Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study

The production of adipic acid (AA) from the ring-opening hydrogenolysis (hydrodeoxygenation - HDO) of tetrahydrofuran 2,5-dicarboxylic acid (THFDCA) by metal-metal oxide catalysts (Pt-MOx/TiO2 and Pt/MOx) was evaluated. Correlations between AA yield, or products distribution, and the type of active...

Full description

Autores:
Castilla-Acevedo, Samir F.
Szobody, Titus P.
Boydston, Cameron M.
John, Jacob St.
Amaya-Roncancio, Sebastian
Allgeier, Alan M.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13938
Acceso en línea:
https://hdl.handle.net/11323/13938
https://repositorio.cuc.edu.co/
Palabra clave:
Metal-metal oxide catalysts
Hydrodeoxygenation
Biomass valorization
Furanic compounds
Carboxylic acid reduction
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_4d0cf7ad7cd58002bb03561049fd168c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13938
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
title Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
spellingShingle Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
Metal-metal oxide catalysts
Hydrodeoxygenation
Biomass valorization
Furanic compounds
Carboxylic acid reduction
title_short Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
title_full Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
title_fullStr Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
title_full_unstemmed Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
title_sort Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational study
dc.creator.fl_str_mv Castilla-Acevedo, Samir F.
Szobody, Titus P.
Boydston, Cameron M.
John, Jacob St.
Amaya-Roncancio, Sebastian
Allgeier, Alan M.
dc.contributor.author.none.fl_str_mv Castilla-Acevedo, Samir F.
Szobody, Titus P.
Boydston, Cameron M.
John, Jacob St.
Amaya-Roncancio, Sebastian
Allgeier, Alan M.
dc.subject.proposal.eng.fl_str_mv Metal-metal oxide catalysts
Hydrodeoxygenation
Biomass valorization
Furanic compounds
Carboxylic acid reduction
topic Metal-metal oxide catalysts
Hydrodeoxygenation
Biomass valorization
Furanic compounds
Carboxylic acid reduction
description The production of adipic acid (AA) from the ring-opening hydrogenolysis (hydrodeoxygenation - HDO) of tetrahydrofuran 2,5-dicarboxylic acid (THFDCA) by metal-metal oxide catalysts (Pt-MOx/TiO2 and Pt/MOx) was evaluated. Correlations between AA yield, or products distribution, and the type of active centers in the catalyst surface were established by studying the type (MOx: WOx, MoOx, and ZrOx), the amount of metal oxide (MOx:Pt molar ratio), and the reaction temperature (180ºC, 220ºC, and 240ºC) in Pt-MOx/TiO2 and Pt/MOx. The activity results show that only the catalysts that contain both Pt and Mo produced AA at 220ºC, with yields of 24 % for Pt-MoOx/TiO2 (4 wt % Pt, 1:1 Mo:Pt molar ratio) and 34% for 4 wt % Pt/MoO3. At 180ºC, these catalysts exhibited high selectivity towards reducing the carboxyl group. Computational studies using DFT suggest that this behavior is due to the preferential interaction between the oxygen vacancy (O-VAC) in MoO3 and the Cdouble bondO bond in the carboxyl group in 2-hydroxyadipic acid (2-HAA), the first observed intermediate from the HDO of THFDCA. Coverage of this adsorption configuration decreases at temperatures above 200ºC, where the interaction between the alcohol group in the 2 C position in 2-HAA and the Brønsted acid site (BAS) on the surface of MoO3 is preferred. This latter interaction could promote the acid-catalyzed dehydration of the alcohol group to obtain AA. Increasing the amount of Mo to 5:1 Mo:Pt in Pt-MoOx/TiO2 and decreasing the Pt content to 0.1 wt % in Pt/MoO3 decreases the selectivity to alcohols, increasing the AA yield to 55 % at 220ºC and 65 % at 240ºC for both catalysts. This enhancement in performance is consistent with the findings from the DFT studies. To our knowledge, this is the highest yield reported for AA production from THFDCA or FDCA by metal-metal oxide catalysts.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-06-15
dc.date.accessioned.none.fl_str_mv 2025-01-21T14:26:35Z
dc.date.available.none.fl_str_mv 2025-01-21T14:26:35Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Samir F. Castilla-Acevedo, Titus P. Szobody, Cameron M. Boydston, Jacob St. John, Sebastian Amaya-Roncancio, Alan M. Allgeier, Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: An experimental and computational study, Catalysis Today, Volume 436, 2024, 114722, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2024.114722.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13938
dc.identifier.doi.none.fl_str_mv 10.1016/j.cattod.2024.114722
dc.identifier.eissn.none.fl_str_mv 0920-5861
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Samir F. Castilla-Acevedo, Titus P. Szobody, Cameron M. Boydston, Jacob St. John, Sebastian Amaya-Roncancio, Alan M. Allgeier, Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: An experimental and computational study, Catalysis Today, Volume 436, 2024, 114722, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2024.114722.
