Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado

Introducción— El Motor de Inducción de Doble Alimentación (DFIM) es una máquina muy utilizada en accionamientos de velocidad variable, y su robustez, fiabilidad y sencillez de control de velocidad lo convierten en un candidato idóneo para su uso en sistemas de riego inteligente. Objetivo— En este tr...

Full description

Autores:
Hassan, Emad
S. Oshaba, Ahmed
M. Osheba, Dina S.
A. Shanab, Mervet
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12373
Acceso en línea:
https://hdl.handle.net/11323/12373
https://doi.org/10.17981/ingecuc.19.2.2023.02
Palabra clave:
doubly fed induction motor
synchronous motor
smart irrigation
steady state performance
motor de inducción doblemente alimentado
motor síncrono
riego inteligente
rendimiento en estado estacionario
Rights
openAccess
License
INGE CUC - 2023
id RCUC2_4b24d5f5fe52ed334b2c28c8ccbc79f3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12373
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
dc.title.translated.eng.fl_str_mv A Variable Speed Synchronous Motor Approach for Smart Irrigation using Doubly Fed Induction Motor
title Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
spellingShingle Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
doubly fed induction motor
synchronous motor
smart irrigation
steady state performance
motor de inducción doblemente alimentado
motor síncrono
riego inteligente
rendimiento en estado estacionario
title_short Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
title_full Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
title_fullStr Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
title_full_unstemmed Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
title_sort Un enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentado
dc.creator.fl_str_mv Hassan, Emad
S. Oshaba, Ahmed
M. Osheba, Dina S.
A. Shanab, Mervet
dc.contributor.author.spa.fl_str_mv Hassan, Emad
S. Oshaba, Ahmed
M. Osheba, Dina S.
A. Shanab, Mervet
dc.subject.eng.fl_str_mv doubly fed induction motor
synchronous motor
smart irrigation
steady state performance
topic doubly fed induction motor
synchronous motor
smart irrigation
steady state performance
motor de inducción doblemente alimentado
motor síncrono
riego inteligente
rendimiento en estado estacionario
dc.subject.spa.fl_str_mv motor de inducción doblemente alimentado
motor síncrono
riego inteligente
rendimiento en estado estacionario
description Introducción— El Motor de Inducción de Doble Alimentación (DFIM) es una máquina muy utilizada en accionamientos de velocidad variable, y su robustez, fiabilidad y sencillez de control de velocidad lo convierten en un candidato idóneo para su uso en sistemas de riego inteligente. Objetivo— En este trabajo se estudia y evalúa el rendimiento del DFIM en diferentes condiciones de funcionamiento y se demuestra que puede considerarse como un motor síncrono de velocidad variable. Metodología— Se ha desarrollado un modelo matemático para optimizar el rendimiento del DFIM en sistemas de riego inteligentes, teniendo en cuenta las condiciones específicas de la aplicación. Además, se construyó y probó un montaje experimental para mejorar los resultados teóricos, que mostró una buena correlación entre los resultados teóricos y experimentales. Resultados— Los resultados de la investigación revelan que el DFIM puede utilizarse para controlar el caudal de agua en sistemas de riego, ajustando la velocidad del motor para que coincida con el caudal deseado. Conclusiones— Los resultados de esta investigación demuestran el potencial del uso del DFIM en sistemas de riego inteligentes para mejorar el rendimiento y la eficiencia del riego y proporcionar un mejor control y menores costes.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-23 00:00:00
2024-04-09T20:22:06Z
dc.date.available.none.fl_str_mv 2023-04-23 00:00:00
2024-04-09T20:22:06Z
dc.date.issued.none.fl_str_mv 2023-04-23
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12373
