ac8526ba/download961e2e400b543e058e75401126802522MD53THUMBNAILBITOPOLOGICAL WEAK CONTINUOUS MULTIFUNCTIONS.pdf.jpgBITOPOLOGICAL WEAK CONTINUOUS MULTIFUNCTIONS.pdf.jpgimage/jpeg13216https://repositorio.cuc.edu.co/bitstreams/dd5271b3-7d5d-4188-8023-77da9aa4d9f6/download2da880f90ce7ec00c9200aee1e286af2MD5411323/9474oai:repositorio.cuc.edu.co:11323/94742024-09-17 14:09:38.237https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==