10.1016/j.cattod.2024.114722
0920-5861
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13938
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Catalysis Today
dc.relation.references.none.fl_str_mv X. Jin, M. Liu, G. Zhang, J. Wang, Q. Xia, Y. Sun, Z. Zhou, W. Zhang, S. Wang, C.H. Lam, J. Shen, C. Yang, R.V. Chaudhari Chemical synthesis of adipic acid from glucose and derivatives: challenges for nanocatalyst design ACS Sustain Chem. Eng., 8 (2020), pp. 18732-18754, 10.1021/acssuschemeng.0c04411
J.C.J. Bart, S. Cavallaro Transiting from adipic acid to bioadipic acid. 1, petroleum-based processes
Lucía Fernández, Market volume of adipic acid worldwide in 2018 and 2023, Statista (2021). Accessed 10/10/2023.
Avinash D., Adipic Acid Market to Reach US$ 9.43 Billion by 2028, says the brainy insights, the brainy insights (2022). Accessed 10/10/2023.
M. Lang, H. Li Sustainable Routes for the synthesis of renewable adipic acid from biomass derivatives ChemSusChem, 15 (1) (2022), p. 26, 10.1002/cssc.202101531
W. Yan, G. Zhang, J. Wang, M. Liu, Y. Sun, Z. Zhou, W. Zhang, S. Zhang, X. Xu, J. Shen, X. Jin Recent progress in adipic acid synthesis over heterogeneous catalysts Front Chem., 8 (2020), pp. 1-12, 10.3389/fchem.2020.00185
L. Wei, J. Zhang, W. Deng, S. Xie, Q. Zhang, Y. Wang Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles Chem. Commun., 55 (2019), pp. 8013-8016, 10.1039/c9cc02877c
M.J. Gilkey, H.J. Cho, B.M. Murphy, J. Wu, D.G. Vlachos, B. Xu Catalytic adipic acid production on zeolites from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid ACS Appl. Energy Mater., 3 (2020), pp. 99-105, 10.1021/acsaem.9b01954
M.J. Gilkey, A.V. Mironenko, D.G. Vlachos, B. Xu Adipic acid production via metal-free selective hydrogenolysis of biomass-derived tetrahydrofuran-2,5-dicarboxylic acid ACS Catal., 7 (2017), pp. 6619-6634, 10.1021/acscatal.7b01753
A. Vy Tran, S. Park, H. Jin Lee, T. Yong Kim, Y. Kim, Y. Suh, K. Lee, Y. Jin Kim, J. Baek Efficient production of adipic acid by a two-step catalytic reaction of biomass-derived 2,5-furandicarboxylic acid ChemSusChem, 15 (2022), pp. 1-11, 10.1002/cssc.202200375
J.G. de Vries Catalytic conversion of renewable resources into bulk and fine chemicals Chem. Rec., 16 (2016), pp. 2783-2796, 10.1002/tcr.201600102
J. Fu, S. Liu, W. Zheng, R. Huang, C. Wang, A. Lawal, K. Alexopoulos, S. Liu, Y. Wang, K. Yu, J.A. Boscoboinik, Y. Liu, X. Liu, A.I. Frenkel, O.A. Abdelrahman, R.J. Gorte, S. Caratzoulas, D.G. Vlachos Modulating the dynamics of Brønsted acid sites on PtWOx inverse catalyst Nat. Catal., 5 (2022), pp. 144-153, 10.1038/s41929-022-00745-y
M.J. Gilkey, R. Balakumar, D.G. Vlachos, B. Xu Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid Catal. Sci. Technol., 8 (2018), pp. 2661-2671, 10.1039/c8cy00379c
J. Luo, M. Monai, H. Yun, L. Arroyo-Ramírez, C. Wang, C.B. Murray, P. Fornasiero, R.J. Gorte The H2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C catalysts Catal. Lett., 146 (2016), pp. 711-717, 10.1007/s10562-016-1705-x
I.H. Choi, J.S. Lee, C.U. Kim, T.W. Kim, K.Y. Lee, K.R. Hwang Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst Fuel, 215 (2018), pp. 675-685, 10.1016/j.fuel.2017.11.094
X. Liang, B.S. Haynes, A. Montoya Acid-catalyzed ring opening of furan in aqueous solution Energy Fuels, 32 (2018), pp. 4139-4148, 10.1021/acs.energyfuels.7b03239
J. Hidalgo-Carrillo, A. Marinas, F.J. Urbano Chemistry of furfural and furanic derivatives Sustainable chemistry series, Furfural, World scientific (2018), pp. 1-30
Y. Nakagawa, M. Yabushita, K. Tomishige Reductive conversion of biomass-derived furancarboxylic acids with retention of carboxylic acid moiety Trans. Tianjin Univ., 27 (2021), pp. 165-179, 10.1007/s12209-021-00284-w
T.R. Boussie, Dias L. Eric, Z.M. Fresco, J. Shoemaker, R. Archer, J. Hong, Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials, US 2010/0317823 A1, 2010.
