Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk

In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive pr...

Full description

Autores:
Dison S.P., Franco
georgin, jordana
Schadeck Netto, Matias
Montagner, Vinicius Foletto
Allasia, Daniel
Silva Oliveira, Marcos Leandro
Pinto, Diana
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9234
Acceso en línea:
https://hdl.handle.net/11323/9234
https://repositorio.cuc.edu.co/
Palabra clave:
Fagopyrum esculentum
Buckwheat
Husk
Ketoprofen
Drug
Adsorption
Rights
embargoedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_4d44be9ebb0334214bb3bcebf7234752
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9234
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
title Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
spellingShingle Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
Fagopyrum esculentum
Buckwheat
Husk
Ketoprofen
Drug
Adsorption
title_short Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
title_full Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
title_fullStr Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
title_full_unstemmed Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
title_sort Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk
dc.creator.fl_str_mv Dison S.P., Franco
georgin, jordana
Schadeck Netto, Matias
Montagner, Vinicius Foletto
Allasia, Daniel
Silva Oliveira, Marcos Leandro
Pinto, Diana
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Dison S.P., Franco
georgin, jordana
Schadeck Netto, Matias
Montagner, Vinicius Foletto
Allasia, Daniel
Silva Oliveira, Marcos Leandro
Pinto, Diana
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Fagopyrum esculentum
Buckwheat
Husk
Ketoprofen
Drug
Adsorption
topic Fagopyrum esculentum
Buckwheat
Husk
Ketoprofen
Drug
Adsorption
description In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive process was favored at acidic pH = 3. The dosage of 0.85 g L−1 was fixed for the kinetic and isothermal tests, obtaining good removal and capacity indications. The kinetic studies were better represented by pseudo-second-order, obtaining an experimental capacity of 74.3 mg g−1 for 200 mg L−1 of ketoprofen. An increase in temperature negatively affected the adsorption isotherm curves, resulting in a maximum capacity of 194.1 mg g−1. Thermodynamic results confirmed the exothermic nature of the process with physical forces acting. The adsorbent presented high efficiency in treating a synthetic effluent containing different drugs and salts, 71.2%. Therefore, adsorbent development from buckwheat husks treated with a strong acid is an excellent alternative, given the good removal results and the low cost for its preparation.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-10T16:40:34Z
dc.date.available.none.fl_str_mv 2022-06-10T16:40:34Z
2023
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Franco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-z
dc.identifier.issn.spa.fl_str_mv 0944-1344
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9234
dc.identifier.doi.spa.fl_str_mv 10.1007/s11356-021-17846-z
dc.identifier.eissn.spa.fl_str_mv 1614-7499
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Franco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-z
0944-1344
10.1007/s11356-021-17846-z
1614-7499
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9234
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.relation.references.spa.fl_str_mv Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.1016/j.jclepro.2017.02.047
Ali AMA, El-Nour MEAM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16:677–682. https://doi.org/10.1016/j.jgeb.2018.03.003
Ali I, Al-Othman ZA, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864. https://doi.org/10.1016/j.molliq.2016.04.031
Ali I, Burakov AE, Melezhik AV et al (2019) Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem Select 4:12708–12718. https://doi.org/10.1002/slct.201902657
Al-Othman ZA, Badjah AY, Alduhaish OM et al (2021) Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. J Mol Liq 323:115075. https://doi.org/10.1016/j.molliq.2020.115075
Aubert L, Konrádová D, Kebbas S et al (2020) Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. J Plant Physiol 251:153222. https://doi.org/10.1016/j.jplph.2020.153222
Baccar R, Sarrà M, Bouzid J et al (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099
Barpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon N Y 49:2538–2548. https://doi.org/10.1016/j.carbon.2011.02.028
Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Cham
Christa K, Soral-Śmietana M (2008) Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. Czech J Food Sci 26:153–162. https://doi.org/10.17221/1602-cjfs
Cuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177:1046–1053. https://doi.org/10.1016/j.jhazmat.2010.01.026
Cui Y, Masud A, Aich N, Atkinson JD (2019) Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J Hazard Mater 368:477–486. https://doi.org/10.1016/j.jhazmat.2019.01.075
Dahane S, Gil García MD, Martínez Bueno MJ et al (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. https://doi.org/10.1016/j.chroma.2013.05.002
De Oliveira GF, De Andrade RC, Trindade MAG et al (2017) Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova 40:284–292. https://doi.org/10.21577/0100-4042.20160191
Do DD (1998) Adsorption analysis: equilibria and kinetics. Vol 1, Imperial College Press, London, 913 p.
Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307
Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004
Essandoh M, Wolgemuth D, Pittman CU, et al. (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57. https://doi.org/10.1016/j.chemosphere.2017.01.105
Ferreira LS, Rodrigues MS, de Carvalho JCM et al (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333. https://doi.org/10.1016/j.cej.2011.07.039
Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57Uhttps://doi.org/10.1515/zpch-1907-5723
Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037
Georgin J, Franco DSP, Schadeck Netto M et al (2021) Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J Environ Chem Eng 9:104574. https://doi.org/10.1016/j.jece.2020.104574
Giles CH, D’Silva AP, Easton IA (1974) A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interface Sci 47:766–778. https://doi.org/10.1016/0021-9797(74)90253-7
Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5
Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10.1039/TF9555101540
Gómez-Avilés A, Sellaoui L, Badawi M, et al (2021) Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. ChemEng J 404https://doi.org/10.1016/j.cej.2020.126601
Gulpinar AR, Erdogan Orhan I, Kan A et al (2012) Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. Food Res Int 46:536–543. https://doi.org/10.1016/j.foodres.2011.08.011
Hamed MM, Ali MMS, Holiel M (2016) Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies. J Environ Radioact 164:113–124. https://doi.org/10.1016/j.jenvrad.2016.07.005
Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt Sci Technol 20:797–815. https://doi.org/10.1260/026361702321104282
Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893
Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surf Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012
Józwiak T, Filipkowska U, Kowalkowska A et al (2021) The influence of amination of sorbent based on buckwheat (Fagopyrum esculentum) husks on the sorption effectiveness of Reactive Black 5 dye. J Environ Chem Eng 9:105092. https://doi.org/10.1016/j.jece.2021.105092
Kermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. C R Chim 19:963–970. https://doi.org/10.1016/j.crci.2016.05.005
Kibami D (2018) Kinetics and adsorption studies of lead (II) onto activated carbon using low-cost adsorbents. Globalnest J 20:381–388. https://doi.org/10.30955/gnj.002532
Kosjek T, Heath E, Krbavčič A (2005) Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ Int 31:679–685. https://doi.org/10.1016/j.envint.2004.12.001
Lagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24:1–39.
Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004
Li K, Zhang Y, Dang Y et al (2014) Removal of Cr(VI) from aqueous solutions using buckwheat (Fagopyrum esculentum Moench) hull through adsorption-reduction: affecting factors, isotherm, and mechanisms. Clean Soil Air Water 42:1549–1557. https://doi.org/10.1002/clen.201300399
Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007
Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003
Liu Y, Wang W, Huang H et al (2014) The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun 50:4485–4488. https://doi.org/10.1039/c4cc01622j
Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287. https://doi.org/10.1016/j.jaap.2004.08.001
Lütke SF, Igansi AV, Pegoraro L et al (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece.2019.103396
Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manage 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022
Maldonado-Torres S, Gurung R, Rijal H et al (2018) Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters. Environ Health Insights 12:1–4. https://doi.org/10.1177/1178630218795836
Mashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https://doi.org/10.1080/19443994.2015.1051588
Mlunguza NY, Ncube S, Nokwethemba Mahlambi P et al (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J Environ Chem Eng 7:103142. https://doi.org/10.1016/j.jece.2019.103142
Moreno-Pérez J, Pauletto PS, Cunha AM, et al (2021) Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surfaces A PhysicochemEng Asp 614https://doi.org/10.1016/j.colsurfa.2021.126170
Nakbi A, Bouzid M, Ayachi F et al (2019) Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response. Prog Biophys Mol Biol 149:70–85. https://doi.org/10.1016/j.pbiomolbio.2018.12.013
Nakbi A, Bouzid M, Ayachi F et al (2020) Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose. J Mol Liq 298:111950. https://doi.org/10.1016/j.molliq.2019.111950
Niazi NK, Bibi I, Shahid M et al (2018) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063
Ouasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086F
Pang X, Sellaoui L, Franco D et al (2019) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101. https://doi.org/10.1016/j.cej.2019.122101
Patrolecco L, Ademollo N, Grenni P et al (2013) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171. https://doi.org/10.1016/j.microc.2012.05.035
Peñafiel ME, Matesanz JM, Vanegas E, et al. (2021) Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci Total Environ 750https://doi.org/10.1016/j.scitotenv.2020.141498
Peng LX, Zou L, Tan ML et al (2017) Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech J Food Sci 35:214–222. https://doi.org/10.17221/185/2016-CJFS
Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon N Y 41:811–821. https://doi.org/10.1016/S0008-6223(02)00406-2
Santos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122. https://doi.org/10.1016/j.aca.2005.06.064
Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138
Sellaoui L, Depci T, Kul AR et al (2016) A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon. J Mol Liq 214:220–230. https://doi.org/10.1016/j.molliq.2015.12.080
Sellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302d
Small E (2017) 54. Buckwheat–the world’s most biodiversity-friendly crop? Biodiversity 18:108–123. https://doi.org/10.1080/14888386.2017.1332529
Spessato L, Bedin KC, Cazetta AL et al (2019) KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater 371:499–505. https://doi.org/10.1016/j.jhazmat.2019.02.102
Streit AFM, Collazzo GC, Druzian SP et al (2020) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128322
Temkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. J Phys Chem (USSR) 13:851–867
Thue PS, Umpierres CS, Lima EC, et al. (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903 https://doi.org/10.1016/j.jhazmat.2020.122903
Van Tran T, Nguyen DTC, Le HTN et al (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci (China) 93:137–150. https://doi.org/10.1016/j.jes.2020.02.007
Woo SH, Roy SK, Kwon SJ, et al (2016) Concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): a research perspective. Molecular Breeding and Nutritional Aspects of Buckwheat 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1
Wu FC, Wu PH, Tseng RL, Juang RS (2011) Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J Environ Manage 92:708–713. https://doi.org/10.1016/j.jenvman.2010.10.003
Yao N, Li C, Yu J et al (2020) Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 236:116278. https://doi.org/10.1016/j.seppur.2019.116278
Yu S, Park J, Kim M et al (2019) Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresour Technol Rep 6:217–222. https://doi.org/10.1016/j.biteb.2019.03.009
Zavalloni C, Alberti G, Biasiol S et al (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51. https://doi.org/10.1016/j.apsoil.2011.07.012
Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387. https://doi.org/10.1016/j.jenvman.2013.12.017
Zhao B, O’Connor D, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.013
dc.relation.citationendpage.spa.fl_str_mv 31098
dc.relation.citationstartpage.spa.fl_str_mv 31085
dc.relation.citationissue.spa.fl_str_mv 21
dc.relation.citationvolume.spa.fl_str_mv 29
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2022 Springer Nature Switzerland AG. Part of Springer Nature.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2022 Springer Nature Switzerland AG. Part of Springer Nature.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Science + Business Media
dc.publisher.place.spa.fl_str_mv Germany
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s11356-021-17846-z
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/846077e2-407c-4dbc-be7b-bca5387b604e/download
https://repositorio.cuc.edu.co/bitstreams/e04f8283-7519-480d-947f-096086b50854/download
https://repositorio.cuc.edu.co/bitstreams/27248772-4ec8-442b-ba76-6ab124dadc23/download
https://repositorio.cuc.edu.co/bitstreams/091dc57d-6cb1-42fa-a65b-1489808a33fb/download
bitstream.checksum.fl_str_mv c12a7ae9b47306fa1ac2c5bbd3e506e3
e30e9215131d99561d40d6b0abbe9bad
3331707621012b9dc37fb8c1e087c1f4
0db708709d312aa15de1f38a80398664
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760753521197056