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.19.2.2023.02
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.19.2.2023.02
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.19.2.2023.02
2382-4700
url https://hdl.handle.net/11323/12373
https://doi.org/10.17981/ingecuc.19.2.2023.02
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.eng.fl_str_mv M. Etemadi, H. Hesar & M. Khoshhava, “Speed Control of Brushless Doubly Fed Induction Machine Drive Based on Model Reference Adaptive System,” presented at 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC, THR, IR, 1-3 Feb. 2022. https://doi.org/10.1109/PEDSTC53976.2022.9767330
Y. Zhang, J. Ge, W. Xu, W. Li, Y. Luo, S. Su, & Y. He, “Performance Analysis of Nested-loop Secondary Linear Doubly-fed Machine Considering End Effects,” CES Trans Electr Mach Syst, vol. 6, no. 3, pp. 298–305, Sept. 2022. https://doi.org/10.30941/CESTEMS.2022.00040
Z. Cheng, Z. Cao, J. Hwang & C. Mi, “A Novel Single-Turn Permanent Magnet Synchronous Machine for Electric Aircraft,” Energies, vol. 16, no. 3, pp. 1–14, Jan. 2023. https://doi.org/10.3390/en16031041
N. El Ouanjli, A. Derouich, A. El Ghzizal, J. Bouchnaif, Y. El Mourabit, M. Taoussi & B. Bossoufi, “Real-time implementation in dSPACE of DTC-backstepping for a doubly fed induction motor,” Eur. Phys. J. Plus, vol. 134, no. 11, pp. 1–14, Aug. 2019. https://doi.org/10.1140/epjp/i2019-12961-x
R. Yang, Z. He, N. Sugita & T. Shinshi, “Low-Cost and Compact Disposable Extracorporeal Centrifugal Blood Pump Utilizing a Homopolar Bearingless Switched Reluctance Slice Motor,” IEEE Access, vol. 11, pp. 24353–24366, Mar. 2023. https://doi.org/10.1109/ACCESS.2023.3254546
D. Li, G. Gong, J. Lv, X. Jiang & R. He, “An Overall Control of Doubly fed Variable Speed Pumped Storage Unit in Pumping Mode,” presented at IEEE 4th Conference on Energy Internet and Energy System Integration, EI2, WHN, CN, 30 Oct. 2020 - 1 Nov. 2020. https://doi.org/10.1109/EI250167.2020.9346705
 R. Selvaraj, T. Chelliah & K. Desingu, “Reactive Power Circulation Based Fault Tolerance Schemes for Multi-Megawatt 3L-NPC Paralleled Converters in Variable Speed Hydro Applications,” IEEE Trans Ind Appl, vol. 59, no. 2, pp. 1923–1934, Mar. 2023. https://doi.org/10.1109/TIA.2022.3222647
 R. Mehrjardi, N. Ershad, B. Rahrovi & M. Ehsani, “Brushless Doubly-Fed Induction Machine with Feed-Forward Torque Compensation Control,” presented at IEEE Texas Power and Energy Conference, TPEC, CS, TX, USA, 2-5 Feb. 2021. https://doi.org/10.1109/TPEC51183.2021.9384974
 W. Rajan Babu, M. Sundaram, G. Muthuram, A. Khaja Najumudeen, M. Karthick & B. Chandramouli, “MSCP based Rotor Faults and Mechanical Bearing Failure Identification in Induction Motor using Power Quality Analyzer,” presented at International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT, BGLU, IN, 5-7 Jan. 2023. https://doi.org/10.1109/IDCIoT56793.2023.10053456
 M. Yahiaoui, M. Kinnaert & J. Gyselinck, “Sensorless Vector Control for Grid Synchronization of Doubly-Fed Induction Generators,” presented at International Conference on Electrical Machines, ICEM, VAL, ES, 5-8 Sept. 2022. https://doi.org/10.1109/ICEM51905.2022.9910913
 C. Djamila, M. Yahia & M. Mohamed, “Performances of Robust Control of Doubly-Fed Induction Generator for Wind Energy Conversion System,” presented at 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET, MKS, MOR, 3-4 Mar. 2022. https://doi.org/10.1109/IRASET52964.2022.9737917
 R. Ryndzionek, K. Blecharz, F. Kutt, M. Michna & G. Kostro, “Fault-Tolerant Performance of the Novel Five-Phase Doubly-Fed Induction Generator,” IEEE Access, vol. 10, pp. 59350–59358, May. 2022. https://doi.org/10.1109/ACCESS.2022.3179815
 S. Abdi, E. Abdi & H. Toshani, “Rotational Iron Losses in Brushless Doubly Fed Machines,” presented at International Conference on Electrical Machines, ICEM, VAL, ES, 5-8 Sept. 2022. https://doi.org/10.1109/ICEM51905.2022.9910940
