Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive pr...
- Autores:
-
Dison S.P., Franco
georgin, jordana
Schadeck Netto, Matias
Montagner, Vinicius Foletto
Allasia, Daniel
Silva Oliveira, Marcos Leandro
Pinto, Diana
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9234
- Acceso en línea:
- https://hdl.handle.net/11323/9234
https://repositorio.cuc.edu.co/
- Palabra clave:
- Fagopyrum esculentum
Buckwheat
Husk
Ketoprofen
Drug
Adsorption
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_4d44be9ebb0334214bb3bcebf7234752 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9234 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
title |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
spellingShingle |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk Fagopyrum esculentum Buckwheat Husk Ketoprofen Drug Adsorption |
title_short |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
title_full |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
title_fullStr |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
title_full_unstemmed |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
title_sort |
Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk |
dc.creator.fl_str_mv |
Dison S.P., Franco georgin, jordana Schadeck Netto, Matias Montagner, Vinicius Foletto Allasia, Daniel Silva Oliveira, Marcos Leandro Pinto, Diana Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Dison S.P., Franco georgin, jordana Schadeck Netto, Matias Montagner, Vinicius Foletto Allasia, Daniel Silva Oliveira, Marcos Leandro Pinto, Diana Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Fagopyrum esculentum Buckwheat Husk Ketoprofen Drug Adsorption |
topic |
Fagopyrum esculentum Buckwheat Husk Ketoprofen Drug Adsorption |
description |
In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive process was favored at acidic pH = 3. The dosage of 0.85 g L−1 was fixed for the kinetic and isothermal tests, obtaining good removal and capacity indications. The kinetic studies were better represented by pseudo-second-order, obtaining an experimental capacity of 74.3 mg g−1 for 200 mg L−1 of ketoprofen. An increase in temperature negatively affected the adsorption isotherm curves, resulting in a maximum capacity of 194.1 mg g−1. Thermodynamic results confirmed the exothermic nature of the process with physical forces acting. The adsorbent presented high efficiency in treating a synthetic effluent containing different drugs and salts, 71.2%. Therefore, adsorbent development from buckwheat husks treated with a strong acid is an excellent alternative, given the good removal results and the low cost for its preparation. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-10T16:40:34Z |
dc.date.available.none.fl_str_mv |
2022-06-10T16:40:34Z 2023 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Franco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-z |
dc.identifier.issn.spa.fl_str_mv |
0944-1344 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9234 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s11356-021-17846-z |
dc.identifier.eissn.spa.fl_str_mv |
1614-7499 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Franco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-z 0944-1344 10.1007/s11356-021-17846-z 1614-7499 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9234 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental Science and Pollution Research |
dc.relation.references.spa.fl_str_mv |
Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.1016/j.jclepro.2017.02.047 Ali AMA, El-Nour MEAM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16:677–682. https://doi.org/10.1016/j.jgeb.2018.03.003 Ali I, Al-Othman ZA, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864. https://doi.org/10.1016/j.molliq.2016.04.031 Ali I, Burakov AE, Melezhik AV et al (2019) Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem Select 4:12708–12718. https://doi.org/10.1002/slct.201902657 Al-Othman ZA, Badjah AY, Alduhaish OM et al (2021) Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. J Mol Liq 323:115075. https://doi.org/10.1016/j.molliq.2020.115075 Aubert L, Konrádová D, Kebbas S et al (2020) Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. J Plant Physiol 251:153222. https://doi.org/10.1016/j.jplph.2020.153222 Baccar R, Sarrà M, Bouzid J et al (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099 Barpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon N Y 49:2538–2548. https://doi.org/10.1016/j.carbon.2011.02.028 Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Cham Christa K, Soral-Śmietana M (2008) Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. Czech J Food Sci 26:153–162. https://doi.org/10.17221/1602-cjfs Cuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177:1046–1053. https://doi.org/10.1016/j.jhazmat.2010.01.026 Cui Y, Masud A, Aich N, Atkinson JD (2019) Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J Hazard Mater 368:477–486. https://doi.org/10.1016/j.jhazmat.2019.01.075 Dahane S, Gil García MD, Martínez Bueno MJ et al (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. https://doi.org/10.1016/j.chroma.2013.05.002 De Oliveira GF, De Andrade RC, Trindade MAG et al (2017) Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova 40:284–292. https://doi.org/10.21577/0100-4042.20160191 Do DD (1998) Adsorption analysis: equilibria and kinetics. Vol 1, Imperial College Press, London, 913 p. Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307 Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004 Essandoh M, Wolgemuth D, Pittman CU, et al. (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57. https://doi.org/10.1016/j.chemosphere.2017.01.105 Ferreira LS, Rodrigues MS, de Carvalho JCM et al (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333. https://doi.org/10.1016/j.cej.2011.07.039 Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57Uhttps://doi.org/10.1515/zpch-1907-5723 Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037 Georgin J, Franco DSP, Schadeck Netto M et al (2021) Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J Environ Chem Eng 9:104574. https://doi.org/10.1016/j.jece.2020.104574 Giles CH, D’Silva AP, Easton IA (1974) A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interface Sci 47:766–778. https://doi.org/10.1016/0021-9797(74)90253-7 Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5 Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10.1039/TF9555101540 Gómez-Avilés A, Sellaoui L, Badawi M, et al (2021) Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. ChemEng J 404https://doi.org/10.1016/j.cej.2020.126601 Gulpinar AR, Erdogan Orhan I, Kan A et al (2012) Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. Food Res Int 46:536–543. https://doi.org/10.1016/j.foodres.2011.08.011 Hamed MM, Ali MMS, Holiel M (2016) Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies. J Environ Radioact 164:113–124. https://doi.org/10.1016/j.jenvrad.2016.07.005 Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt Sci Technol 20:797–815. https://doi.org/10.1260/026361702321104282 Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893 Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surf Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012 Józwiak T, Filipkowska U, Kowalkowska A et al (2021) The influence of amination of sorbent based on buckwheat (Fagopyrum esculentum) husks on the sorption effectiveness of Reactive Black 5 dye. J Environ Chem Eng 9:105092. https://doi.org/10.1016/j.jece.2021.105092 Kermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. C R Chim 19:963–970. https://doi.org/10.1016/j.crci.2016.05.005 Kibami D (2018) Kinetics and adsorption studies of lead (II) onto activated carbon using low-cost adsorbents. Globalnest J 20:381–388. https://doi.org/10.30955/gnj.002532 Kosjek T, Heath E, Krbavčič A (2005) Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ Int 31:679–685. https://doi.org/10.1016/j.envint.2004.12.001 Lagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24:1–39. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004 Li K, Zhang Y, Dang Y et al (2014) Removal of Cr(VI) from aqueous solutions using buckwheat (Fagopyrum esculentum Moench) hull through adsorption-reduction: affecting factors, isotherm, and mechanisms. Clean Soil Air Water 42:1549–1557. https://doi.org/10.1002/clen.201300399 Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007 Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048 Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003 Liu Y, Wang W, Huang H et al (2014) The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun 50:4485–4488. https://doi.org/10.1039/c4cc01622j Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287. https://doi.org/10.1016/j.jaap.2004.08.001 Lütke SF, Igansi AV, Pegoraro L et al (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece.2019.103396 Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manage 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022 Maldonado-Torres S, Gurung R, Rijal H et al (2018) Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters. Environ Health Insights 12:1–4. https://doi.org/10.1177/1178630218795836 Mashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https://doi.org/10.1080/19443994.2015.1051588 Mlunguza NY, Ncube S, Nokwethemba Mahlambi P et al (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J Environ Chem Eng 7:103142. https://doi.org/10.1016/j.jece.2019.103142 Moreno-Pérez J, Pauletto PS, Cunha AM, et al (2021) Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surfaces A PhysicochemEng Asp 614https://doi.org/10.1016/j.colsurfa.2021.126170 Nakbi A, Bouzid M, Ayachi F et al (2019) Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response. Prog Biophys Mol Biol 149:70–85. https://doi.org/10.1016/j.pbiomolbio.2018.12.013 Nakbi A, Bouzid M, Ayachi F et al (2020) Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose. J Mol Liq 298:111950. https://doi.org/10.1016/j.molliq.2019.111950 Niazi NK, Bibi I, Shahid M et al (2018) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063 Ouasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086F Pang X, Sellaoui L, Franco D et al (2019) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101. https://doi.org/10.1016/j.cej.2019.122101 Patrolecco L, Ademollo N, Grenni P et al (2013) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171. https://doi.org/10.1016/j.microc.2012.05.035 Peñafiel ME, Matesanz JM, Vanegas E, et