spelling Dison S.P., Francogeorgin, jordanaSchadeck Netto, MatiasMontagner, Vinicius FolettoAllasia, DanielSilva Oliveira, Marcos LeandroPinto, DianaDotto, Guilherme Luiz2022-06-10T16:40:34Z20232022-06-10T16:40:34Z2022Franco, D.S.P., Georgin, J., Netto, M.S. et al. Effective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk. Environ Sci Pollut Res 29, 31085–31098 (2022). https://doi.org/10.1007/s11356-021-17846-z0944-1344https://hdl.handle.net/11323/923410.1007/s11356-021-17846-z1614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, buckwheat husks (Fagopyrum esculentum) were modified by acid treatment and posteriorly employed to remove the ketoprofen in batch adsorption. The characterization results indicated that a more irregular surface with new empty spaces was generated after acid treatment. The adsorptive process was favored at acidic pH = 3. The dosage of 0.85 g L−1 was fixed for the kinetic and isothermal tests, obtaining good removal and capacity indications. The kinetic studies were better represented by pseudo-second-order, obtaining an experimental capacity of 74.3 mg g−1 for 200 mg L−1 of ketoprofen. An increase in temperature negatively affected the adsorption isotherm curves, resulting in a maximum capacity of 194.1 mg g−1. Thermodynamic results confirmed the exothermic nature of the process with physical forces acting. The adsorbent presented high efficiency in treating a synthetic effluent containing different drugs and salts, 71.2%. Therefore, adsorbent development from buckwheat husks treated with a strong acid is an excellent alternative, given the good removal results and the low cost for its preparation.1 páginaapplication/pdfengSpringer Science + Business MediaGermanyAtribución 4.0 Internacional (CC BY 4.0)© 2022 Springer Nature Switzerland AG. Part of Springer Nature.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum huskArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/article/10.1007/s11356-021-17846-zEnvironmental Science and Pollution ResearchAdebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.1016/j.jclepro.2017.02.047Ali AMA, El-Nour MEAM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16:677–682. https://doi.org/10.1016/j.jgeb.2018.03.003Ali I, Al-Othman ZA, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864. https://doi.org/10.1016/j.molliq.2016.04.031Ali I, Burakov AE, Melezhik AV et al (2019) Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem Select 4:12708–12718. https://doi.org/10.1002/slct.201902657Al-Othman ZA, Badjah AY, Alduhaish OM et al (2021) Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. J Mol Liq 323:115075. https://doi.org/10.1016/j.molliq.2020.115075Aubert L, Konrádová D, Kebbas S et al (2020) Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. J Plant Physiol 251:153222. https://doi.org/10.1016/j.jplph.2020.153222Baccar R, Sarrà M, Bouzid J et al (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099Barpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon N Y 49:2538–2548. https://doi.org/10.1016/j.carbon.2011.02.028Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, ChamChrista K, Soral-Śmietana M (2008) Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. Czech J Food Sci 26:153–162. https://doi.org/10.17221/1602-cjfsCuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177:1046–1053. https://doi.org/10.1016/j.jhazmat.2010.01.026Cui Y, Masud A, Aich N, Atkinson JD (2019) Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. J Hazard Mater 368:477–486. https://doi.org/10.1016/j.jhazmat.2019.01.075Dahane S, Gil García MD, Martínez Bueno MJ et al (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. https://doi.org/10.1016/j.chroma.2013.05.002De Oliveira GF, De Andrade RC, Trindade MAG et al (2017) Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova 40:284–292. https://doi.org/10.21577/0100-4042.20160191Do DD (1998) Adsorption analysis: equilibria and kinetics. Vol 1, Imperial College Press, London, 913 p.Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci 20:3–7. https://doi.org/10.1007/BF00849307Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004Essandoh M, Wolgemuth D, Pittman CU, et al. (2017) Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 174:49–57. https://doi.org/10.1016/j.chemosphere.2017.01.105Ferreira LS, Rodrigues MS, de Carvalho JCM et al (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333. https://doi.org/10.1016/j.cej.2011.07.039Freundlich H (1907) Über die Adsorption in Lösungen. Z Phys Chem 57Uhttps://doi.org/10.1515/zpch-1907-5723Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Prod 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037Georgin J, Franco DSP, Schadeck Netto M et al (2021) Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J Environ Chem Eng 9:104574. https://doi.org/10.1016/j.jece.2020.104574Giles CH, D’Silva AP, Easton IA (1974) A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interface Sci 47:766–778. https://doi.org/10.1016/0021-9797(74)90253-7Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm part I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. https://doi.org/10.1039/TF9555101540Gómez-Avilés A, Sellaoui L, Badawi M, et al (2021) Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. ChemEng J 404https://doi.org/10.1016/j.cej.2020.126601Gulpinar AR, Erdogan Orhan I, Kan A et al (2012) Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. Food Res Int 46:536–543. https://doi.org/10.1016/j.foodres.2011.08.011Hamed MM, Ali MMS, Holiel M (2016) Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies. J Environ Radioact 164:113–124. https://doi.org/10.1016/j.jenvrad.2016.07.005Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper (II) on to peat. Adsorpt Sci Technol 20:797–815. https://doi.org/10.1260/026361702321104282Jawad AH, Rashid RA, Ishak MAM, Ismail K (2018) Adsorptive removal of methylene blue by chemically treated cellulosic waste banana ( Musa sapientum ) peels. J Taibah Univ Sci 12:809–819. https://doi.org/10.1080/16583655.2018.1519893Jawad AH, Razuan R, Appaturi JN, Wilson LD (2019) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surf Interfaces 16:76–84. https://doi.org/10.1016/j.surfin.2019.04.012Józwiak T, Filipkowska U, Kowalkowska A et al (2021) The influence of amination of sorbent based on buckwheat (Fagopyrum esculentum) husks on the sorption effectiveness of Reactive Black 5 dye. J Environ Chem Eng 9:105092. https://doi.org/10.1016/j.jece.2021.105092Kermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. C R Chim 19:963–970. https://doi.org/10.1016/j.crci.2016.05.005Kibami D (2018) Kinetics and adsorption studies of lead (II) onto activated carbon using low-cost adsorbents. Globalnest J 20:381–388. https://doi.org/10.30955/gnj.002532Kosjek T, Heath E, Krbavčič A (2005) Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ Int 31:679–685. https://doi.org/10.1016/j.envint.2004.12.001Lagergren SY (1898) Zur Theorie der sogenannten Adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24:1–39.Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004Li K, Zhang Y, Dang Y et al (2014) Removal of Cr(VI) from aqueous solutions using buckwheat (Fagopyrum esculentum Moench) hull through adsorption-reduction: affecting factors, isotherm, and mechanisms. Clean Soil Air Water 42:1549–1557. https://doi.org/10.1002/clen.201300399Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem 38:390–394. https://doi.org/10.1016/j.bej.2007.08.003Liu Y, Wang W, Huang H et al (2014) The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun 50:4485–4488. https://doi.org/10.1039/c4cc01622jLua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287. https://doi.org/10.1016/j.jaap.2004.08.001Lütke SF, Igansi AV, Pegoraro L et al (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece.2019.103396Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manage 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022Maldonado-Torres S, Gurung R, Rijal H et al (2018) Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters. Environ Health Insights 12:1–4. https://doi.org/10.1177/1178630218795836Mashayekh-Salehi A, Moussavi G (2016) Removal of acetaminophen from the contaminated water using adsorption onto carbon activated with NH4Cl. Desalin Water Treat 57:12861–12873. https://doi.org/10.1080/19443994.2015.1051588Mlunguza NY, Ncube S, Nokwethemba Mahlambi P et al (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J Environ Chem Eng 7:103142. https://doi.org/10.1016/j.jece.2019.103142Moreno-Pérez J, Pauletto PS, Cunha AM, et al (2021) Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surfaces A PhysicochemEng Asp 614https://doi.org/10.1016/j.colsurfa.2021.126170Nakbi A, Bouzid M, Ayachi F et al (2019) Investigation of caffeine taste mechanism through a statistical physics modeling of caffeine dose-taste response curve by a biological putative caffeine adsorption process in electrophysiological response. Prog Biophys Mol Biol 149:70–85. https://doi.org/10.1016/j.pbiomolbio.2018.12.013Nakbi A, Bouzid M, Ayachi F et al (2020) Quantitative characterization of sucrose taste by statistical physics modeling parameters using an analogy between an experimental physicochemical isotherm of sucrose adsorption on β-cyclodextrin and a putative biological sucrose adsorption from sucrose. J Mol Liq 298:111950. https://doi.org/10.1016/j.molliq.2019.111950Niazi NK, Bibi I, Shahid M et al (2018) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063Ouasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086FPang X, Sellaoui L, Franco D et al (2019) Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chem Eng J 378:122101. https://doi.org/10.1016/j.cej.2019.122101Patrolecco L, Ademollo N, Grenni P et al (2013) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171. https://doi.org/10.1016/j.microc.2012.05.035Peñafiel ME, Matesanz JM, Vanegas E, et al. (2021) Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Sci Total Environ 750https://doi.org/10.1016/j.scitotenv.2020.141498Peng LX, Zou L, Tan ML et al (2017) Free amino acids, fatty acids, and phenolic compounds in tartary buckwheat of different hull colour. Czech J Food Sci 35:214–222. https://doi.org/10.17221/185/2016-CJFSPereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon N Y 41:811–821. https://doi.org/10.1016/S0008-6223(02)00406-2Santos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122. https://doi.org/10.1016/j.aca.2005.06.064Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81. https://doi.org/10.1016/j.cej.2017.10.138Sellaoui L, Depci T, Kul AR et al (2016) A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon. J Mol Liq 214:220–230. https://doi.org/10.1016/j.molliq.2015.12.080Sellaoui L, Guedidi H, Sarrawjihi et al (2016) Experimental and theoretical studies of adsorption of ibuprofen on raw and two chemically modified activated carbons: New physicochemical interpretations. RSC Adv 6:12363–12373. https://doi.org/10.1039/c5ra22302dSmall E (2017) 54. Buckwheat–the world’s most biodiversity-friendly crop? Biodiversity 18:108–123. https://doi.org/10.1080/14888386.2017.1332529Spessato L, Bedin KC, Cazetta AL et al (2019) KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater 371:499–505. https://doi.org/10.1016/j.jhazmat.2019.02.102Streit AFM, Collazzo GC, Druzian SP et al (2020) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128322Temkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. J Phys Chem (USSR) 13:851–867Thue PS, Umpierres CS, Lima EC, et al. (2020) Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J Hazard Mater 398:122903 https://doi.org/10.1016/j.jhazmat.2020.122903Van Tran T, Nguyen DTC, Le HTN et al (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci (China) 93:137–150. https://doi.org/10.1016/j.jes.2020.02.007Woo SH, Roy SK, Kwon SJ, et al (2016) Concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): a research perspective. Molecular Breeding and Nutritional Aspects of Buckwheat 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1Wu FC, Wu PH, Tseng RL, Juang RS (2011) Preparation of novel activated carbons from H2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J Environ Manage 92:708–713. https://doi.org/10.1016/j.jenvman.2010.10.003Yao N, Li C, Yu J et al (2020) Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 236:116278. https://doi.org/10.1016/j.seppur.2019.116278Yu S, Park J, Kim M et al (2019) Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresour Technol Rep 6:217–222. https://doi.org/10.1016/j.biteb.2019.03.009Zavalloni C, Alberti G, Biasiol S et al (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51. https://doi.org/10.1016/j.apsoil.2011.07.012Zenker A, Cicero MR, Prestinaci F et al (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387. https://doi.org/10.1016/j.jenvman.2013.12.017Zhao B, O’Connor D, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.01331098310852129Fagopyrum esculentumBuckwheatHuskKetoprofenDrugAdsorptionPublicationORIGINALEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdfEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdfapplication/pdf82993https://repositorio.cuc.edu.co/bitstreams/846077e2-407c-4dbc-be7b-bca5387b604e/downloadc12a7ae9b47306fa1ac2c5bbd3e506e3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e04f8283-7519-480d-947f-096086b50854/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.txtEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.txttext/plain1547https://repositorio.cuc.edu.co/bitstreams/27248772-4ec8-442b-ba76-6ab124dadc23/download3331707621012b9dc37fb8c1e087c1f4MD53THUMBNAILEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.jpgEffective removal of non-steroidal anti-inflammatory drug from wastewater by adsorption process using acid-treated Fagopyrum esculentum husk.pdf.jpgimage/jpeg13342https://repositorio.cuc.edu.co/bitstreams/091dc57d-6cb1-42fa-a65b-1489808a33fb/download0db708709d312aa15de1f38a80398664MD5411323/9234oai:repositorio.cuc.edu.co:11323/92342024-09-17 10:59:14.611https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==