Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions

Given a multifunction F : (X; _ ) ! (Y; _), _; _ oper-ators on (X; _ ), _; _ operators on (Y; _) and I a proper ideal on X. The purpose of the present paper is to introduce, study and characterize upper and lower (_; _; _; _; I)-continuous multifunctions, its relation with another class of continuou...

Full description

Autores:
ROSAS, ENNIS
Carpintero, Carlos
Sanabria, Jose
Vielma, J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8461
Acceso en línea:
https://hdl.handle.net/11323/8461
https://repositorio.cuc.edu.co/
Palabra clave:
Continuous multifunctions
Multifunction
Continuous upper and lower multifunction
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_4ca1864455ac9b149c488ca4f040d3f6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8461
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
title Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
spellingShingle Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
Continuous multifunctions
Multifunction
Continuous upper and lower multifunction
title_short Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
title_full Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
title_fullStr Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
title_full_unstemmed Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
title_sort Characterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctions
dc.creator.fl_str_mv ROSAS, ENNIS
Carpintero, Carlos
Sanabria, Jose
Vielma, J.
dc.contributor.author.spa.fl_str_mv ROSAS, ENNIS
Carpintero, Carlos
Sanabria, Jose
Vielma, J.
dc.subject.eng.fl_str_mv Continuous multifunctions
Multifunction
Continuous upper and lower multifunction
topic Continuous multifunctions
Multifunction
Continuous upper and lower multifunction
description Given a multifunction F : (X; _ ) ! (Y; _), _; _ oper-ators on (X; _ ), _; _ operators on (Y; _) and I a proper ideal on X. The purpose of the present paper is to introduce, study and characterize upper and lower (_; _; _; _; I)-continuous multifunctions, its relation with another class of continuous multifunctions. Also, we introduce a general decomposition form for this class of continuous multifunction.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-12T13:30:13Z
dc.date.available.none.fl_str_mv 2021-07-12T13:30:13Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1027-4634
2411-0620
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8461
dc.identifier.doi.spa.fl_str_mv doi:10.30970/ms.55.2.206-213
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1027-4634
2411-0620
doi:10.30970/ms.55.2.206-213
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8461
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. M. Akdag, On upper and lower I-continuos multifunctions, Far East J. Math. Sci., 25 (2007), №1, 49–57.
2. A. Al-Omari, M.S.M. Noorani, Contra-I-continuous and almost I-continuous functions, Int. J. Math. Math. Sci., 9 (2007), 169–179.
3. C. Arivazhagi, N. Rajesh, On upper and lower weakly I-continuous multifunctions, Ital. J. Pure Appl. Math., 36 (2016), 899–912.
4. C. Arivazhagi, N. Rajesh, On upper and lower I-nontinuous multifunctions, Bol. Soc. Paran. Mat., 36 (2018), №2, 99–106.
5. C. Arivazhagi, N. Rajesh, Nearly I-continuous multifunctions, Bol. Soc. Paran. Mat., 37 (2019), №11, 33–38.
6. C. Arivazhagi, N. Rajesh, S. Shanthi, On upper and lower almost contra-I-continuous multifunctions, Int. J. Pure Appl. Math., 115 (2017), №4, 787–799.
7. C. Arivazhagi, N. Rajesh, On upper and lower almost I-continuous multifunctions, submitted.
8. C. Arivazhagi, N. Rajesh, On slightly I-continuous multifunctions, Journal of New Results in Science, 11 (2016), 17–23.
9. D. Carnahan, Locally nearly compact spaces, Boll. Un. mat. Ital., 4 (1972), №6, 143–153.
10. C. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, S. Saranyasri, Properties of nearly ω-continuous multifunctions, Acta Univ. Sapientiae Math., 9 (2017), №1, 13–25.
11. C. Carpintero, E. Rosas, J. Moreno, More on upper and lower almost nearly I-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №3, 521–537.
12. C. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower contra ω-continuous multifunctions, Novi Sad J. Math., 44 (2014), №1, 143–151.
13. C. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower faintly ω-continuous multifunctions, Bol. Mat., 21 (2014), №1, 1–8.
14. E. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72 (2003), 229–235.
15. E. Ekici, Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175–186.
16. E. Ekici, S. Jafari, V. Popa, On Almost contra-continuous multifunctions, Lobachevskii J. Math., 30 (2009), №2, 124–131.
17. E. Ekici, S. Jafari, T. Noiri, On upper and lower contra-continuous multifunctions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LIV, 2008, 75–85.
18. D.S. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), №4, 295–310.
19. N. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
20. A. Kambir, I. J. Reilly, On almost l-continuous multifunctions, Hacet. J. Math. Stat., 35 (2005), №2, 181–188.
21. S. Kasahara, Operation compact spaces, Math. Japonica, 24 (1966), 97–105.
22. J. K. Kolii, C.P. Arya, Strongly and perfectly continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20 (2010), №1, 103–118.