Y. Zhang, X. Guo, P. Tang, J. Xu Solubility of 2,5-furandicarboxylic acid in eight pure solvents and two binary solvent systems at 313.15–363.15 K J. Chem. Eng. Data, 63 (2018), pp. 1316-1324, 10.1021/acs.jced.7b00927
X. Li, P. Rui, T. Ye, X. Yao, R. Zhou, D. Li, S. Wang, J.H. Carter, G.J. Hutchings Hydrogenolysis of 5-hydroxymethylfurfural by in situ produced hydrogen from water on an iron catalyst Catal. Sci. Technol. (2023), pp. 3366-3374, 10.1039/D3CY00027C
J. He, S.P. Burt, M. Ball, D. Zhao, I. Hermans, J.A. Dumesic, G.W. Huber Synthesis of 1,6-hexanediol from cellulose derived tetrahydrofuran-dimethanol with Pt-WOx/TiO2 catalysts ACS Catal., 8 (2018), pp. 1427-1439, 10.1021/acscatal.7b03593
T. Asano, Y. Nakagawa, M. Tamura, K. Tomishige Hydrogenolysis of tetrahydrofuran-2-carboxylic acid over tungsten-modified rhodium catalyst Appl. Catal. A Gen., 602 (2020), pp. 1-13, 10.1016/j.apcata.2020.117723
K.J. Stephens, A.M. Allgeier, A.L. Bell, T.R. Carlson, Y. Cheng, J.T. Douglas, L.A. Howe, C.A. Menning, S.A. Neuenswander, S.K. Sengupta, P.S. Thapa, J.C. Ritter A mechanistic study of polyol hydrodeoxygenation over a bifunctional Pt-WOx/TiO2 catalyst ACS Catal., 10 (2020), pp. 12996-13007, 10.1021/acscatal.0c03475
S. Fan, M. Zhang, H. Li Zirconium-doped enhanced the biomass hydrodeoxygenation over extremely low-loaded Pd catalysts Fuel, 315 (2022), Article 123060, 10.1016/j.fuel.2021.123060
T.N. Phan, Y.K. Park, I.G. Lee, C.H. Ko Enhancement of C–O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides Appl. Catal. A Gen., 544 (2017), pp. 84-93, 10.1016/j.apcata.2017.06.029
M. Chia, Y.J. Pagán-Torres, D. Hibbitts, Q. Tan, H.N. Pham, A.K. Datye, M. Neurock, R.J. Davis, J.A. Dumesic Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts J. Am. Chem. Soc., 133 (2011), pp. 12675-12689, 10.1021/ja2038358
T. Asano, M. Tamura, Y. Nakagawa, K. Tomishige Selective hydrodeoxygenation of 2-furancarboxylic acid to valeric acid over molybdenum-oxide-modified platinum catalyst ACS Sustain Chem. Eng., 4 (2016), pp. 6253-6257, 10.1021/acssuschemeng.6b01640
Y. Takeda, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige Characterization of Re-Pd/SiO2 catalysts for hydrogenation of stearic acid ACS Catal., 5 (2015), pp. 7034-7047, 10.1021/acscatal.5b01054
Y. Wu, S. Sourav, A. Worrad, J. Zhou, S. Caratzoulas, G. Tsilomelekis, W. Zheng, D.G. Vlachos Dynamic formation of Brønsted acid sites over supported WOx/Pt on SiO2 inverse catalysts─spectroscopy, probe chemistry, and calculations ACS Catal., 13 (2023), pp. 7371-7382, 10.1021/acscatal.3c00279
L.A. Gomez, R. Bababrik, M.R. Komarneni, J. Marlowe, T. Salavati-Fard, A.D. D’Amico, B. Wang, P. Christopher, S.P. Crossley Selective reduction of carboxylic acids to aldehydes with promoted MoO3 catalysts ACS Catal., 12 (2022), pp. 6313-6324, 10.1021/acscatal.2c01350
S. Brunauer, P.H. Emmett, E. Teller Adsorption of Gases in Multimolecular Layers J. Am. Chem. Soc., 60 (2) (1938), pp. 309-319, 10.1021/ja01269a023
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials J. Phys. Condens. Matter, 21 (2009), Article 395502, 10.1088/0953-8984/21/39/395502