al. (2021) Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci Total Environ 750https://doi.org/10.1016/j.scitotenv.2020.141498 Peng LX, Zou L, Tan ML et al (2017) Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech J Food Sci 35:214–222. https://doi.org/10.17221/185/2016-CJFS Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon N Y 41:811–821. https://doi.org/10.1016/S0008-6223(02)00406-2 Santos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122. https://doi.org/10.1016/j.aca.2005.06.064 Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138 Sellaoui L, Depci T, Kul AR et al (2016) A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon. J Mol Liq 214:220–230. https://doi.org/10.1016/j.molliq.2015.12.080 Sellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302d Small E (2017) 54. Buckwheat–the world’s most biodiversity-friendly crop? Biodiversity 18:108–123. https://doi.org/10.1080/14888386.2017.1332529 Spessato L, Bedin KC, Cazetta AL et al (2019) KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater 371:499–505. https://doi.org/10.1016/j.jhazmat.2019.02.102 Streit AFM, Collazzo GC, Druzian SP et al (2020) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128322 Temkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. J Phys Chem (USSR) 13:851–867 Thue PS, Umpierres CS, Lima EC, et al. (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903 https://doi.org/10.1016/j.jhazmat.2020.122903 Van Tran T, Nguyen DTC, Le HTN et al (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci (China) 93:137–150. https://doi.org/10.1016/j.jes.2020.02.007 Woo SH, Roy SK, Kwon SJ, et al (2016) Concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): a research perspective. Molecular Breeding and Nutritional Aspects of Buckwheat 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1 Wu FC, Wu PH, Tseng RL, Juang RS (2011) Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J Environ Manage 92:708–713. https://doi.org/10.1016/j.jenvman.2010.10.003 Yao N, Li C, Yu J et al (2020) Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 236:116278. https://doi.org/10.1016/j.seppur.2019.116278 Yu S, Park J, Kim M et al (2019) Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresour Technol Rep 6:217–222. https://doi.org/10.1016/j.biteb.2019.03.009 Zavalloni C, Alberti G, Biasiol S et al (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51. https://doi.org/10.1016/j.apsoil.2011.07.012 Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387. https://doi.org/10.1016/j.jenvman.2013.12.017 Zhao B, O’Connor D, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.013 |
dc.relation.citationendpage.spa.fl_str_mv |
31098 |
dc.relation.citationstartpage.spa.fl_str_mv |
31085 |
dc.relation.citationissue.spa.fl_str_mv |
21 |
dc.relation.citationvolume.spa.fl_str_mv |
29 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 Springer Nature Switzerland AG. Part of Springer Nature. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 Springer Nature Switzerland AG. Part of Springer Nature. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Science + Business Media |
dc.publisher.place.spa.fl_str_mv |
Germany |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s11356-021-17846-z |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/846077e2-407c-4dbc-be7b-bca5387b604e/download https://repositorio.cuc.edu.co/bitstreams/e04f8283-7519-480d-947f-096086b50854/download https://repositorio.cuc.edu.co/bitstreams/27248772-4ec8-442b-ba76-6ab124dadc23/download https://repositorio.cuc.edu.co/bitstreams/091dc57d-6cb1-42fa-a65b-1489808a33fb/download |
bitstream.checksum.fl_str_mv |
c12a7ae9b47306fa1ac2c5bbd3e506e3 e30e9215131d99561d40d6b0abbe9bad 3331707621012b9dc37fb8c1e087c1f4 0db708709d312aa15de1f38a80398664 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760753521197056 |
spelling |
Dison S.P., Francogeorgin, jordanaSchadeck Netto, MatiasMontagner, Vinicius FolettoAllasia, DanielSilva Oliveira, Marcos LeandroPinto, DianaDotto, Guilherme Luiz2022-06-10T16:40:34Z20232022-06-10T16:40:34Z2022Franco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-z0944-1344https://hdl.handle.net/11323/923410.1007/s11356-021-17846-z1614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive process was favored at acidic pH = 3. The dosage of 0.85 g L−1 was fixed for the kinetic and isothermal tests, obtaining good removal and capacity indications. The kinetic studies were better represented by pseudo-second-order, obtaining an experimental capacity of 74.3 mg g−1 for 200 mg L−1 of ketoprofen. An increase in temperature negatively affected the adsorption isotherm curves, resulting in a maximum capacity of 194.1 mg g−1. Thermodynamic results confirmed the exothermic nature of the process with physical forces acting. The adsorbent presented high efficiency in treating a synthetic effluent containing different drugs and salts, 71.2%. Therefore, adsorbent development from buckwheat husks treated with a strong acid is an excellent alternative, given the good removal results and the low cost for its preparation.1 páginaapplication/pdfengSpringer Science + Business MediaGermanyAtribución 4.0 Internacional (CC BY 4.0)© 2022 Springer Nature Switzerland AG. Part of Springer Nature.