23. J.K. Kohli, C.P. Arya, Upper and lower (almost) completely continuous multifunctions, preprint.
24. K. Kuratowski, Topology, Academic Press, New York, 1966.
25. A.S. Mashhour, M.E. Abd El-Monsef, El-Deep on precontinuous and weak precontinuous mappings, Proced. Phys. Soc. Egypt, 53 (1982), 47–53.
26. T. Noiri, V. Popa, On upper and lower M-continuos multifunctions, Filomat, 14 (2000), 73–86.
27. T. Noiri, V. Popa, Slightly m-continuos multifunctions, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 1 (2006), №4, 485–505.
28. T. Noiri, V. Popa, Almost weakly continuos multifunctions, Demonstrat. Math., 22 (1993), №2, 362–380.
29. V. Popa, Some properties of H-almost continuous multifunctions, Chaos Solitons Fractals, 12 (2000), 2387–2394.
30. E. Rosas, C. Carpintero, J. Moreno, Upper and lower (I, J) continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1, 87–97.
31. E. Rosas, C. Carpintero, J. Sanabria, Weakly (I, J) continuous multifunctions and contra (I, J) continuous multifunctions, Ital. J. Pure Appl. Math., 41 (2019), 547–556.
32. E. Rosas, C. Carpintero, J. Moreno, Upper and lower (I,J)-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1.
33. E. Rosas, C. Carpintero, J. Sanabria, Almost contra (I, J)-continuous multifunctions, Novi Sad J. Math. on line March 28, 2019.
34. R.E. Simithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70 (1978), 383–390.
35. M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374–381.
36. J. Vielma, E. Rosas, (α, β, θ, δ, I)-continuous mappings and their decomposition, Divulgaciones Matematicas, 12 (2004), №1, 53–64.
37. I. Zorlutuna, I-continuous multifunctions, Filomat, 27 (2013), №1, 155–162.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Matematychni Studii
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/cff13744-5922-4b27-b3b1-e83802087134/download
https://repositorio.cuc.edu.co/bitstreams/fded15e7-9b50-4423-be4b-97a891df1505/download
https://repositorio.cuc.edu.co/bitstreams/84435931-368d-47d3-a8d6-e549ed508e33/download
https://repositorio.cuc.edu.co/bitstreams/c5b03ee8-6096-4576-bb52-4996453ad657/download
https://repositorio.cuc.edu.co/bitstreams/fc8af069-23c5-40b0-a9ea-6bc542e12aff/download
bitstream.checksum.fl_str_mv c3f056bc412cadbc3f56b4175a250969
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
6c3b3bc9dd06633844a4cd3af0effc3c
b10a48bb3477787afeab86a7337a9c6b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760763104133120
spelling ROSAS, ENNISCarpintero, CarlosSanabria, JoseVielma, J.2021-07-12T13:30:13Z2021-07-12T13:30:13Z20211027-46342411-0620https://hdl.handle.net/11323/8461doi:10.30970/ms.55.2.206-213Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Given a multifunction F : (X; _ ) ! (Y; _), _; _ oper-ators on (X; _ ), _; _ operators on (Y; _) and I a proper ideal on X. The purpose of the present paper is to introduce, study and characterize upper and lower (_; _; _; _; I)-continuous multifunctions, its relation with another class of continuous multifunctions. Also, we introduce a general decomposition form for this class of continuous multifunction.ROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600Carpintero, Carlos-will be generated-orcid-0000-0003-3831-952X-600Sanabria, Jose-will be generated-orcid-0000-0003-1025-1834-600Vielma, J.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Matematychni StudiiContinuous multifunctionsMultifunctionContinuous upper and lower multifunctionCharacterizations of upper and lower (α, β, θ, δ, I)-continuous multifunctionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. M. Akdag, On upper and lower I-continuos multifunctions, Far East J. Math. Sci., 25 (2007), №1, 49–57.2. A. Al-Omari, M.S.M. Noorani, Contra-I-continuous and almost I-continuous functions, Int. J. Math. Math. Sci., 9 (2007), 169–179.3. C. Arivazhagi, N. Rajesh, On upper and lower weakly I-continuous multifunctions, Ital. J. Pure Appl. Math., 36 (2016), 899–912.4. C. Arivazhagi, N. Rajesh, On upper and lower I-nontinuous multifunctions, Bol. Soc. Paran. Mat., 36 (2018), №2, 99–106.5. C. Arivazhagi, N. Rajesh, Nearly I-continuous multifunctions, Bol. Soc. Paran. Mat., 37 (2019), №11, 33–38.6. C. Arivazhagi, N. Rajesh, S. Shanthi, On upper and lower almost contra-I-continuous multifunctions, Int. J. Pure Appl. Math., 115 (2017), №4, 787–799.7. C. Arivazhagi, N. Rajesh, On upper and lower almost I-continuous multifunctions, submitted.8. C. Arivazhagi, N. Rajesh, On slightly I-continuous multifunctions, Journal of New Results in Science, 11 (2016), 17–23.9. D. Carnahan, Locally nearly compact spaces, Boll. Un. mat. Ital., 4 (1972), №6, 143–153.10. C. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, S. Saranyasri, Properties of nearly ω-continuous multifunctions, Acta Univ. Sapientiae Math., 9 (2017), №1, 13–25.11. C. Carpintero, E. Rosas, J. Moreno, More on upper and lower almost nearly I-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №3, 521–537.12. C. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower contra ω-continuous multifunctions, Novi Sad J. Math., 44 (2014), №1, 143–151.13. C. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower faintly ω-continuous multifunctions, Bol. Mat., 21 (2014), №1, 1–8.14. E. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72 (2003), 229–235.15. E. Ekici, Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175–186.16. E. Ekici, S. Jafari, V. Popa, On Almost contra-continuous multifunctions, Lobachevskii J. Math., 30 (2009), №2, 124–131.17. E. Ekici, S. Jafari, T. Noiri, On upper and lower contra-continuous multifunctions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LIV, 2008, 75–85.18. D.S. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), №4, 295–310.19. N. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.20. A. Kambir, I. J. Reilly, On almost l-continuous multifunctions, Hacet. J. Math. Stat., 35 (2005), №2, 181–188.21. S. Kasahara, Operation compact spaces, Math. Japonica, 24 (1966), 97–105.22. J. K. Kolii, C.P. Arya, Strongly and perfectly continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20 (2010), №1, 103–118.23. J.K. Kohli, C.P. Arya, Upper and lower (almost) completely continuous multifunctions, preprint.24. K. Kuratowski, Topology, Academic Press, New York, 1966.25. A.S. Mashhour, M.E. Abd El-Monsef, El-Deep on precontinuous and weak precontinuous mappings, Proced. Phys. Soc. Egypt, 53 (1982), 47–53.26. T. Noiri, V. Popa, On upper and lower M-continuos multifunctions, Filomat, 14 (2000), 73–86.27. T. Noiri, V. Popa, Slightly m-continuos multifunctions, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 1 (2006), №4, 485–505.28. T. Noiri, V. Popa, Almost weakly continuos multifunctions, Demonstrat. Math., 22 (1993), №2, 362–380.29. V. Popa, Some properties of H-almost continuous multifunctions, Chaos Solitons Fractals, 12 (2000), 2387–2394.30. E. Rosas, C. Carpintero, J. Moreno, Upper and lower (I, J) continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1, 87–97.31. E. Rosas, C. Carpintero, J. Sanabria, Weakly (I, J) continuous multifunctions and contra (I, J) continuous multifunctions, Ital. J. Pure Appl. Math., 41 (2019), 547–556.32. E. Rosas, C. Carpintero, J. Moreno, Upper and lower (I,J)-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1.33. E. Rosas, C. Carpintero, J. Sanabria, Almost contra (I, J)-continuous multifunctions, Novi Sad J. Math. on line March 28, 2019.34. R.E. Simithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70 (1978), 383–390.35. M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374–381.36. J. Vielma, E. Rosas, (α, β, θ, δ, I)-continuous mappings and their decomposition, Divulgaciones Matematicas, 12 (2004), №1, 53–64.37. I. Zorlutuna, I-continuous multifunctions, Filomat, 27 (2013), №1, 155–162.PublicationORIGINALCHARACTERIZATIONS OF UPPER AND LOWER.pdfCHARACTERIZATIONS OF UPPER AND LOWER.pdfapplication/pdf307769https://repositorio.cuc.edu.co/bitstreams/cff13744-5922-4b27-b3b1-e83802087134/downloadc3f056bc412cadbc3f56b4175a250969MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/fded15e7-9b50-4423-be4b-97a891df1505/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/84435931-368d-47d3-a8d6-e549ed508e33/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCHARACTERIZATIONS OF UPPER AND LOWER.pdf.jpgCHARACTERIZATIONS OF UPPER AND LOWER.pdf.jpgimage/jpeg62423https://repositorio.cuc.edu.co/bitstreams/c5b03ee8-6096-4576-bb52-4996453ad657/download6c3b3bc9dd06633844a4cd3af0effc3cMD54TEXTCHARACTERIZATIONS OF UPPER AND LOWER.pdf.txtCHARACTERIZATIONS OF UPPER AND LOWER.pdf.txttext/plain26807https://repositorio.cuc.edu.co/bitstreams/fc8af069-23c5-40b0-a9ea-6bc542e12aff/downloadb10a48bb3477787afeab86a7337a9c6bMD5511323/8461oai:repositorio.cuc.edu.co:11323/84612024-09-17 11:02:27.011http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==