A. Dal Corso, 〈http://pseudopotentials.quantum-espresso.org/legacy_tables/ps-library/w〉, (n.d.). Accessed 10/10/2023.
J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett., 77 (1996), pp. 3865-3868, 10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys., 132 (2010), 10.1063/1.3382344
S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas Influence of coadsorbed H in CO dissociation and CHn formation on Fe (100): A DFT study Appl. Surf. Sci., 346 (2015), 10.1016/j.apsusc.2015.03.215
S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag DFT study of hydrogen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe (100) J. Phys. Chem. C, 120 (2016), 10.1021/acs.jpcc.5b12014
H. Prats, L. Álvarez, F. Illas, R. Sayós Kinetic Monte Carlo simulations of the water gas shift reaction on Cu (111) from density functional theory-based calculations J. Catal., 333 (2016), pp. 217-226, 10.1016/j.jcat.2015.10.029
L. Tian, C.F. Huo, D.B. Cao, Y. Yang, J. Xu, B.S. Wu, H.W. Xiang, Y.Y. Xu, Y.W. Li Effects of reaction conditions on iron-catalyzed fischer-tropsch synthesis: a kinetic monte carlo study J. Mol. Struct.: THEOCHEM, 941 (2010), pp. 30-35, 10.1016/j.theochem.2009.10.032
M. Andersen, C. Panosetti, K. Reuter A practical guide to surface kinetic Monte Carlo simulations Front Chem., 7 (2019), 10.3389/fchem.2019.00202
T. Schablitzki, J. Rogal, R. Drautz A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 375 (2017), 10.1098/rsta.2016.0404
S. Pisduangdaw, O. Mekasuwandumrong, H. Yoshida, S.I. Fujita, M. Arai, J. Panpranot Flame-made Pt/TiO2 catalysts for the liquid-phase selective hydrogenation of 3-nitrostyrene Appl. Catal. A Gen., 490 (2015), pp. 193-200, 10.1016/j.apcata.2014.10.002
T. Prasomsri, T. Nimmanwudipong, Y. Román-Leshkov Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures Energy Environ. Sci., 6 (2013), pp. 1732-1738, 10.1039/c3ee24360e
A.J. Kohler, C.H. Walter, B.H. Shanks Kinetic analysis of the hydrodeoxygenation of aliphatic volatilized lignin molecules on bulk MoO3: elucidating the formation of alkenes and alkanes ACS Catal. (2023), pp. 14813-14827, 10.1021/acscatal.3c04444
L.O. Mark, A.H. Jenkins, H. Heinz, J.W. Medlin Furfuryl alcohol deoxygenation, decarbonylation, and ring-opening on Pt (111) Surf. Sci., 677 (2018), pp. 333-340, 10.1016/j.susc.2018.07.001
T. Toyao, S.M.A. Hakim Siddiki, K. Kon, K. ichi Shimizu The catalytic reduction of carboxylic acid derivatives and CO2 by metal nanoparticles on lewis-acidic supports Chem. Rec., 18 (2018), pp. 1374-1393, 10.1002/tcr.201800061
J.A. Lopez-Ruiz, R.J. Davis Decarbonylation of heptanoic acid over carbon-supported platinum nanoparticles Green. Chem., 16 (2014), pp. 683-694, 10.1039/c3gc41287c
I. Song, H. Lee, S.W. Jeon, D.H. Kim Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions J. Catal., 382 (2020), pp. 269-279, 10.1016/j.jcat.2019.12.041
A. Mahdavi-Shakib, T.N. Whittaker, T.Y. Yun, K.B. Sravan Kumar, L.C. Rich, S. Wang, R.M. Rioux, L.C. Grabow, B.D. Chandler The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts Nat. Catal. (2023), pp. 710-719, 10.1038/s41929-023-00996-3
S. Li, J.M. Hennigan, D.A. Dixon, K.A. Peterson Accurate thermochemistry for transition metal oxide clusters J. Phys. Chem. A, 113 (2009), pp. 7861-7877, 10.1021/jp810182a
A. Ruiz Puigdollers, G. Pacchioni Reducibility of ZrO2/Pt3Zr and ZrO2/Pt 2D films compared to bulk zirconia: a DFT+U study of oxygen removal and H2 adsorption Nanoscale, 9 (2017), pp. 6866-6876, 10.1039/c7nr01904a
D. Mei, A.M. Karim, Y. Wang Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3 J. Phys. Chem. C, 115 (2011), pp. 8155-8164, 10.1021/jp200011j
J. Zhou, A. Worrad, Y. Wang, K. Yu, S. Deshpande, J.A. Boscoboinik, S. Caratzoulas, W. Zheng, D.G. Vlachos The role of the metal core in the performance of WOx inverse catalysts Chem. Catal. (2023), Article 100756, 10.1016/j.checat.2023.100756
S. Najmi, M. Rasmussen, G. Innocenti, C. Chang, E. Stavitski, S.R. Bare, A.J. Medford, J.W. Medlin, C. Sievers Pretreatment effects on the surface chemistry of small oxygenates on molybdenum trioxide ACS Catal., 10 (2020), pp. 8187-8200, 10.1021/acscatal.0c01992
L. Karam, C.N. Neumann Heterogeneously catalyzed carboxylic acid hydrogenation to alcohols ChemCatChem, 14 (2022), pp. 1-18, 10.1002/cctc.202200953
A.R. Head, C. Gattinoni, L. Trotochaud, Y. Yu, O. Karslloǧlu, S. Pletincx, B. Eichhorn, H. Bluhm Water (Non-)Interaction with MoO3 J. Phys. Chem. C, 123 (2019), pp. 16836-16842, 10.1021/acs.jpcc.9b03822
D. Valencia, I. García-Cruz, L.F. Ramírez-Verduzco, J. Aburto Adsorption of biomass-derived products on MoO3: hydrogen bonding interactions under the spotlight ACS Omega, 3 (2018), pp. 14165-14172, 10.1021/acsomega.8b02497
T. Asano, Y. Nakagawa, M. Tamura, K. Tomishige Structure and mechanism of titania-supported platinum-molybdenum catalyst for hydrodeoxygenation of 2-furancarboxylic acid to valeric acid ACS Sustain Chem. Eng., 7 (2019), pp. 9601-9612, 10.1021/acssuschemeng.9b01104
dc.relation.citationendpage.none.fl_str_mv 12
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 114722
dc.relation.citationvolume.none.fl_str_mv 1873-4308
dc.rights.none.fl_str_mv © 2024 The Authors. Published by Elsevier B.V.
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2024 The Authors. Published by Elsevier B.V.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0920586124002165
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/34f23ec6-a101-4997-94a8-ef0643637abd/download
https://repositorio.cuc.edu.co/bitstreams/ae95835d-67cb-45b6-810d-16c186afa9e1/download
https://repositorio.cuc.edu.co/bitstreams/c489b408-9d1c-427c-a4cc-407cca3a655a/download
https://repositorio.cuc.edu.co/bitstreams/737de8da-08bb-437f-b081-abf478f5fd46/download
bitstream.checksum.fl_str_mv b9f6d7655d6e2ac78f8ddd5f25d395f6
73a5432e0b76442b22b026844140d683
2c7969eb866e4c401e72dde8904b7c8d
2d970152ee5ce7e402c3faaf000f150b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166554375684096
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024 The Authors. Published by Elsevier B.V.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castilla-Acevedo, Samir F.Szobody, Titus P.Boydston, Cameron M.John, Jacob St.Amaya-Roncancio, SebastianAllgeier, Alan M.2025-01-21T14:26:35Z2025-01-21T14:26:35Z2024-06-15Samir F. Castilla-Acevedo, Titus P. Szobody, Cameron M. Boydston, Jacob St. John, Sebastian Amaya-Roncancio, Alan M. Allgeier, Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: An experimental and computational study, Catalysis Today, Volume 436, 2024, 114722, ISSN 0920-5861, https://doi.org/10.1016/j.cattod.2024.114722.https://hdl.handle.net/11323/1393810.1016/j.cattod.2024.1147220920-5861Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The production of adipic acid (AA) from the ring-opening hydrogenolysis (hydrodeoxygenation - HDO) of tetrahydrofuran 2,5-dicarboxylic acid (THFDCA) by metal-metal oxide catalysts (Pt-MOx/TiO2 and Pt/MOx) was evaluated. Correlations between AA yield, or products distribution, and the type of active centers in the catalyst surface were established by studying the type (MOx: WOx, MoOx, and ZrOx), the amount of metal oxide (MOx:Pt molar ratio), and the reaction temperature (180ºC, 220ºC, and 240ºC) in Pt-MOx/TiO2 and Pt/MOx. The activity results show that only the catalysts that contain both Pt and Mo produced AA at 220ºC, with yields of 24 % for Pt-MoOx/TiO2 (4 wt % Pt, 1:1 Mo:Pt molar ratio) and 34% for 4 wt % Pt/MoO3. At 180ºC, these catalysts exhibited high selectivity towards reducing the carboxyl group. Computational studies using DFT suggest that this behavior is due to the preferential interaction between the oxygen vacancy (O-VAC) in MoO3 and the Cdouble bondO bond in the carboxyl group in 2-hydroxyadipic acid (2-HAA), the first observed intermediate from the HDO of THFDCA. Coverage of this adsorption configuration decreases at temperatures above 200ºC, where the interaction between the alcohol group in the 2 C position in 2-HAA and the Brønsted acid site (BAS) on the surface of MoO3 is preferred. This latter interaction could promote the acid-catalyzed dehydration of the alcohol group to obtain AA. Increasing the amount of Mo to 5:1 Mo:Pt in Pt-MoOx/TiO2 and decreasing the Pt content to 0.1 wt % in Pt/MoO3 decreases the selectivity to alcohols, increasing the AA yield to 55 % at 220ºC and 65 % at 240ºC for both catalysts. This enhancement in performance is consistent with the findings from the DFT studies. To our knowledge, this is the highest yield reported for AA production from THFDCA or FDCA by metal-metal oxide catalysts.12 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S0920586124002165Efficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts: an experimental and computational studyArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Catalysis TodayX. Jin, M. Liu, G. Zhang, J. Wang, Q. Xia, Y. Sun, Z. Zhou, W. Zhang, S. Wang, C.H. Lam, J. Shen, C. Yang, R.V. Chaudhari Chemical synthesis of adipic acid from glucose and derivatives: challenges for nanocatalyst design ACS Sustain Chem. Eng., 8 (2020), pp. 18732-18754, 10.1021/acssuschemeng.0c04411J.C.J. Bart, S. Cavallaro Transiting from adipic acid to bioadipic acid. 1, petroleum-based processesLucía Fernández, Market volume of adipic acid worldwide in 2018 and 2023, Statista (2021). Accessed 10/10/2023.Avinash D., Adipic Acid Market to Reach US$ 9.43 Billion by 2028, says the brainy insights, the brainy insights (2022). Accessed 10/10/2023.M. Lang, H. Li Sustainable Routes for the synthesis of renewable adipic acid from biomass derivatives ChemSusChem, 15 (1) (2022), p. 26, 10.1002/cssc.202101531W. Yan, G. Zhang, J. Wang, M. Liu, Y. Sun, Z. Zhou, W. Zhang, S. Zhang, X. Xu, J. Shen, X. Jin Recent progress in adipic acid synthesis over heterogeneous catalysts Front Chem., 8 (2020), pp. 1-12, 10.3389/fchem.2020.00185L. Wei, J. Zhang, W. Deng, S. Xie, Q. Zhang, Y. Wang Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles Chem. Commun., 55 (2019), pp. 8013-8016, 10.1039/c9cc02877cM.J. Gilkey, H.J. Cho, B.M. Murphy, J. Wu, D.G. Vlachos, B. Xu Catalytic adipic acid production on zeolites from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid ACS Appl. Energy Mater., 3 (2020), pp. 99-105, 10.1021/acsaem.9b01954M.J. Gilkey, A.V. Mironenko, D.G. Vlachos, B. Xu Adipic acid production via metal-free selective hydrogenolysis of biomass-derived tetrahydrofuran-2,5-dicarboxylic acid ACS Catal., 7 (2017), pp. 6619-6634, 10.1021/acscatal.7b01753A. Vy Tran, S. Park, H. Jin Lee, T. Yong Kim, Y. Kim, Y. Suh, K. Lee, Y. Jin Kim, J. Baek Efficient production of adipic acid by a two-step catalytic reaction of biomass-derived 2,5-furandicarboxylic acid ChemSusChem, 15 (2022), pp. 1-11, 10.1002/cssc.202200375J.G. de Vries Catalytic conversion of renewable resources into bulk and fine chemicals Chem. Rec., 16 (2016), pp. 2783-2796, 10.1002/tcr.201600102J. Fu, S. Liu, W. Zheng, R. Huang, C. Wang, A. Lawal, K. Alexopoulos, S. Liu, Y. Wang, K. Yu, J.A. Boscoboinik, Y. Liu, X. Liu, A.I. Frenkel, O.A. Abdelrahman, R.J. Gorte, S. Caratzoulas, D.G. Vlachos Modulating the dynamics of Brønsted acid sites on PtWOx inverse catalyst Nat. Catal., 5 (2022), pp. 144-153, 10.1038/s41929-022-00745-yM.J. Gilkey, R. Balakumar, D.G. Vlachos, B. Xu Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid Catal. Sci. Technol., 8 (2018), pp. 2661-2671, 10.1039/c8cy00379cJ. Luo, M. Monai, H. Yun, L. Arroyo-Ramírez, C. Wang, C.B. Murray, P. Fornasiero, R.J. Gorte The H2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C catalysts Catal. Lett., 146 (2016), pp. 711-717, 10.1007/s10562-016-1705-xI.H. Choi, J.S. Lee, C.U. Kim, T.W. Kim, K.Y. Lee, K.R. Hwang Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst Fuel, 215 (2018), pp. 675-685, 10.1016/j.fuel.2017.11.094X. Liang, B.S. Haynes, A. Montoya Acid-catalyzed ring opening of furan in aqueous solution Energy Fuels, 32 (2018), pp. 4139-4148, 10.1021/acs.energyfuels.7b03239J. Hidalgo-Carrillo, A. Marinas, F.J. Urbano Chemistry of furfural and furanic derivatives Sustainable chemistry series, Furfural, World scientific (2018), pp. 1-30Y. Nakagawa, M. Yabushita, K. Tomishige Reductive conversion of biomass-derived furancarboxylic acids with retention of carboxylic acid moiety Trans. Tianjin Univ., 27 (2021), pp. 165-179, 10.1007/s12209-021-00284-wT.R. Boussie, Dias L. Eric, Z.M. Fresco, J. Shoemaker, R. Archer, J. Hong, Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials, US 2010/0317823 A1, 2010.Y. Zhang, X. Guo, P. Tang, J. Xu Solubility of 2,5-furandicarboxylic acid in eight pure solvents and two binary solvent systems at 313.15–363.15 K J. Chem. Eng. Data, 63 (2018), pp. 1316-1324, 10.1021/acs.jced.7b00927X. Li, P. Rui, T. Ye, X. Yao, R. Zhou, D. Li, S. Wang, J.H. Carter, G.J. Hutchings Hydrogenolysis of 5-hydroxymethylfurfural by in situ produced hydrogen from water on an iron catalyst Catal. Sci. Technol. (2023), pp. 3366-3374, 10.1039/D3CY00027CJ. He, S.P. Burt, M. Ball, D. Zhao, I. Hermans, J.A. Dumesic, G.W. Huber Synthesis of 1,6-hexanediol from cellulose derived tetrahydrofuran-dimethanol with Pt-WOx/TiO2 catalysts ACS Catal., 8 (2018), pp. 1427-1439, 10.1021/acscatal.7b03593T. Asano, Y. Nakagawa, M. Tamura, K. Tomishige Hydrogenolysis of tetrahydrofuran-2-carboxylic acid over tungsten-modified rhodium catalyst Appl. Catal. A Gen., 602 (2020), pp. 1-13, 10.1016/j.apcata.2020.117723K.J. Stephens, A.M. Allgeier, A.L. Bell, T.R. Carlson, Y. Cheng, J.T. Douglas, L.A. Howe, C.A. Menning, S.A. Neuenswander, S.K. Sengupta, P.S. Thapa, J.C. Ritter A mechanistic study of polyol hydrodeoxygenation over a bifunctional Pt-WOx/TiO2 catalyst ACS Catal., 10 (2020), pp. 12996-13007, 10.1021/acscatal.0c03475S. Fan, M. Zhang, H. Li Zirconium-doped enhanced the biomass hydrodeoxygenation over extremely low-loaded Pd catalysts Fuel, 315 (2022), Article 123060, 10.1016/j.fuel.2021.123060T.N. Phan, Y.K. Park, I.G. Lee, C.H. Ko Enhancement of C–O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides Appl. Catal. A Gen., 544 (2017), pp. 84-93, 10.1016/j.apcata.2017.06.029M. Chia, Y.J. Pagán-Torres, D. Hibbitts, Q. Tan, H.N. Pham, A.K. Datye, M. Neurock, R.J. Davis, J.A. Dumesic Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts J. Am. Chem. Soc., 133 (2011), pp. 12675-12689, 10.1021/ja2038358T. Asano, M. Tamura, Y. Nakagawa, K. Tomishige Selective hydrodeoxygenation of 2-furancarboxylic acid to valeric acid over molybdenum-oxide-modified platinum catalyst ACS Sustain Chem. Eng., 4 (2016), pp. 6253-6257, 10.1021/acssuschemeng.6b01640Y. Takeda, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige Characterization of Re-Pd/SiO2 catalysts for hydrogenation of stearic acid ACS Catal., 5 (2015), pp. 7034-7047, 10.1021/acscatal.5b01054Y. Wu, S. Sourav, A. Worrad, J. Zhou, S. Caratzoulas, G. Tsilomelekis, W. Zheng, D.G. Vlachos Dynamic formation of Brønsted acid sites over supported WOx/Pt on SiO2 inverse catalysts─spectroscopy, probe chemistry, and calculations ACS Catal., 13 (2023), pp. 7371-7382, 10.1021/acscatal.3c00279L.A. Gomez, R. Bababrik, M.R. Komarneni, J. Marlowe, T. Salavati-Fard, A.D. D’Amico, B. Wang, P. Christopher, S.P. Crossley Selective reduction of carboxylic acids to aldehydes with promoted MoO3 catalysts ACS Catal., 12 (2022), pp. 6313-6324, 10.1021/acscatal.2c01350S. Brunauer, P.H. Emmett, E. Teller Adsorption of Gases in Multimolecular Layers J. Am. Chem. Soc., 60 (2) (1938), pp. 309-319, 10.1021/ja01269a023P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials J. Phys. Condens. Matter, 21 (2009), Article 395502, 10.1088/0953-8984/21/39/395502A. Dal Corso, 〈http://pseudopotentials.quantum-espresso.org/legacy_tables/ps-library/w〉, (n.d.). Accessed 10/10/2023.J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett., 77 (1996), pp. 3865-3868, 10.1103/PhysRevLett.77.3865S. Grimme, J. Antony, S. Ehrlich, H. Krieg A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys., 132 (2010), 10.1063/1.3382344S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas Influence of coadsorbed H in CO dissociation and CHn formation on Fe (100): A DFT study Appl. Surf. Sci., 346 (2015), 10.1016/j.apsusc.2015.03.215S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag DFT study of hydrogen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe (100) J. Phys. Chem. C, 120 (2016), 10.1021/acs.jpcc.5b12014H. Prats, L. Álvarez, F. Illas, R. Sayós Kinetic Monte Carlo simulations of the water gas shift reaction on Cu (111) from density functional theory-based calculations J. Catal., 333 (2016), pp. 217-226, 10.1016/j.jcat.2015.10.029L. Tian, C.F. Huo, D.B. Cao, Y. Yang, J. Xu, B.S. Wu, H.W. Xiang, Y.Y. Xu, Y.W. Li Effects of reaction conditions on iron-catalyzed fischer-tropsch synthesis: a kinetic monte carlo study J. Mol. Struct.: THEOCHEM, 941 (2010), pp. 30-35, 10.1016/j.theochem.2009.10.032M. Andersen, C. Panosetti, K. Reuter A practical guide to surface kinetic Monte Carlo simulations Front Chem., 7 (2019), 10.3389/fchem.2019.00202T. Schablitzki, J. Rogal, R. Drautz A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 375 (2017), 10.1098/rsta.2016.0404S. Pisduangdaw, O. Mekasuwandumrong, H. Yoshida, S.I. Fujita, M. Arai, J. Panpranot Flame-made Pt/TiO2 catalysts for the liquid-phase selective hydrogenation of 3-nitrostyrene Appl. Catal. A Gen., 490 (2015), pp. 193-200, 10.1016/j.apcata.2014.10.002T. Prasomsri, T. Nimmanwudipong, Y. Román-Leshkov Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures Energy Environ. Sci., 6 (2013), pp. 1732-1738, 10.1039/c3ee24360eA.J. Kohler, C.H. Walter, B.H. Shanks Kinetic analysis of the hydrodeoxygenation of aliphatic volatilized lignin molecules on bulk MoO3: elucidating the formation of alkenes and alkanes ACS Catal. (2023), pp. 14813-14827, 10.1021/acscatal.3c04444L.O. Mark, A.H. Jenkins, H. Heinz, J.W. Medlin