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum huskArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/article/10.1007/s11356-021-17846-zEnvironmental Science and Pollution ResearchAdebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.1016/j.jclepro.2017.02.047Ali AMA, El-Nour MEAM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16:677–682. https://doi.org/10.1016/j.jgeb.2018.03.003Ali I, Al-Othman ZA, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864. https://doi.org/10.1016/j.molliq.2016.04.031Ali I, Burakov AE, Melezhik AV et al (2019) Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem Select 4:12708–12718. https://doi.org/10.1002/slct.201902657Al-Othman ZA, Badjah AY, Alduhaish OM et al (2021) Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. J Mol Liq 323:115075. https://doi.org/10.1016/j.molliq.2020.115075Aubert L, Konrádová D, Kebbas S et al (2020) Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. J Plant Physiol 251:153222. https://doi.org/10.1016/j.jplph.2020.153222Baccar R, Sarrà M, Bouzid J et al (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099Barpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon N Y 49:2538–2548. https://doi.org/10.1016/j.carbon.2011.02.028Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, ChamChrista K, Soral-Śmietana M (2008) Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. Czech J Food Sci 26:153–162. https://doi.org/10.17221/1602-cjfsCuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177:1046–1053. https://doi.org/10.1016/j.jhazmat.2010.01.026Cui Y, Masud A, Aich N, Atkinson JD (2019) Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J Hazard Mater 368:477–486. https://doi.org/10.1016/j.jhazmat.2019.01.075Dahane S, Gil García MD, Martínez Bueno MJ et al (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. https://doi.org/10.1016/j.chroma.2013.05.002De Oliveira GF, De Andrade RC, Trindade MAG et al (2017) Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova 40:284–292. https://doi.org/10.21577/0100-4042.20160191Do DD (1998) Adsorption analysis: equilibria and kinetics. Vol 1, Imperial College Press, London, 913 p.Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004Essandoh M, Wolgemuth D, Pittman CU, et al. (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57. https://doi.org/10.1016/j.chemosphere.2017.01.105Ferreira LS, Rodrigues MS, de Carvalho JCM et al (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333. https://doi.org/10.1016/j.cej.2011.07.039Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57Uhttps://doi.org/10.1515/zpch-1907-5723Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037Georgin J, Franco DSP, Schadeck Netto M et al (2021) Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J Environ Chem Eng 9:104574. https://doi.org/10.1016/j.jece.2020.104574Giles CH, D’Silva AP, Easton IA (1974) A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interface Sci 47:766–778. https://doi.org/10.1016/0021-9797(74)90253-7Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10.1039/TF9555101540Gómez-Avilés A, Sellaoui L, Badawi M, et al (2021) Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. ChemEng J 404https://doi.org/10.1016/j.cej.2020.126601Gulpinar AR, Erdogan Orhan I, Kan A et al (2012) Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. Food Res Int 46:536–543. https://doi.org/10.1016/j.foodres.2011.08.011Hamed MM, Ali MMS, Holiel M (2016) Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies. J Environ Radioact 164:113–124. https://doi.org/10.1016/j.jenvrad.2016.07.005Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt Sci Technol 20:797–815. https://doi.org/10.1260/026361702321104282Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surf Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012Józwiak T, Filipkowska U, Kowalkowska A et al (2021) The influence of amination of sorbent based on buckwheat (Fagopyrum esculentum) husks on the sorption effectiveness of Reactive Black 5 dye. J Environ Chem Eng 9:105092. https://doi.org/10.1016/j.jece.2021.105092Kermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. C R Chim 19:963–970. https://doi.org/10.1016/j.crci.2016.05.005Kibami D (2018) Kinetics and adsorption studies of lead (II) onto activated carbon using low-cost adsorbents. Globalnest J 20:381–388. https://doi.org/10.30955/gnj.002532Kosjek T, Heath E, Krbavčič A (2005) Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ Int 31:679–685. https://doi.org/10.1016/j.envint.2004.12.001Lagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24:1–39.Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004Li K, Zhang Y, Dang Y et al (2014) Removal of Cr(VI) from aqueous solutions using buckwheat (Fagopyrum esculentum Moench) hull through adsorption-reduction: affecting factors, isotherm, and mechanisms. Clean Soil Air Water 42:1549–1557. https://doi.org/10.1002/clen.201300399Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003Liu Y, Wang W, Huang H et al (2014) The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun 50:4485–4488. https://doi.org/10.1039/c4cc01622jLua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287. https://doi.org/10.1016/j.jaap.2004.08.001Lütke SF, Igansi AV, Pegoraro L et al (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece.2019.103396Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manage 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022Maldonado-Torres S, Gurung R, Rijal H et al (2018) Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters. Environ Health Insights 12:1–4. https://doi.org/10.1177/1178630218795836Mashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https://doi.org/10.1080/19443994.2015.1051588Mlunguza NY, Ncube S, Nokwethemba Mahlambi P et al (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J Environ Chem Eng 7:103142. https://doi.org/10.1016/j.jece.2019.103142Moreno-Pérez J, Pauletto PS, Cunha AM, et al (2021) Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surfaces A PhysicochemEng Asp 614https://doi.org/10.1016/j.colsurfa.2021.126170Nakbi A, Bouzid M, Ayachi F et al (2019) Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response. Prog Biophys Mol Biol 149:70–85. https://doi.org/10.1016/j.pbiomolbio.2018.12.013Nakbi A, Bouzid M, Ayachi F et al (2020) Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose. J Mol Liq 298:111950. https://doi.org/10.1016/j.molliq.2019.111950Niazi NK, Bibi I, Shahid M et al (2018) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063Ouasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086FPang X, Sellaoui L, Franco D et al (2019) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101. https://doi.org/10.1016/j.cej.2019.122101Patrolecco L, Ademollo N, Grenni P et al (2013) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171. https://doi.org/10.1016/j.microc.2012.05.035Peñafiel ME, Matesanz JM, Vanegas E, et al. (2021) Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci Total Environ 750https://doi.org/10.1016/j.scitotenv.2020.141498Peng LX, Zou L, Tan ML et al (2017) Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech J Food Sci 35:214–222. https://doi.org/10.17221/185/2016-CJFSPereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon N Y 41:811–821. https://doi.org/10.1016/S0008-6223(02)00406-2Santos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122. https://doi.org/10.1016/j.aca.2005.06.064Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138Sellaoui L, Depci T, Kul AR et al (2016) A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon. J Mol Liq 214:220–230. https://doi.org/10.1016/j.molliq.2015.12.080Sellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302dSmall E (2017) 54. Buckwheat–the world’s most biodiversity-friendly crop? Biodiversity 18:108–123. https://doi.org/10.1080/14888386.2017.1332529Spessato L, Bedin KC, Cazetta AL et al (2019) KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater 371:499–505. https://doi.org/10.1016/j.jhazmat.2019.02.102Streit AFM, Collazzo GC, Druzian SP et al (2020) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128322Temkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. J Phys Chem (USSR) 13:851–867Thue PS, Umpierres CS, Lima EC, et al. (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903 https://doi.org/10.1016/j.jhazmat.2020.122903Van Tran T, Nguyen DTC, Le HTN et al (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci (China) 93:137–150. https://doi.org/10.1016/j.jes.2020.02.007Woo SH, Roy SK, Kwon SJ, et al (2016) Concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): a research perspective. Molecular Breeding and Nutritional Aspects of Buckwheat 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1Wu FC, Wu PH, Tseng RL, Juang RS (2011) Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J Environ Manage 92:708–713. https://doi.org/10.1016/j.jenvman.2010.10.003Yao N, Li C, Yu J et al (2020) Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 236:116278. https://doi.org/10.1016/j.seppur.2019.116278Yu S, Park J, Kim M et al (2019) Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresour Technol Rep 6:217–222. https://doi.org/10.1016/j.biteb.2019.03.009Zavalloni C, Alberti G, Biasiol S et al (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51. https://doi.org/10.1016/j.apsoil.2011.07.012Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387. https://doi.org/10.1016/j.jenvman.2013.12.017Zhao B, O’Connor D, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.01331098310852129Fagopyrum esculentumBuckwheatHuskKetoprofenDrugAdsorptionPublicationORIGINALEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdfEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdfapplication/pdf82993https://repositorio.cuc.edu.co/bitstreams/846077e2-407c-4dbc-be7b-bca5387b604e/downloadc12a7ae9b47306fa1ac2c5bbd3e506e3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e04f8283-7519-480d-947f-096086b50854/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.txtEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.txttext/plain1547https://repositorio.cuc.edu.co/bitstreams/27248772-4ec8-442b-ba76-6ab124dadc23/download3331707621012b9dc37fb8c1e087c1f4MD53THUMBNAILEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.jpgEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.jpgimage/jpeg13342https://repositorio.cuc.edu.co/bitstreams/091dc57d-6cb1-42fa-a65b-1489808a33fb/download0db708709d312aa15de1f38a80398664MD5411323/9234oai:repositorio.cuc.edu.co:11323/92342024-09-17 10:59:14.611https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |