Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review

The use of wireless sensor networks (WSN) for monitoring variables in agricultural environments and natural forests has been increasing in recent years. However, the sizing of these systems is affected by the inaccuracy of the radio wave propagation models used, leading to possible increased costs a...

Full description

Autores:
Barrios-Ulloa, Alexis
Ariza Colpas, Paola Patricia
Sánchez-Moreno, Hernando
Quintero linero, Alejandra paola
De-La-Hoz-Franco, Emiro
Tipo de recurso:
Review article
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9923
Acceso en línea:
https://hdl.handle.net/11323/9923
https://repositorio.cuc.edu.co/
Palabra clave:
Attenuation
Vegetated environments
Propagation models
Path loss
Systematic revision of literature
Wireless technologies
WSN
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_4e1b1a21512690010b7ac58744ad2257
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9923
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
title Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
spellingShingle Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
Attenuation
Vegetated environments
Propagation models
Path loss
Systematic revision of literature
Wireless technologies
WSN
title_short Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
title_full Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
title_fullStr Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
title_full_unstemmed Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
title_sort Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature review
dc.creator.fl_str_mv Barrios-Ulloa, Alexis
Ariza Colpas, Paola Patricia
Sánchez-Moreno, Hernando
Quintero linero, Alejandra paola
De-La-Hoz-Franco, Emiro
dc.contributor.author.none.fl_str_mv Barrios-Ulloa, Alexis
Ariza Colpas, Paola Patricia
Sánchez-Moreno, Hernando
Quintero linero, Alejandra paola
De-La-Hoz-Franco, Emiro
dc.subject.proposal.eng.fl_str_mv Attenuation
Vegetated environments
Propagation models
Path loss
Systematic revision of literature
Wireless technologies
WSN
topic Attenuation
Vegetated environments
Propagation models
Path loss
Systematic revision of literature
Wireless technologies
WSN
description The use of wireless sensor networks (WSN) for monitoring variables in agricultural environments and natural forests has been increasing in recent years. However, the sizing of these systems is affected by the inaccuracy of the radio wave propagation models used, leading to possible increased costs and measurement errors. This systematic literature review (SLR) aims to identify propagation models widely used in WSN deployments in agricultural or naturally vegetated environments and their effectiveness in estimating signal losses. We also identified today’s wireless technologies most used in precision agriculture (PA) system implementations. In addition, the results of studies focused on the development of new propagation models for different environments are evaluated. Scientific and technical analysis is presented based on articles consulted in different specialized databases, which were selected according to different combinations of criteria. The results show that, in most of the application cases, vegetative models present high error values when estimating attenuation.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-15
dc.date.accessioned.none.fl_str_mv 2023-02-24T13:50:02Z
dc.date.available.none.fl_str_mv 2023-02-24T13:50:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_dcae04bc
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_dcae04bc
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Barrios-Ulloa, A.; Ariza-Colpas, P.P.; Sánchez-Moreno, H.; Quintero-Linero, A.P.; De la Hoz-Franco, E. Modeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments: A Systematic Literature Review. Sensors 2022, 22, 5285. https://doi.org/10.3390/s22145285
dc.identifier.issn.spa.fl_str_mv 1424-3210
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/9923
dc.identifier.doi.none.fl_str_mv 10.3390/s22145285
dc.identifier.eissn.spa.fl_str_mv 1424-8220
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Barrios-Ulloa, A.; Ariza-Colpas, P.P.; Sánchez-Moreno, H.; Quintero-Linero, A.P.; De la Hoz-Franco, E. Modeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments: A Systematic Literature Review. Sensors 2022, 22, 5285. https://doi.org/10.3390/s22145285
1424-3210
10.3390/s22145285
1424-8220
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9923
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sensors
dc.relation.references.spa.fl_str_mv 1. Sharma, R.P.; Ramesh, D.; Pal, P.; Tripathi, S.; Kumar, C. Crop Pest Prediction. IEEE Internet Things J. 2022, 9, 3037–3045. [CrossRef]
2. Al-Qurabat, A.K.M. A Lightweight Huffman-based Differential Encoding Lossless Compression Technique in IoT for Smart Agriculture. Int. J. Comput. Digit. Syst. 2022, 11, 117–127. [CrossRef]
3. Sabri, N.; Mohammed, S.S.; Fouad, S.; Syed, A.A.; Al-Dhief, F.T.; Raheemah, A. Investigation of Empirical Wave Propagation Models in Precision Agriculture. MATEC Web Conf. 2018, 150, 06020. [CrossRef]
4. Khairunnniza-Bejo, S.; Ramli, N.H.; Muharam, F.M. Wireless sensor network (WSN) applications in plantation canopy areas: A review. Asian J. Sci. Res. 2018, 11, 151–161. [CrossRef]
5. Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 0123456789.
6. Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. 2.4 GHz RF Received Signal Strength Based Node Separation in WSN Monitoring Infrastructure for Millet and Rice Vegetation. IEEE Sens. J. 2021, 21, 18298–18306. [CrossRef]
7. Barrios-Ulloa, A.; Cama-PInto, D.; Mardini-Bovea, J.; Díaz-Martínez, J.; Cama-Pinto, A. Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors 2021, 21, 7167. [CrossRef] [PubMed]
8. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderín-Curtidor, A.C.; Martínez-Lao, J.A.; Cama-Pinto, A. 5G Mobile Phone Network Introduction in Colombia. Electronics 2021, 10, 922. [CrossRef]
9. Dogan, H. A new empirical propagation model depending on volumetric density in citrus orchards for wireless sensornetwork applications at sub-6 GHz frequency region. Int. J. RF Microw. Comput. Eng. 2021, 31, e22778. [CrossRef]
10. Gabriel, P.-E.; Butt, S.A.; Francisco, E.-O.; Alejandro, C.-P.; Maleh, Y. Performance analysis of 6LoWPAN protocol for a flood monitoring system. EURASIP J. Wirel. Commun. Netw. 2022, 2022, 16. [CrossRef]
11. Cama-Pinto, A.; Piñeres-Espitia, G.; Comas-González, Z.; Vélez-Zapata, J.; Gómez-Mula, F. Design of a monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its metropolitan area. Ingeniare 2017, 25, 585–598. [CrossRef]
12. Wu, H.; Zhang, L.; Miao, Y. The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in Large-Scale Farmland. Wirel. Pers. Commun. 2017, 95, 3653–3670. [CrossRef]
13. Anusha, V.S.; Nithya, G.K.; Rao, S.N. A comprehensive survey of electromagnetic propagation models. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1457–1462.
14. Ganev, Z. Log-normal shadowing model for outdoor propagation between sensor nodes. In Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2018; pp. 9–12.
15. Kurt, S.; Tavli, B. Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations. IEEE Antennas Propag. Mag. 2017, 59, 18–37. [CrossRef]
16. Tang, W.; Ma, X.; Wei, J.; Wang, Z. Measurement and analysis of near-ground propagation models under different terrains for wireless sensor networks. Sensors 2019, 19, 1901. [CrossRef]
17. Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for Wireless Sensor Network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [CrossRef]
18. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Cama-Pinto, A. Path loss determination using linear and cubic regression inside a classic tomato greenhouse. Int. J. Environ. Res. Public Health 2019, 16, 1744. [CrossRef]
19. Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2020.
20. De Sales Bezerra, T.; De Sousa, J.A.R.; Da Silva Eleuterio, S.A.; Rocha, J.S. Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment. In Proceedings of the 6th Argentine Conference on Embedded Systems (CASE), Buenos Aires, Argentina, 12–14 August 2015; pp. 19–24.
21. Barrios, A.; Arjona, R.; Álvarez, R. Comparison of Radio Propagation Models in the Suburban Area of the City of Barranquilla. Rev. Colomb. Tecnol. Av. 2018, 2, 78–85. [CrossRef]
22. Shoewu, O.O.; Akinyemi, L.A.; Oborkhale, L. Towards Developing Path loss Models for Dryland and Wetland Environments. In Proceedings of the IEEE AFRICON Conference, Accra, Ghana, 25–27 September 2019. [CrossRef]
23. Sevgi, L. Groundwave modeling and simulation strategies and path loss prediction virtual tools. IEEE Trans. Antennas Propag. 2007, 55, 1591–1598. [CrossRef]
24. Phillips, C.; Sicker, D.; Grunwald, D. A Survey of Wireless Path Loss Prediction and Coverage Mapping Methods. IEEE Commun. Surv. Tutor. 2013, 15, 255–270. [CrossRef]
25. Kamarudin, L.M.; Ahmad, R.B.; Ong, B.L.; Malek, F.; Zakaria, A.; Arif, M.A.M. Review and modeling of vegetation propagation model for wireless sensor networks using OMNeT++. In Proceedings of the 2nd International Conference on Network Applications, Protocols and Services (NETAPPS), Alor Setar, Malaysia, 22–23 September 2010; pp. 78–83.
26. Rama Rao, T.; Balachander, D.; Tiwari, N. RF Propagation Measurements in Forest & Plantation Environments for Wireless Sensor Networks. In Proceedings of the 2012 IEEE International Conference on Communication Systems (ICCS), Chennai, India, 19–21 April 2012; pp. 194–198.
27. Sabri, N.; Aljunid, S.A.; Salim, M.S.; Fouad, S. Wireless Sensor Network Wave Propagation in Vegetation. In Recent Trends in Physics of Material Science and Technology; Springer: Singapore, 2015; Volume 204, pp. 283–298. [CrossRef]
28. Kumar, S.A.; Ilango, P. The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wirel. Pers. Commun. 2018, 98, 685–698. [CrossRef]
29. Kochhar, A.; Kumar, N. Wireless sensor networks for greenhouses: An end-to-end review. Comput. Electron. Agric. 2019, 163, 104877. [CrossRef]
30. Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [CrossRef]
31. Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [CrossRef]
32. Velásquez, J.D. A short guide to writing systematic literature reviews. Part 1. DYNA 2014, 81, 9–10. [CrossRef]
33. Velásquez, J.D. A short guide to writing systematic literature reviews. Part 2. DYNA 2015, 82, 9–12. [CrossRef]
34. Velásquez, J.D. A short guide to writing systematic literature reviews. Part 3. DYNA 2015, 82, 9–12. [CrossRef]
35. Suter, G.W. Review papers are important and worth writing. Environ. Toxicol. Chem. 2013, 32, 1929–1930. [CrossRef]
36. De-La-Hoz-Franco, E.; Ariza-Colpas, P.; Quero, J.M.; Espinilla, M. Sensor-based datasets for human activity recognition—A systematic review of literature. IEEE Access 2018, 6, 59192–59210. [CrossRef]
37. ITU-R. ITU-R Recommendation P.833-7 Attenuation in Vegetation; ITU-R: Geneva, Switzerland, 2012; Volume 7.
38. Anastassiu, H.T.; Vougioukas, S.; Fronimos, T.; Regen, C.; Petrou, L.; Zude, M.; Käthner, J. A computational model for path loss in wireless sensor networks in orchard environments. Sensors 2014, 14, 5118–5135. [CrossRef] [PubMed]
39. Ndzi, D.L.; Harun, A.; Ramli, F.M.; Kamarudin, M.L.; Zakaria, A.; Shakaff, A.Y.M.; Jaafar, M.N.; Zhou, S.; Farook, R.S. Wireless sensor network coverage measurement and planning in mixed crop farming. Comput. Electron. Agric. 2014, 105, 83–94. [CrossRef]
40. Ndzi, D.L.; Kamarudin, L.M.; Mohammad, E.A.A.; Zakaria, A.; Ahmad, R.B.; Fareq, M.M.A.; Shakaff, A.Y.M.; Jafaar, M.N. Vegetation attenuation measurements and modeling in plantations for wireless sensor network planning. Prog. Electromagn. Res. B 2011, 36, 283–301. [CrossRef]
41. Balachander, D.; Rao, T.R.; Mahesh, G. RF propagation investigations in agricultural fields and gardens for wireless sensor communications. In Proceedings of the 2013 IEEE Conference on Information & Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 755–759.
42. Correia Pinheiro, F.; Sampaio De Alencar, M.; Araújo Lopes, W.T.; Soares De Assis, M.; Gonçalves Leal, B. Propagation analysis for wireless sensor networks applied to viticulture. Int. J. Antennas Propag. 2017, 2017. [CrossRef]
43. Azevedo, J.A.; Santos, F.E. A model to estimate the path loss in areas with foliage of trees. AEU Int. J. Electron. Commun. 2017, 71, 157–161. [CrossRef]
44. Guo, X.-M.; Yang, X.-T.; Chen, M.-X.; Li, M.; Wang, Y.-A. A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precis. Agric. 2015, 16, 180–200. [CrossRef]
45. Wu, H.; Zhu, H.; Han, X.; Xu, W. Layout optimization for greenhouse WSN based on path loss analysis. Comput. Syst. Sci. Eng. 2021, 37, 89–104. [CrossRef]
46. Olasupo, T.O.; Otero, C.E. The Impacts of Node Orientation on Radio Propagation Models for Airborne-Deployed Sensor Networks in Large-Scale Tree Vegetation Terrains. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 256–269. [CrossRef]
47. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Arrabal-Campos, F.M.; Gómez-Mula, F.; Lao, J.A.M.; Cama-Pinto, A. Empirical model of radio wave propagation in the presence of vegetation inside greenhouses using regularized regressions. Sensors 2020, 20, 6621. [CrossRef]
48. Gao, Z.; Li, W.; Zhu, Y.; Tian, Y.; Pang, F.; Cao, W.; Ni, J. Wireless channel propagation characteristics and modeling research in rice field sensor networks. Sensors 2018, 18, 3116. [CrossRef] [PubMed]
49. Devarajan, N.; Gupta, S.H. Implementation and Analysis of Different Path Loss Models for Cooperative Communication. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019; pp. 227–236. [CrossRef]
50. Hamasaki, T. Propagation Characteristics of A 2.4GHz Wireless Sensor Module with a Pattern Antenna in Forestry and Agriculture Field. In Proceedings of the 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China, 28–30 August 2019; pp. 1–3.
51. Alsayyari, A.; Aldosary, A. Path Loss Results for Wireless Sensor Network Deployment in a Long Grass Environment. In Proceedings of the 2018 IEEE Conference on Wireless Sensors (ICWiSe), Istanbul, Turkey, 18–20 June 2019; pp. 50–55.
52. AlSayyari, A.; Kostanic, I.; Otero, C.E. An empirical path loss model for Wireless Sensor Network Deployment in a Sand Terrain Environment. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 218–223.
53. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [CrossRef]
54. Daisuke, K.; Tatsuki, T.; Toshihiko, H. Vegetation Effect in Paddy Field for a Wireless Sensor Network. In Proceedings of the 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Boston, MA, USA, 8–13 July 2018; pp. 113–114.
55. Klaina, H.; Picallo, I.; Iturri, P.L.; Azpilicueta, L.; Celaya-echarri, M.; Aghzout, O. Deterministic Radio Channel Characterization for Near-Ground Wireless Sensor Networks Deployment Optimization in Smart Agriculture. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 3–7.
56. Hakim, G.P.N.; Alaydrus, M.; Bahaweres, R.B. Empirical approach of ad hoc path loss propagation model in realistic forest environments. In Proceedings of the 2016 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), Jakarta, Indonesia, 3–5 October 2016; pp. 139–143. [CrossRef]
57. Cama-Pinto, A.; Piñeres-Espitia, G.; Caicedo-Ortiz, J.; Ramírez-Cerpa, E.; Betancur-Agudelo, L.; Gómez-Mula, F. Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. Int. J. Distrib. Sens. Netw. 2017, 13, 2–8. [CrossRef]
58. Shutimarrungson, N.; Wuttidittachotti, P. Realistic propagation effects on wireless sensor networks for landslide management. EURASIP J. Wirel. Commun. Netw. 2019, 94. [CrossRef]
59. Artemenko, O.; Rubina, A.; Nayak, A.H.; Baptist, S.; Mitschele-thiel, A. Evaluation of di ff erent signal propagation models for a mixed indoor-outdoor scenario using empirical data. EAI Endorsed Trans. Mob. Commun. Appl. 2016, 2, 94. [CrossRef]
60. Stewart, J.; Stewart, R.; Kennedy, S. Internet of Things—Propagation Modelling for Precision Agriculture Applications. In Proceedings of the IEEE International Conference Image Information Processing, Chicago, IL, USA, 26–28 April 2017; pp. 1–8.
61. Jawad, H.M.; Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Ismail, M.; Abu-Alshaeer, M.J. Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture. IEEE Sens. J. 2020, 20, 552–561. [CrossRef]
62. Picallo, I.; Klaina, H.; Lopez-Iturri, P.; Aguirre, E.; Celaya-Echarri, M.; Azpilicueta, L.; Eguizábal, A.; Falcone, F.; Alejos, A. A radio channel model for D2D communications blocked by single trees in forest environments. Sensors 2019, 19, 4606. [CrossRef] [PubMed]
63. Chen, Y.; Chamadiya, B. Propagation model for vehicle to vehicle LOS communication in foliage scenario. In Proceedings of the 2014 International Conference on Connected Vehicles and Expo, ICCVE, Vienna, Austria, 3–7 November 2014; pp. 1120–1125.
64. Rao, T.R.; Balachander, D.; Tiwari, N.; Prasad, M.V.S.N. Ultra-high frequency near-ground short-range propagation measurements in forest and plantation environments for wireless sensor networks. IET Wirel. Sens. Syst. 2013, 3, 80–84. [CrossRef]
65. Rahim, H.M.; Leow, C.Y.; Rahman, T.A. Millimeter wave propagation through foliage: Comparison of models. In Proceedings of the 2015 IEEE 12th Malaysia International Conference on Communications, MICC, Kuching, Malaysia, 23–25 November 2015; pp. 236–240.
66. Zhang, J.; Li, C.; Yu, J.; Li, F.; Chang, F.; Chen, Y.; Chen, W. Path Loss Analysis and Model Selection in Forest City Environment at 5.9 GHz. In Proceedings of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC, Xi’an, China, 25–27 May 2018; pp. 516–520.
67. Rao, Y.; Jiang, Z.H.; Lazarovitch, N. Investigating signal propagation and strength distribution characteristics of wireless sensor networks in date palm orchards. Comput. Electron. Agric. 2016, 124, 107–120. [CrossRef]
68. Castellanos, G.; Teuta, G. Path loss model in amazonian border region for VHF and UHF television bands. In Proceedings of the 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC, Verona, Italy, 11–15 September 2017; pp. 137–140.
69. Oda, E.; Kawauchi, K.; Hamasaki, T. Support Application for Configuring Optimal Relay Nodes in Wireless Sensor Networks. In Proceedings of the 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks, WiSNeT, Diego, CA, USA, 17–20 January 2021; pp. 19–22.
70. Kamarudin, L.M.; Ahmad, R.B.; Ndzi, D.; Zakaria, A.; Ong, B.L.; Kamarudin, K.; Harun, A.; Mamduh, S.M. Modeling and simulation of WSNs for agriculture applications using dynamic transmit power control algorithm. In Proceedings of the 3rd Inernational Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 8–10 February 2012; pp. 616–621. [CrossRef]
71. Myagmardulam, B.; Tadachika, N.; Takahashi, K.; Miura, R.; Ono, F.; Kagawa, T. Path Loss Prediction Model Development in a Mountainous Forest Environment. IEEE Open J. Commun. Soc. 2021, 2, 2494–2501. [CrossRef]
72. Yamaoka, Y.; Hamasaki, T.; Kuramoto, D. 2.4 GHz RF Propagation Measurements and Modeling in a Paddy Field for a Wireless Sensor Network. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; pp. 34–35.
73. Brinkhoff, J.; Hornbuckle, J. Characterization of WiFi signal range for agricultural WSNs. In Proceedings of the 2017 23rd Asia-Pacific Conference on Communications: Bridging the Metropolitan and the Remote, (APCC), Perth, Australia, 11–13 December 2018; pp. 1–6.
74. Pan, H.; Shi, Y.; Wang, X.; Li, T. Modeling wireless sensor networks radio frequency signal loss in corn environment. Multimed. Tools Appl. 2017, 76, 19479–19490. [CrossRef]
75. Wu, H.; Miao, Y.; Li, F.; Zhu, L. Empirical modeling and evaluation of multi-path radio channels on wheat farmland based on communication quality. Trans. ASABE 2016, 59, 759–767. [CrossRef]
76. Liu, H.; Meng, Z.; Wang, M. A wireless sensor network for cropland environmental monitoring. In Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 25–26 April 2009; Volume 1, pp. 65–68. [CrossRef]
77. Olasupo, T.O.; Alsayyari, A.; Otero, C.E.; Olasupo, K.O.; Kostanic, I. Empirical path loss models for low power wireless sensor nodes deployed on the ground in different terrains. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 11–13 October 2017; pp. 1–8.
78. Olasupo, T.O.; Otero, C.E.; Olasupo, K.O.; Kostanic, I. Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments. IEEE Trans. Antennas Propag. 2016, 64, 4012–4021. [CrossRef]
79. Perez, G.E.; Alsayyari, A.; Kostanic, I. Comparison of the propagation loss of a real-life wireless sensor network and its complimentary simulation model. In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, New York, NY, USA, 24–26 August 2015; pp. 1832–1837.
80. Srisooksai, T.; Kaemarungsi, K.; Takada, J.; Saito, K. Radio propagation measurement and characterization in outdoor tall food grass agriculture field for wireless sensor network at 2.4 GHz band. Prog. Electromagn. Res. C 2018, 88, 43–58. [CrossRef]
81. Iswandi; Nastiti, H.T.; Praditya, I.E.; Mustika, I.W. Evaluation of XBee-Pro transmission range for Wireless Sensor Network’s node under forested environments based on Received Signal Strength Indicator (RSSI). In Proceedings of the 2nd International Conference on Science and Technology-Computer, ICST, Yogyakarta, Indonesia, 27–28 October 2016; pp. 56–60.
82. Gay-Fernández, J.A.; Cuiñas, I. Peer to peer wireless propagation measurements and path-loss modeling in vegetated environments. IEEE Trans. Antennas Propag. 2013, 61, 3302–3311. [CrossRef]
83. Mathew, K.; Tabassum, M. Analysis of bluetooth and zigbee signal penetration and interference in foliage. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS); Hong Kong, China, 16–18 March 2016; Volume 2, pp. 547–552.
84. He, Y.; Zhang, W.; Jiang, N.; Luo, X. The research of wireless sensor network channel propagation model in the wild environment. In Proceedings of the 9th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing 3PGCIC, Guangdong, China, 8–10 November 2014; pp. 227–231. [CrossRef]
85. Liu, L.; Yao, Y.; Cao, Z.; Zhang, M. DeepLoRa: Learning Accurate Path Loss Model for Long Distance Links in LPWAN. In Proceedings of the IEEE INFOCOM, Virtual, 10–13 May 2021.
86. Manpreet; Malhotra, J. ZigBee technology: Current status and future scope. In Proceedings of the 2015 International Conference on Computer and Computational Sciences (ICCCS), Greater Noida, India, 27–29 January 2015; pp. 163–169. [CrossRef]
87. Sadowski, S.; Spachos, P. Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities. Comput. Electron. Agric. 2020, 172, 105338. [CrossRef]
88. Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. In Proceedings of the 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5.
89. Gloria, A.; Cercas, F.; Souto, N. Comparison of communication protocols for low cost Internet of Things devices. In Proceedings of the South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference, SEEDA-CECNSM, Kastoria, Greece, 23–25 September 2017.
90. Peng, Y.L.; Li, P.P.; Wang, J.Z.; Hu, Y.G.; Lin, Y.F. Propagation characteristics of 2.4 GHz wireless channel at different directions and heights in tea plantation. Appl. Mech. Mater. 2013, 325–326, 1697–1701. [CrossRef]
91. Benaissa, S.; Plets, D.; Tanghe, E.; Verloock, L.; Martens, L.; Hoebeke, J.; Sonck, B.; Tuyttens, F.A.M.; Vandaele, L.; Stevens, N.; et al. Experimental characterisation of the off-body wireless channel at 2.4 GHz for dairy cows in barns and pastures. Comput. Electron. Agric. 2016, 127, 593–605. [CrossRef]
92. Zhang, W.; He, Y.; Liu, F.; Miao, C.; Sun, S.; Liu, C.; Jin, J. Research on WSN channel fading model and experimental analysis in orchard environment. In Computer and Computing Technologies in Agriculture V. CCTA 2011; IFIP Advances in Information and Communication Technology Book Series (IFIPAICT, Volume 369); Springer: Berlin/Heidelber, Germany, 2012; pp. 326–333. [CrossRef]
93. Samijayani, O.N.; Mujadin, A.; Darwis, R.; Astharini, D.; Rahmatia, S. Hybrid ZigBee and WiFi Wireless Sensor Networks for Hydroponic Monitoring. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–4.
94. Botella-campos, M.; Parra, L.; Sendra, S.; Lloret, J. WLAN IEEE 802. 11b/g/n Coverage Study for Rural Areas. In Proceedings of the 2020 International Conference on Control, Automation and Diagnosis (ICCAD), Paris, France, 7–9 October 2020; pp. 1–6.
95. Lavanya, U.; Mupparaju, S.; Patnala, P.; Anugu, P.R.; Surendran, S. Model Selection for Path Loss Prediction in Wireless Networks. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 1490–1493.
96. Lora Alliance What Is LoRaWAN Specification. Available online: https://lora-alliance.org/about-lorawan/ (accessed on 1 February 2021).
97. Amali, K.; Sharil, M.; Devi, J. Impact of foliage on LoRa 433MHz propagation in tropical environment Impact of Foliage on LoRa 433 MHz Propagation in Tropical Environment. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 20009, pp. 1–7.
98. Avila-Campos, P.; Astudillo-Salinas, F.; Vazquez-Rodas, A. Evaluation of LoRaWAN Transmission Range for Wireless Sensor Networks in Riparian Forests. In Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Miami, FL, USA, 25 November 2019; pp. 199–206.
99. Zarnescu, A.; Ungurelu, R.; Secere, M.; Varzaru, G.; Mihailescu, B. Implementing a large LoRa network for an agricultural application. In Proceedings of the 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 12–14 November 2020; pp. 4–8. [CrossRef]
100. Anzum, R. Factors that affect LoRa Propagation in Foliage Factors that affect LoRa Propagation Foliage Medium Factors that affect LoRa Propagation in Foliage Factors that affect LoRa Propagation Foliage Medium Factors that affect LoRa Propagation in Foliage Medium. Procedia Comput. Sci. 2021, 194, 149–155. [CrossRef]
101. Anzum, R.; Hadi Habaebi, M.; Islam, R.; Hakim, G.P.N. Modeling and Quantifying Palm Trees Foliage Loss using LoRa Radio Links for Smart Agriculture Applications. In Proceedings of the 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, 23–25 August 2021; pp. 105–110. [CrossRef]
102. Phaiboon, S.; Phokharatkul, P. An Empirical Path Loss Model for Wireless Sensor Network Placement in Banana Plantation. In Proceedings of the Progress in Electromagnetics Research Symposium, Hangzhou, China, 21–25 November 2021; pp. 354–357.
103. AlSayyari, A.; Kostanic, I.; Otero, C.E. An Empirical Path Loss Model for Wireless Sensor Network Deployment in a Dense Tree Environment. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6.
104. Alsayyari, A.; Aldosary, A. Path loss results for wireless sensor network deployment in a sparse tree environment. In Proceedings of the 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 18–20 June 2019; pp. 1–6. [CrossRef]
105. Xu, X.; Zhang, Z.; Xu, Y.; Yang, Z.; Chen, Y.; Liang, Z.; Zhou, J.; Zheng, J. Measurement and Analysis of Wireless propagative Model of 433MHz and 2.4GHz Frequency in Southern China Orchards. IFAC-PapersOnLine 2018, 51, 695–699. [CrossRef]
106. Navarro, A.; Guevara, D.; Florez, G.A. An Adjusted Propagation Model for Wireless Sensor Networks in Corn Fields. In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–5 September 2020; pp. 1–3.
dc.relation.citationendpage.spa.fl_str_mv 28
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 14
dc.relation.citationvolume.spa.fl_str_mv 22
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 28 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.spa.fl_str_mv Switzerland
dc.source.spa.fl_str_mv https://www.mdpi.com/1424-8220/22/14/5285
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9923/1/Modeling%20Radio%20Wave%20Propagation%20for%20Wireless%20Sensor%20Networks%20in%20Vegetated%20Environments.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9923/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9923/3/Modeling%20Radio%20Wave%20Propagation%20for%20Wireless%20Sensor%20Networks%20in%20Vegetated%20Environments.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9923/4/Modeling%20Radio%20Wave%20Propagation%20for%20Wireless%20Sensor%20Networks%20in%20Vegetated%20Environments.pdf.jpg
bitstream.checksum.fl_str_mv e5d1e4a95e09f96d0e4baa23d43e8971
2f9959eaf5b71fae44bbf9ec84150c7a
594746c27e0e8896924efe9e88904f74
fb36caacb1cf257b7010dfa8094c6a20
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400203202428928
spelling Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barrios-Ulloa, Alexis52708f16454abbcd1efa672b0305fdb4600Ariza Colpas, Paola Patriciacd28463cee9c50f7582711205f53670b600Sánchez-Moreno, Hernandoe5c3cdefef949858998ccf1b8221ffcfQuintero linero, Alejandra paola987a089facec110a670742a773adc982600De-La-Hoz-Franco, Emiro7f8bc6c4d65f444fb00bd3778bc623fc6002023-02-24T13:50:02Z2023-02-24T13:50:02Z2022-07-15Barrios-Ulloa, A.; Ariza-Colpas, P.P.; Sánchez-Moreno, H.; Quintero-Linero, A.P.; De la Hoz-Franco, E. Modeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments: A Systematic Literature Review. Sensors 2022, 22, 5285. https://doi.org/10.3390/s221452851424-3210https://hdl.handle.net/11323/992310.3390/s221452851424-8220Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The use of wireless sensor networks (WSN) for monitoring variables in agricultural environments and natural forests has been increasing in recent years. However, the sizing of these systems is affected by the inaccuracy of the radio wave propagation models used, leading to possible increased costs and measurement errors. This systematic literature review (SLR) aims to identify propagation models widely used in WSN deployments in agricultural or naturally vegetated environments and their effectiveness in estimating signal losses. We also identified today’s wireless technologies most used in precision agriculture (PA) system implementations. In addition, the results of studies focused on the development of new propagation models for different environments are evaluated. Scientific and technical analysis is presented based on articles consulted in different specialized databases, which were selected according to different combinations of criteria. The results show that, in most of the application cases, vegetative models present high error values when estimating attenuation.28 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/1424-8220/22/14/5285Modeling radio wave propagation for wireless sensor networks in vegetated environments: a systematic literature reviewArtículo de revistahttp://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Sensors1. Sharma, R.P.; Ramesh, D.; Pal, P.; Tripathi, S.; Kumar, C. Crop Pest Prediction. IEEE Internet Things J. 2022, 9, 3037–3045. [CrossRef]2. Al-Qurabat, A.K.M. A Lightweight Huffman-based Differential Encoding Lossless Compression Technique in IoT for Smart Agriculture. Int. J. Comput. Digit. Syst. 2022, 11, 117–127. [CrossRef]3. Sabri, N.; Mohammed, S.S.; Fouad, S.; Syed, A.A.; Al-Dhief, F.T.; Raheemah, A. Investigation of Empirical Wave Propagation Models in Precision Agriculture. MATEC Web Conf. 2018, 150, 06020. [CrossRef]4. Khairunnniza-Bejo, S.; Ramli, N.H.; Muharam, F.M. Wireless sensor network (WSN) applications in plantation canopy areas: A review. Asian J. Sci. Res. 2018, 11, 151–161. [CrossRef]5. Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 0123456789.6. Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. 2.4 GHz RF Received Signal Strength Based Node Separation in WSN Monitoring Infrastructure for Millet and Rice Vegetation. IEEE Sens. J. 2021, 21, 18298–18306. [CrossRef]7. Barrios-Ulloa, A.; Cama-PInto, D.; Mardini-Bovea, J.; Díaz-Martínez, J.; Cama-Pinto, A. Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors 2021, 21, 7167. [CrossRef] [PubMed]8. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderín-Curtidor, A.C.; Martínez-Lao, J.A.; Cama-Pinto, A. 5G Mobile Phone Network Introduction in Colombia. Electronics 2021, 10, 922. [CrossRef]9. Dogan, H. A new empirical propagation model depending on volumetric density in citrus orchards for wireless sensornetwork applications at sub-6 GHz frequency region. Int. J. RF Microw. Comput. Eng. 2021, 31, e22778. [CrossRef]10. Gabriel, P.-E.; Butt, S.A.; Francisco, E.-O.; Alejandro, C.-P.; Maleh, Y. Performance analysis of 6LoWPAN protocol for a flood monitoring system. EURASIP J. Wirel. Commun. Netw. 2022, 2022, 16. [CrossRef]11. Cama-Pinto, A.; Piñeres-Espitia, G.; Comas-González, Z.; Vélez-Zapata, J.; Gómez-Mula, F. Design of a monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its metropolitan area. Ingeniare 2017, 25, 585–598. [CrossRef]12. Wu, H.; Zhang, L.; Miao, Y. The Propagation Characteristics of Radio Frequency Signals for Wireless Sensor Networks in Large-Scale Farmland. Wirel. Pers. Commun. 2017, 95, 3653–3670. [CrossRef]13. Anusha, V.S.; Nithya, G.K.; Rao, S.N. A comprehensive survey of electromagnetic propagation models. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1457–1462.14. Ganev, Z. Log-normal shadowing model for outdoor propagation between sensor nodes. In Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2018; pp. 9–12.15. Kurt, S.; Tavli, B. Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations. IEEE Antennas Propag. Mag. 2017, 59, 18–37. [CrossRef]16. Tang, W.; Ma, X.; Wei, J.; Wang, Z. Measurement and analysis of near-ground propagation models under different terrains for wireless sensor networks. Sensors 2019, 19, 1901. [CrossRef]17. Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for Wireless Sensor Network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [CrossRef]18. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Cama-Pinto, A. Path loss determination using linear and cubic regression inside a classic tomato greenhouse. Int. J. Environ. Res. Public Health 2019, 16, 1744. [CrossRef]19. Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2020.20. De Sales Bezerra, T.; De Sousa, J.A.R.; Da Silva Eleuterio, S.A.; Rocha, J.S. Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment. In Proceedings of the 6th Argentine Conference on Embedded Systems (CASE), Buenos Aires, Argentina, 12–14 August 2015; pp. 19–24.21. Barrios, A.; Arjona, R.; Álvarez, R. Comparison of Radio Propagation Models in the Suburban Area of the City of Barranquilla. Rev. Colomb. Tecnol. Av. 2018, 2, 78–85. [CrossRef]22. Shoewu, O.O.; Akinyemi, L.A.; Oborkhale, L. Towards Developing Path loss Models for Dryland and Wetland Environments. In Proceedings of the IEEE AFRICON Conference, Accra, Ghana, 25–27 September 2019. [CrossRef]23. Sevgi, L. Groundwave modeling and simulation strategies and path loss prediction virtual tools. IEEE Trans. Antennas Propag. 2007, 55, 1591–1598. [CrossRef]24. Phillips, C.; Sicker, D.; Grunwald, D. A Survey of Wireless Path Loss Prediction and Coverage Mapping Methods. IEEE Commun. Surv. Tutor. 2013, 15, 255–270. [CrossRef]25. Kamarudin, L.M.; Ahmad, R.B.; Ong, B.L.; Malek, F.; Zakaria, A.; Arif, M.A.M. Review and modeling of vegetation propagation model for wireless sensor networks using OMNeT++. In Proceedings of the 2nd International Conference on Network Applications, Protocols and Services (NETAPPS), Alor Setar, Malaysia, 22–23 September 2010; pp. 78–83.26. Rama Rao, T.; Balachander, D.; Tiwari, N. RF Propagation Measurements in Forest & Plantation Environments for Wireless Sensor Networks. In Proceedings of the 2012 IEEE International Conference on Communication Systems (ICCS), Chennai, India, 19–21 April 2012; pp. 194–198.27. Sabri, N.; Aljunid, S.A.; Salim, M.S.; Fouad, S. Wireless Sensor Network Wave Propagation in Vegetation. In Recent Trends in Physics of Material Science and Technology; Springer: Singapore, 2015; Volume 204, pp. 283–298. [CrossRef]28. Kumar, S.A.; Ilango, P. The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wirel. Pers. Commun. 2018, 98, 685–698. [CrossRef]29. Kochhar, A.; Kumar, N. Wireless sensor networks for greenhouses: An end-to-end review. Comput. Electron. Agric. 2019, 163, 104877. [CrossRef]30. Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [CrossRef]31. Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [CrossRef]32. Velásquez, J.D. A short guide to writing systematic literature reviews. Part 1. DYNA 2014, 81, 9–10. [CrossRef]33. Velásquez, J.D. A short guide to writing systematic literature reviews. Part 2. DYNA 2015, 82, 9–12. [CrossRef]34. Velásquez, J.D. A short guide to writing systematic literature reviews. Part 3. DYNA 2015, 82, 9–12. [CrossRef]35. Suter, G.W. Review papers are important and worth writing. Environ. Toxicol. Chem. 2013, 32, 1929–1930. [CrossRef]36. De-La-Hoz-Franco, E.; Ariza-Colpas, P.; Quero, J.M.; Espinilla, M. Sensor-based datasets for human activity recognition—A systematic review of literature. IEEE Access 2018, 6, 59192–59210. [CrossRef]37. ITU-R. ITU-R Recommendation P.833-7 Attenuation in Vegetation; ITU-R: Geneva, Switzerland, 2012; Volume 7.38. Anastassiu, H.T.; Vougioukas, S.; Fronimos, T.; Regen, C.; Petrou, L.; Zude, M.; Käthner, J. A computational model for path loss in wireless sensor networks in orchard environments. Sensors 2014, 14, 5118–5135. [CrossRef] [PubMed]39. Ndzi, D.L.; Harun, A.; Ramli, F.M.; Kamarudin, M.L.; Zakaria, A.; Shakaff, A.Y.M.; Jaafar, M.N.; Zhou, S.; Farook, R.S. Wireless sensor network coverage measurement and planning in mixed crop farming. Comput. Electron. Agric. 2014, 105, 83–94. [CrossRef]40. Ndzi, D.L.; Kamarudin, L.M.; Mohammad, E.A.A.; Zakaria, A.; Ahmad, R.B.; Fareq, M.M.A.; Shakaff, A.Y.M.; Jafaar, M.N. Vegetation attenuation measurements and modeling in plantations for wireless sensor network planning. Prog. Electromagn. Res. B 2011, 36, 283–301. [CrossRef]41. Balachander, D.; Rao, T.R.; Mahesh, G. RF propagation investigations in agricultural fields and gardens for wireless sensor communications. In Proceedings of the 2013 IEEE Conference on Information & Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 755–759.42. Correia Pinheiro, F.; Sampaio De Alencar, M.; Araújo Lopes, W.T.; Soares De Assis, M.; Gonçalves Leal, B. Propagation analysis for wireless sensor networks applied to viticulture. Int. J. Antennas Propag. 2017, 2017. [CrossRef]43. Azevedo, J.A.; Santos, F.E. A model to estimate the path loss in areas with foliage of trees. AEU Int. J. Electron. Commun. 2017, 71, 157–161. [CrossRef]44. Guo, X.-M.; Yang, X.-T.; Chen, M.-X.; Li, M.; Wang, Y.-A. A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precis. Agric. 2015, 16, 180–200. [CrossRef]45. Wu, H.; Zhu, H.; Han, X.; Xu, W. Layout optimization for greenhouse WSN based on path loss analysis. Comput. Syst. Sci. Eng. 2021, 37, 89–104. [CrossRef]46. Olasupo, T.O.; Otero, C.E. The Impacts of Node Orientation on Radio Propagation Models for Airborne-Deployed Sensor Networks in Large-Scale Tree Vegetation Terrains. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 256–269. [CrossRef]47. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Arrabal-Campos, F.M.; Gómez-Mula, F.; Lao, J.A.M.; Cama-Pinto, A. Empirical model of radio wave propagation in the presence of vegetation inside greenhouses using regularized regressions. Sensors 2020, 20, 6621. [CrossRef]48. Gao, Z.; Li, W.; Zhu, Y.; Tian, Y.; Pang, F.; Cao, W.; Ni, J. Wireless channel propagation characteristics and modeling research in rice field sensor networks. Sensors 2018, 18, 3116. [CrossRef] [PubMed]49. Devarajan, N.; Gupta, S.H. Implementation and Analysis of Different Path Loss Models for Cooperative Communication. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019; pp. 227–236. [CrossRef]50. Hamasaki, T. Propagation Characteristics of A 2.4GHz Wireless Sensor Module with a Pattern Antenna in Forestry and Agriculture Field. In Proceedings of the 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China, 28–30 August 2019; pp. 1–3.51. Alsayyari, A.; Aldosary, A. Path Loss Results for Wireless Sensor Network Deployment in a Long Grass Environment. In Proceedings of the 2018 IEEE Conference on Wireless Sensors (ICWiSe), Istanbul, Turkey, 18–20 June 2019; pp. 50–55.52. AlSayyari, A.; Kostanic, I.; Otero, C.E. An empirical path loss model for Wireless Sensor Network Deployment in a Sand Terrain Environment. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 218–223.53. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [CrossRef]54. Daisuke, K.; Tatsuki, T.; Toshihiko, H. Vegetation Effect in Paddy Field for a Wireless Sensor Network. In Proceedings of the 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Boston, MA, USA, 8–13 July 2018; pp. 113–114.55. Klaina, H.; Picallo, I.; Iturri, P.L.; Azpilicueta, L.; Celaya-echarri, M.; Aghzout, O. Deterministic Radio Channel Characterization for Near-Ground Wireless Sensor Networks Deployment Optimization in Smart Agriculture. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 3–7.56. Hakim, G.P.N.; Alaydrus, M.; Bahaweres, R.B. Empirical approach of ad hoc path loss propagation model in realistic forest environments. In Proceedings of the 2016 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), Jakarta, Indonesia, 3–5 October 2016; pp. 139–143. [CrossRef]57. Cama-Pinto, A.; Piñeres-Espitia, G.; Caicedo-Ortiz, J.; Ramírez-Cerpa, E.; Betancur-Agudelo, L.; Gómez-Mula, F. Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. Int. J. Distrib. Sens. Netw. 2017, 13, 2–8. [CrossRef]58. Shutimarrungson, N.; Wuttidittachotti, P. Realistic propagation effects on wireless sensor networks for landslide management. EURASIP J. Wirel. Commun. Netw. 2019, 94. [CrossRef]59. Artemenko, O.; Rubina, A.; Nayak, A.H.; Baptist, S.; Mitschele-thiel, A. Evaluation of di ff erent signal propagation models for a mixed indoor-outdoor scenario using empirical data. EAI Endorsed Trans. Mob. Commun. Appl. 2016, 2, 94. [CrossRef]60. Stewart, J.; Stewart, R.; Kennedy, S. Internet of Things—Propagation Modelling for Precision Agriculture Applications. In Proceedings of the IEEE International Conference Image Information Processing, Chicago, IL, USA, 26–28 April 2017; pp. 1–8.61. Jawad, H.M.; Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Ismail, M.; Abu-Alshaeer, M.J. Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture. IEEE Sens. J. 2020, 20, 552–561. [CrossRef]62. Picallo, I.; Klaina, H.; Lopez-Iturri, P.; Aguirre, E.; Celaya-Echarri, M.; Azpilicueta, L.; Eguizábal, A.; Falcone, F.; Alejos, A. A radio channel model for D2D communications blocked by single trees in forest environments. Sensors 2019, 19, 4606. [CrossRef] [PubMed]63. Chen, Y.; Chamadiya, B. Propagation model for vehicle to vehicle LOS communication in foliage scenario. In Proceedings of the 2014 International Conference on Connected Vehicles and Expo, ICCVE, Vienna, Austria, 3–7 November 2014; pp. 1120–1125.64. Rao, T.R.; Balachander, D.; Tiwari, N.; Prasad, M.V.S.N. Ultra-high frequency near-ground short-range propagation measurements in forest and plantation environments for wireless sensor networks. IET Wirel. Sens. Syst. 2013, 3, 80–84. [CrossRef]65. Rahim, H.M.; Leow, C.Y.; Rahman, T.A. Millimeter wave propagation through foliage: Comparison of models. In Proceedings of the 2015 IEEE 12th Malaysia International Conference on Communications, MICC, Kuching, Malaysia, 23–25 November 2015; pp. 236–240.66. Zhang, J.; Li, C.; Yu, J.; Li, F.; Chang, F.; Chen, Y.; Chen, W. Path Loss Analysis and Model Selection in Forest City Environment at 5.9 GHz. In Proceedings of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC, Xi’an, China, 25–27 May 2018; pp. 516–520.67. Rao, Y.; Jiang, Z.H.; Lazarovitch, N. Investigating signal propagation and strength distribution characteristics of wireless sensor networks in date palm orchards. Comput. Electron. Agric. 2016, 124, 107–120. [CrossRef]68. Castellanos, G.; Teuta, G. Path loss model in amazonian border region for VHF and UHF television bands. In Proceedings of the 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC, Verona, Italy, 11–15 September 2017; pp. 137–140.69. Oda, E.; Kawauchi, K.; Hamasaki, T. Support Application for Configuring Optimal Relay Nodes in Wireless Sensor Networks. In Proceedings of the 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks, WiSNeT, Diego, CA, USA, 17–20 January 2021; pp. 19–22.70. Kamarudin, L.M.; Ahmad, R.B.; Ndzi, D.; Zakaria, A.; Ong, B.L.; Kamarudin, K.; Harun, A.; Mamduh, S.M. Modeling and simulation of WSNs for agriculture applications using dynamic transmit power control algorithm. In Proceedings of the 3rd Inernational Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 8–10 February 2012; pp. 616–621. [CrossRef]71. Myagmardulam, B.; Tadachika, N.; Takahashi, K.; Miura, R.; Ono, F.; Kagawa, T. Path Loss Prediction Model Development in a Mountainous Forest Environment. IEEE Open J. Commun. Soc. 2021, 2, 2494–2501. [CrossRef]72. Yamaoka, Y.; Hamasaki, T.; Kuramoto, D. 2.4 GHz RF Propagation Measurements and Modeling in a Paddy Field for a Wireless Sensor Network. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; pp. 34–35.73. Brinkhoff, J.; Hornbuckle, J. Characterization of WiFi signal range for agricultural WSNs. In Proceedings of the 2017 23rd Asia-Pacific Conference on Communications: Bridging the Metropolitan and the Remote, (APCC), Perth, Australia, 11–13 December 2018; pp. 1–6.74. Pan, H.; Shi, Y.; Wang, X.; Li, T. Modeling wireless sensor networks radio frequency signal loss in corn environment. Multimed. Tools Appl. 2017, 76, 19479–19490. [CrossRef]75. Wu, H.; Miao, Y.; Li, F.; Zhu, L. Empirical modeling and evaluation of multi-path radio channels on wheat farmland based on communication quality. Trans. ASABE 2016, 59, 759–767. [CrossRef]76. Liu, H.; Meng, Z.; Wang, M. A wireless sensor network for cropland environmental monitoring. In Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 25–26 April 2009; Volume 1, pp. 65–68. [CrossRef]77. Olasupo, T.O.; Alsayyari, A.; Otero, C.E.; Olasupo, K.O.; Kostanic, I. Empirical path loss models for low power wireless sensor nodes deployed on the ground in different terrains. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 11–13 October 2017; pp. 1–8.78. Olasupo, T.O.; Otero, C.E.; Olasupo, K.O.; Kostanic, I. Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments. IEEE Trans. Antennas Propag. 2016, 64, 4012–4021. [CrossRef]79. Perez, G.E.; Alsayyari, A.; Kostanic, I. Comparison of the propagation loss of a real-life wireless sensor network and its complimentary simulation model. In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, New York, NY, USA, 24–26 August 2015; pp. 1832–1837.80. Srisooksai, T.; Kaemarungsi, K.; Takada, J.; Saito, K. Radio propagation measurement and characterization in outdoor tall food grass agriculture field for wireless sensor network at 2.4 GHz band. Prog. Electromagn. Res. C 2018, 88, 43–58. [CrossRef]81. Iswandi; Nastiti, H.T.; Praditya, I.E.; Mustika, I.W. Evaluation of XBee-Pro transmission range for Wireless Sensor Network’s node under forested environments based on Received Signal Strength Indicator (RSSI). In Proceedings of the 2nd International Conference on Science and Technology-Computer, ICST, Yogyakarta, Indonesia, 27–28 October 2016; pp. 56–60.82. Gay-Fernández, J.A.; Cuiñas, I. Peer to peer wireless propagation measurements and path-loss modeling in vegetated environments. IEEE Trans. Antennas Propag. 2013, 61, 3302–3311. [CrossRef]83. Mathew, K.; Tabassum, M. Analysis of bluetooth and zigbee signal penetration and interference in foliage. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS); Hong Kong, China, 16–18 March 2016; Volume 2, pp. 547–552.84. He, Y.; Zhang, W.; Jiang, N.; Luo, X. The research of wireless sensor network channel propagation model in the wild environment. In Proceedings of the 9th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing 3PGCIC, Guangdong, China, 8–10 November 2014; pp. 227–231. [CrossRef]85. Liu, L.; Yao, Y.; Cao, Z.; Zhang, M. DeepLoRa: Learning Accurate Path Loss Model for Long Distance Links in LPWAN. In Proceedings of the IEEE INFOCOM, Virtual, 10–13 May 2021.86. Manpreet; Malhotra, J. ZigBee technology: Current status and future scope. In Proceedings of the 2015 International Conference on Computer and Computational Sciences (ICCCS), Greater Noida, India, 27–29 January 2015; pp. 163–169. [CrossRef]87. Sadowski, S.; Spachos, P. Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities. Comput. Electron. Agric. 2020, 172, 105338. [CrossRef]88. Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. In Proceedings of the 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5.89. Gloria, A.; Cercas, F.; Souto, N. Comparison of communication protocols for low cost Internet of Things devices. In Proceedings of the South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference, SEEDA-CECNSM, Kastoria, Greece, 23–25 September 2017.90. Peng, Y.L.; Li, P.P.; Wang, J.Z.; Hu, Y.G.; Lin, Y.F. Propagation characteristics of 2.4 GHz wireless channel at different directions and heights in tea plantation. Appl. Mech. Mater. 2013, 325–326, 1697–1701. [CrossRef]91. Benaissa, S.; Plets, D.; Tanghe, E.; Verloock, L.; Martens, L.; Hoebeke, J.; Sonck, B.; Tuyttens, F.A.M.; Vandaele, L.; Stevens, N.; et al. Experimental characterisation of the off-body wireless channel at 2.4 GHz for dairy cows in barns and pastures. Comput. Electron. Agric. 2016, 127, 593–605. [CrossRef]92. Zhang, W.; He, Y.; Liu, F.; Miao, C.; Sun, S.; Liu, C.; Jin, J. Research on WSN channel fading model and experimental analysis in orchard environment. In Computer and Computing Technologies in Agriculture V. CCTA 2011; IFIP Advances in Information and Communication Technology Book Series (IFIPAICT, Volume 369); Springer: Berlin/Heidelber, Germany, 2012; pp. 326–333. [CrossRef]93. Samijayani, O.N.; Mujadin, A.; Darwis, R.; Astharini, D.; Rahmatia, S. Hybrid ZigBee and WiFi Wireless Sensor Networks for Hydroponic Monitoring. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–4.94. Botella-campos, M.; Parra, L.; Sendra, S.; Lloret, J. WLAN IEEE 802. 11b/g/n Coverage Study for Rural Areas. In Proceedings of the 2020 International Conference on Control, Automation and Diagnosis (ICCAD), Paris, France, 7–9 October 2020; pp. 1–6.95. Lavanya, U.; Mupparaju, S.; Patnala, P.; Anugu, P.R.; Surendran, S. Model Selection for Path Loss Prediction in Wireless Networks. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 1490–1493.96. Lora Alliance What Is LoRaWAN Specification. Available online: https://lora-alliance.org/about-lorawan/ (accessed on 1 February 2021).97. Amali, K.; Sharil, M.; Devi, J. Impact of foliage on LoRa 433MHz propagation in tropical environment Impact of Foliage on LoRa 433 MHz Propagation in Tropical Environment. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 20009, pp. 1–7.98. Avila-Campos, P.; Astudillo-Salinas, F.; Vazquez-Rodas, A. Evaluation of LoRaWAN Transmission Range for Wireless Sensor Networks in Riparian Forests. In Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Miami, FL, USA, 25 November 2019; pp. 199–206.99. Zarnescu, A.; Ungurelu, R.; Secere, M.; Varzaru, G.; Mihailescu, B. Implementing a large LoRa network for an agricultural application. In Proceedings of the 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 12–14 November 2020; pp. 4–8. [CrossRef]100. Anzum, R. Factors that affect LoRa Propagation in Foliage Factors that affect LoRa Propagation Foliage Medium Factors that affect LoRa Propagation in Foliage Factors that affect LoRa Propagation Foliage Medium Factors that affect LoRa Propagation in Foliage Medium. Procedia Comput. Sci. 2021, 194, 149–155. [CrossRef]101. Anzum, R.; Hadi Habaebi, M.; Islam, R.; Hakim, G.P.N. Modeling and Quantifying Palm Trees Foliage Loss using LoRa Radio Links for Smart Agriculture Applications. In Proceedings of the 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, 23–25 August 2021; pp. 105–110. [CrossRef]102. Phaiboon, S.; Phokharatkul, P. An Empirical Path Loss Model for Wireless Sensor Network Placement in Banana Plantation. In Proceedings of the Progress in Electromagnetics Research Symposium, Hangzhou, China, 21–25 November 2021; pp. 354–357.103. AlSayyari, A.; Kostanic, I.; Otero, C.E. An Empirical Path Loss Model for Wireless Sensor Network Deployment in a Dense Tree Environment. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6.104. Alsayyari, A.; Aldosary, A. Path loss results for wireless sensor network deployment in a sparse tree environment. In Proceedings of the 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 18–20 June 2019; pp. 1–6. [CrossRef]105. Xu, X.; Zhang, Z.; Xu, Y.; Yang, Z.; Chen, Y.; Liang, Z.; Zhou, J.; Zheng, J. Measurement and Analysis of Wireless propagative Model of 433MHz and 2.4GHz Frequency in Southern China Orchards. IFAC-PapersOnLine 2018, 51, 695–699. [CrossRef]106. Navarro, A.; Guevara, D.; Florez, G.A. An Adjusted Propagation Model for Wireless Sensor Networks in Corn Fields. In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–5 September 2020; pp. 1–3.2811422AttenuationVegetated environmentsPropagation modelsPath lossSystematic revision of literatureWireless technologiesWSNORIGINALModeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments.pdfModeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments.pdfArtículoapplication/pdf2510472https://repositorio.cuc.edu.co/bitstream/11323/9923/1/Modeling%20Radio%20Wave%20Propagation%20for%20Wireless%20Sensor%20Networks%20in%20Vegetated%20Environments.pdfe5d1e4a95e09f96d0e4baa23d43e8971MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstream/11323/9923/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTModeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments.pdf.txtModeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments.pdf.txtExtracted texttext/plain123304https://repositorio.cuc.edu.co/bitstream/11323/9923/3/Modeling%20Radio%20Wave%20Propagation%20for%20Wireless%20Sensor%20Networks%20in%20Vegetated%20Environments.pdf.txt594746c27e0e8896924efe9e88904f74MD53open accessTHUMBNAILModeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments.pdf.jpgModeling Radio Wave Propagation for Wireless Sensor Networks in Vegetated Environments.pdf.jpgGenerated Thumbnailimage/jpeg15920https://repositorio.cuc.edu.co/bitstream/11323/9923/4/Modeling%20Radio%20Wave%20Propagation%20for%20Wireless%20Sensor%20Networks%20in%20Vegetated%20Environments.pdf.jpgfb36caacb1cf257b7010dfa8094c6a20MD54open access11323/9923oai:repositorio.cuc.edu.co:11323/99232023-02-25 03:02:30.32An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=