Furfuryl alcohol deoxygenation, decarbonylation, and ring-opening on Pt (111) Surf. Sci., 677 (2018), pp. 333-340, 10.1016/j.susc.2018.07.001T. Toyao, S.M.A. Hakim Siddiki, K. Kon, K. ichi Shimizu The catalytic reduction of carboxylic acid derivatives and CO2 by metal nanoparticles on lewis-acidic supports Chem. Rec., 18 (2018), pp. 1374-1393, 10.1002/tcr.201800061J.A. Lopez-Ruiz, R.J. Davis Decarbonylation of heptanoic acid over carbon-supported platinum nanoparticles Green. Chem., 16 (2014), pp. 683-694, 10.1039/c3gc41287cI. Song, H. Lee, S.W. Jeon, D.H. Kim Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions J. Catal., 382 (2020), pp. 269-279, 10.1016/j.jcat.2019.12.041A. Mahdavi-Shakib, T.N. Whittaker, T.Y. Yun, K.B. Sravan Kumar, L.C. Rich, S. Wang, R.M. Rioux, L.C. Grabow, B.D. Chandler The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts Nat. Catal. (2023), pp. 710-719, 10.1038/s41929-023-00996-3S. Li, J.M. Hennigan, D.A. Dixon, K.A. Peterson Accurate thermochemistry for transition metal oxide clusters J. Phys. Chem. A, 113 (2009), pp. 7861-7877, 10.1021/jp810182aA. Ruiz Puigdollers, G. Pacchioni Reducibility of ZrO2/Pt3Zr and ZrO2/Pt 2D films compared to bulk zirconia: a DFT+U study of oxygen removal and H2 adsorption Nanoscale, 9 (2017), pp. 6866-6876, 10.1039/c7nr01904aD. Mei, A.M. Karim, Y. Wang Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3 J. Phys. Chem. C, 115 (2011), pp. 8155-8164, 10.1021/jp200011jJ. Zhou, A. Worrad, Y. Wang, K. Yu, S. Deshpande, J.A. Boscoboinik, S. Caratzoulas, W. Zheng, D.G. Vlachos The role of the metal core in the performance of WOx inverse catalysts Chem. Catal. (2023), Article 100756, 10.1016/j.checat.2023.100756S. Najmi, M. Rasmussen, G. Innocenti, C. Chang, E. Stavitski, S.R. Bare, A.J. Medford, J.W. Medlin, C. Sievers Pretreatment effects on the surface chemistry of small oxygenates on molybdenum trioxide ACS Catal., 10 (2020), pp. 8187-8200, 10.1021/acscatal.0c01992L. Karam, C.N. Neumann Heterogeneously catalyzed carboxylic acid hydrogenation to alcohols ChemCatChem, 14 (2022), pp. 1-18, 10.1002/cctc.202200953A.R. Head, C. Gattinoni, L. Trotochaud, Y. Yu, O. Karslloǧlu, S. Pletincx, B. Eichhorn, H. Bluhm Water (Non-)Interaction with MoO3 J. Phys. Chem. C, 123 (2019), pp. 16836-16842, 10.1021/acs.jpcc.9b03822D. Valencia, I. García-Cruz, L.F. Ramírez-Verduzco, J. Aburto Adsorption of biomass-derived products on MoO3: hydrogen bonding interactions under the spotlight ACS Omega, 3 (2018), pp. 14165-14172, 10.1021/acsomega.8b02497T. Asano, Y. Nakagawa, M. Tamura, K. Tomishige Structure and mechanism of titania-supported platinum-molybdenum catalyst for hydrodeoxygenation of 2-furancarboxylic acid to valeric acid ACS Sustain Chem. Eng., 7 (2019), pp. 9601-9612, 10.1021/acssuschemeng.9b011041211147221873-4308Metal-metal oxide catalystsHydrodeoxygenationBiomass valorizationFuranic compoundsCarboxylic acid reductionPublicationORIGINALEfficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts.pdfEfficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts.pdfapplication/pdf2821970https://repositorio.cuc.edu.co/bitstreams/34f23ec6-a101-4997-94a8-ef0643637abd/downloadb9f6d7655d6e2ac78f8ddd5f25d395f6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/ae95835d-67cb-45b6-810d-16c186afa9e1/download73a5432e0b76442b22b026844140d683MD52TEXTEfficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts.pdf.txtEfficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts.pdf.txtExtracted texttext/plain76045https://repositorio.cuc.edu.co/bitstreams/c489b408-9d1c-427c-a4cc-407cca3a655a/download2c7969eb866e4c401e72dde8904b7c8dMD53THUMBNAILEfficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts.pdf.jpgEfficient hydrodeoxygenation of tetrahydrofuran 2,5-dicarboxylic acid to adipic acid over Pt-MOx catalysts.pdf.jpgGenerated Thumbnailimage/jpeg14068https://repositorio.cuc.edu.co/bitstreams/737de8da-08bb-437f-b081-abf478f5fd46/download2d970152ee5ce7e402c3faaf000f150bMD5411323/13938oai:repositorio.cuc.edu.co:11323/139382025-01-22 04:00:48.67https://creativecommons.org/licenses/by/4.0/© 2024 The Authors. Published by Elsevier B.V.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K