 B. Battulga, M. Shaikh, S. Bin Lee & M. Osama, “Automated Detection of Failures in Doubly-Fed Induction Generators for Wind Turbine Applications,” presented at IEEE Energy Conversion Congress and Exposition, ECCE, DET, MI, USA, 9-13 Oct. 2022. https://doi.org/10.1109/ECCE50734.2022.9947734
 M. Cheng, X. Yan & J. Zhou, “Negative-Sequence Current Compensation-Based Coordinated Control Strategy for Dual-Cage-Rotor Brushless Doubly Fed Induction Generator Under Unbalanced Grid Conditions,” IEEE Trans Ind Electron, vol. 70, no. 5, pp. 4762–4773, May. 2023. https://doi.org/10.1109/TIE.2022.3186317
 F. Deylami & A. Darabi, “A Simple Method for Steady-State Performance Optimization of Doubly-Fed Induction Machines,” presented at 9th Iranian Conference on Renewable Energy & Distributed Generation, ICREDG, MSHD, IR, 23-24 Feb. 2022. https://doi.org/10.1109/ICREDG54199.2022.9804516
 M. Mehta & B. Mehta, “Implementation of STATCOM in a Doubly Fed Induction Machine Based Wind Park,” presented at IEEE International Power and Renewable Energy Conference, IPRECON, KLLM, IN, 16-18 Dec. 2022. https://doi.org/10.1109/IPRECON55716.2022.10059544
S. Odhano, S. Rubino, M. Tang, P. Zanchetta & R. Bojoi, “Stator Current-Sensorless-Modulated Model Predictive Direct Power Control of a DFIM With Magnetizing Characteristic Identification,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, pp. 2797–2806, Jun. 2021. https://doi.org/10.1109/JESTPE.2020.3024679
B. Dahhou & A. Bouraiou, “Speed Control Of DFIM Using Artificial Neural Network Controller,” presented at 2nd International Conference on Advanced Electrical Engineering, ICAEE, COST, AG, 29-31 Oct. 2022. https://doi.org/10.1109/ICAEE53772.2022.9961983
L. Simon, J. Ravishankar & S. Swarup, “Coordinated reactive power and crow bar control for DFIG-based wind turbines for power oscillation damping,” Wind Eng, vol. 43, no. 2, pp. 95–113, Jul. 2018. https://doi.org/10.1177/0309524X18780385
dc.relation.citationendpage.none.fl_str_mv 21–32
dc.relation.citationstartpage.none.fl_str_mv 21–32
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/4752/4862
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4752/5027
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4752/5028
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2023 : (Julio-Diciembre)
dc.rights.eng.fl_str_mv INGE CUC - 2023
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2023
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
text/html
text/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.eng.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/4752
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/46cc4311-5c48-4ce8-bbb9-6302e29c82ca/download
bitstream.checksum.fl_str_mv 0683e84df1bf56d93911f504b7a7d5af
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760803632644096
spelling Hassan, EmadS. Oshaba, AhmedM. Osheba, Dina S.A. Shanab, Mervet2023-04-23 00:00:002024-04-09T20:22:06Z2023-04-23 00:00:002024-04-09T20:22:06Z2023-04-230122-6517https://hdl.handle.net/11323/12373https://doi.org/10.17981/ingecuc.19.2.2023.0210.17981/ingecuc.19.2.2023.022382-4700Introducción— El Motor de Inducción de Doble Alimentación (DFIM) es una máquina muy utilizada en accionamientos de velocidad variable, y su robustez, fiabilidad y sencillez de control de velocidad lo convierten en un candidato idóneo para su uso en sistemas de riego inteligente. Objetivo— En este trabajo se estudia y evalúa el rendimiento del DFIM en diferentes condiciones de funcionamiento y se demuestra que puede considerarse como un motor síncrono de velocidad variable. Metodología— Se ha desarrollado un modelo matemático para optimizar el rendimiento del DFIM en sistemas de riego inteligentes, teniendo en cuenta las condiciones específicas de la aplicación. Además, se construyó y probó un montaje experimental para mejorar los resultados teóricos, que mostró una buena correlación entre los resultados teóricos y experimentales. Resultados— Los resultados de la investigación revelan que el DFIM puede utilizarse para controlar el caudal de agua en sistemas de riego, ajustando la velocidad del motor para que coincida con el caudal deseado. Conclusiones— Los resultados de esta investigación demuestran el potencial del uso del DFIM en sistemas de riego inteligentes para mejorar el rendimiento y la eficiencia del riego y proporcionar un mejor control y menores costes.Introduction— Doubly Fed Induction Motor (DFIM) is a popular machine used in variable speed drives, and its ruggedness, reliability and simplicity of speed control make it a suitable candidate for use in smart irrigation systems. Objective— This paper studies and evaluates the performance of DFIM at different operating conditions and shows that it can be viewed as a variable speed synchronous motor. Methodology— A mathematical model has been developed to optimize the performance of the DFIM in smart irrigation systems, taking into account the specific conditions of the application. In addition, an experimental setup was built and tested to enhance the theoretical results, which showed good correlation between the theoretical and experimental results. Results— The research results reveal that DFIM can be used to control the flow rate of water in irrigation systems, by adjusting the speed of the motor to match the desired flow rate. Conclusions— The results of this research demonstrate the potential of using the DFIM in smart irrigation systems to improve the performance and efficiency of irrigation and to provide better control and lower costs.application/pdftext/htmltext/xmlengUniversidad de la CostaINGE CUC - 2023http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/4752doubly fed induction motorsynchronous motorsmart irrigationsteady state performancemotor de inducción doblemente alimentadomotor síncronoriego inteligenterendimiento en estado estacionarioUn enfoque de motor síncrono de velocidad variable para el riego inteligente utilizando un motor de inducción doblemente alimentadoA Variable Speed Synchronous Motor Approach for Smart Irrigation using Doubly Fed Induction MotorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucM. Etemadi, H. Hesar & M. Khoshhava, “Speed Control of Brushless Doubly Fed Induction Machine Drive Based on Model Reference Adaptive System,” presented at 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC, THR, IR, 1-3 Feb. 2022. https://doi.org/10.1109/PEDSTC53976.2022.9767330Y. Zhang, J. Ge, W. Xu, W. Li, Y. Luo, S. Su, & Y. He, “Performance Analysis of Nested-loop Secondary Linear Doubly-fed Machine Considering End Effects,” CES Trans Electr Mach Syst, vol. 6, no. 3, pp. 298–305, Sept. 2022. https://doi.org/10.30941/CESTEMS.2022.00040Z. Cheng, Z. Cao, J. Hwang & C. Mi, “A Novel Single-Turn Permanent Magnet Synchronous Machine for Electric Aircraft,” Energies, vol. 16, no. 3, pp. 1–14, Jan. 2023. https://doi.org/10.3390/en16031041N. El Ouanjli, A. Derouich, A. El Ghzizal, J. Bouchnaif, Y. El Mourabit, M. Taoussi & B. Bossoufi, “Real-time implementation in dSPACE of DTC-backstepping for a doubly fed induction motor,” Eur. Phys. J. Plus, vol. 134, no. 11, pp. 1–14, Aug. 2019. https://doi.org/10.1140/epjp/i2019-12961-xR. Yang, Z. He, N. Sugita & T. Shinshi, “Low-Cost and Compact Disposable Extracorporeal Centrifugal Blood Pump Utilizing a Homopolar Bearingless Switched Reluctance Slice Motor,” IEEE Access, vol. 11, pp. 24353–24366, Mar. 2023. https://doi.org/10.1109/ACCESS.2023.3254546D. Li, G. Gong, J. Lv, X. Jiang & R. He, “An Overall Control of Doubly fed Variable Speed Pumped Storage Unit in Pumping Mode,” presented at IEEE 4th Conference on Energy Internet and Energy System Integration, EI2, WHN, CN, 30 Oct. 2020 - 1 Nov. 2020. https://doi.org/10.1109/EI250167.2020.9346705 R. Selvaraj, T. Chelliah & K. Desingu, “Reactive Power Circulation Based Fault Tolerance Schemes for Multi-Megawatt 3L-NPC Paralleled Converters in Variable Speed Hydro Applications,” IEEE Trans Ind Appl, vol. 59, no. 2, pp. 1923–1934, Mar. 2023. https://doi.org/10.1109/TIA.2022.3222647 R. Mehrjardi, N. Ershad, B. Rahrovi & M. Ehsani, “Brushless Doubly-Fed Induction Machine with Feed-Forward Torque Compensation Control,” presented at IEEE Texas Power and Energy Conference, TPEC, CS, TX, USA, 2-5 Feb. 2021. https://doi.org/10.1109/TPEC51183.2021.9384974 W. Rajan Babu, M. Sundaram, G. Muthuram, A. Khaja Najumudeen, M. Karthick & B. Chandramouli, “MSCP based Rotor Faults and Mechanical Bearing Failure Identification in Induction Motor using Power Quality Analyzer,” presented at International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT, BGLU, IN, 5-7 Jan. 2023. https://doi.org/10.1109/IDCIoT56793.2023.10053456 M. Yahiaoui, M. Kinnaert & J. Gyselinck, “Sensorless Vector Control for Grid Synchronization of Doubly-Fed Induction Generators,” presented at International Conference on Electrical Machines, ICEM, VAL, ES, 5-8 Sept. 2022. https://doi.org/10.1109/ICEM51905.2022.9910913 C. Djamila, M. Yahia & M. Mohamed, “Performances of Robust Control of Doubly-Fed Induction Generator for Wind Energy Conversion System,” presented at 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET, MKS, MOR, 3-4 Mar. 2022. https://doi.org/10.1109/IRASET52964.2022.9737917 R. Ryndzionek, K. Blecharz, F. Kutt, M. Michna & G. Kostro, “Fault-Tolerant Performance of the Novel Five-Phase Doubly-Fed Induction Generator,” IEEE Access, vol. 10, pp. 59350–59358, May. 2022. https://doi.org/10.1109/ACCESS.2022.3179815 S. Abdi, E. Abdi & H. Toshani, “Rotational Iron Losses in Brushless Doubly Fed Machines,” presented at International Conference on Electrical Machines, ICEM, VAL, ES, 5-8 Sept. 2022. https://doi.org/10.1109/ICEM51905.2022.9910940 B. Battulga, M. Shaikh, S. Bin Lee & M. Osama, “Automated Detection of Failures in Doubly-Fed Induction Generators for Wind Turbine Applications,” presented at IEEE Energy Conversion Congress and Exposition, ECCE, DET, MI, USA, 9-13 Oct. 2022. https://doi.org/10.1109/ECCE50734.2022.9947734 M. Cheng, X. Yan & J. Zhou, “Negative-Sequence Current Compensation-Based Coordinated Control Strategy for Dual-Cage-Rotor Brushless Doubly Fed Induction Generator Under Unbalanced Grid Conditions,” IEEE Trans Ind Electron, vol. 70, no. 5, pp. 4762–4773, May. 2023. https://doi.org/10.1109/TIE.2022.3186317 F. Deylami & A. Darabi, “A Simple Method for Steady-State Performance Optimization of Doubly-Fed Induction Machines,” presented at 9th Iranian Conference on Renewable Energy & Distributed Generation, ICREDG, MSHD, IR, 23-24 Feb. 2022. https://doi.org/10.1109/ICREDG54199.2022.9804516 M. Mehta & B. Mehta, “Implementation of STATCOM in a Doubly Fed Induction Machine Based Wind Park,” presented at IEEE International Power and Renewable Energy Conference, IPRECON, KLLM, IN, 16-18 Dec. 2022. https://doi.org/10.1109/IPRECON55716.2022.10059544S. Odhano, S. Rubino, M. Tang, P. Zanchetta & R. Bojoi, “Stator Current-Sensorless-Modulated Model Predictive Direct Power Control of a DFIM With Magnetizing Characteristic Identification,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, pp. 2797–2806, Jun. 2021. https://doi.org/10.1109/JESTPE.2020.3024679B. Dahhou & A. Bouraiou, “Speed Control Of DFIM Using Artificial Neural Network Controller,” presented at 2nd International Conference on Advanced Electrical Engineering, ICAEE, COST, AG, 29-31 Oct. 2022. https://doi.org/10.1109/ICAEE53772.2022.9961983L. Simon, J. Ravishankar & S. Swarup, “Coordinated reactive power and crow bar control for DFIG-based wind turbines for power oscillation damping,” Wind Eng, vol. 43, no. 2, pp. 95–113, Jul. 2018. https://doi.org/10.1177/0309524X1878038521–3221–32219https://revistascientificas.cuc.edu.co/ingecuc/article/download/4752/4862https://revistascientificas.cuc.edu.co/ingecuc/article/download/4752/5027https://revistascientificas.cuc.edu.co/ingecuc/article/download/4752/5028Núm. 2 , Año 2023 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2777https://repositorio.cuc.edu.co/bitstreams/46cc4311-5c48-4ce8-bbb9-6302e29c82ca/download0683e84df1bf56d93911f504b7a7d5afMD5111323/12373oai:repositorio.cuc.edu.co:11323/123732024-09-17 12:46:29.871http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2023metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co