An overview of forest residues as promising low-cost adsorbents

Anthropogenic activities have severely affected biogeochemical cycles on a global scale, resulting in a drastic increase in environmental problems, intensified by wastewater generation containing high levels of pollutants. As it is known that water is precious yet limited, viable wastewater treatmen...

Full description

Autores:
Vieira, Yasmin
N. dos Santos, Juliana M.
georgin, jordana
S. Oliveira, Marcos L.
Pinto, Diana
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8587
Acceso en línea:
https://hdl.handle.net/11323/8587
https://doi.org/10.1016/j.gr.2021.06.018
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Bark
Leaves
Sawdust
Seeds
Rights
embargoedAccess
License
CC0 1.0 Universal
id RCUC2_4adcac005ddf37eeddb88c7cfb49da66
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8587
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv An overview of forest residues as promising low-cost adsorbents
title An overview of forest residues as promising low-cost adsorbents
spellingShingle An overview of forest residues as promising low-cost adsorbents
Adsorption
Bark
Leaves
Sawdust
Seeds
title_short An overview of forest residues as promising low-cost adsorbents
title_full An overview of forest residues as promising low-cost adsorbents
title_fullStr An overview of forest residues as promising low-cost adsorbents
title_full_unstemmed An overview of forest residues as promising low-cost adsorbents
title_sort An overview of forest residues as promising low-cost adsorbents
dc.creator.fl_str_mv Vieira, Yasmin
N. dos Santos, Juliana M.
georgin, jordana
S. Oliveira, Marcos L.
Pinto, Diana
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Vieira, Yasmin
N. dos Santos, Juliana M.
georgin, jordana
S. Oliveira, Marcos L.
Pinto, Diana
Dotto, Guilherme Luiz
dc.subject.spa.fl_str_mv Adsorption
Bark
Leaves
Sawdust
Seeds
topic Adsorption
Bark
Leaves
Sawdust
Seeds
description Anthropogenic activities have severely affected biogeochemical cycles on a global scale, resulting in a drastic increase in environmental problems, intensified by wastewater generation containing high levels of pollutants. As it is known that water is precious yet limited, viable wastewater treatments must be developed. Adsorption is an environmentally friendly option, and it offers the possibility of resolving two problems simultaneously. Besides removing pollutants from water, many adsorbents can be produced using wooden forestry residues. Such materials are generally considered as waste, which leads to their direct disposal. In addition, there are types of wooden forestry waste that have little or no use for humankind, such as fallen leaves or rotten fruits. Therefore, the utilization of wooden forestry residues for preparing low-cost adsorbents is promising. In this review, we briefly approach adsorption advantages to wastewater treatment. Later on, we focus on several types of wooden forestry residues as alternative low-cost adsorbents. © 2021 International Association for Gondwana Research.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-24T16:57:34Z
dc.date.available.none.fl_str_mv 2021-08-24T16:57:34Z
dc.date.issued.none.fl_str_mv 2021-06-26
dc.date.embargoEnd.none.fl_str_mv 2022-06-26
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1342-937X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8587
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.gr.2021.06.018
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1342-937X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8587
https://doi.org/10.1016/j.gr.2021.06.018
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abatal, M., Anastopoulos, I., Giannakoudakis, D.A., Olguin, M.T., 2020. Carbonaceousmaterial obtained from bark biomass as adsorbent of phenolic compounds fromaqueous solutions. J. Environ. Chem. Eng. 8,.https://doi.org/10.1016/j.jece.2020.103784103784
Abegunde, S.M., Idowu, K.S., Adejuwon, O.M., Adeyemi-Adejolu, T., 2020. A reviewon the influence of chemical modification on the performance of adsorbents.Resour. Environ. Sustain. 1,.https://doi.org/10.1016/j.resenv.2020.100001100001.
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impactof biochar and hydrochar addition on water retention and water repellency ofsandy soil. Geoderma 202–203, 183–191.https://doi.org/10.1016/j.geoderma.2013.03.003.
Abu El-Rub, Z., Bramer, E.A., Brem, G., 2008. Experimental comparison of biomasschars with other catalysts for tar reduction. Fuel 87, 2243–2252.https://doi.org/10.1016/j.fuel.2008.01.004
Achour, Y., Bahsis, L., Ablouh, E.H., Yazid, H., Laamari, M.R., Haddad, M. El, 2021.Insight into adsorption mechanism of Congo red dye onto BombaxBuonopozense bark Activated-carbon using Central composite design and DFTstudies. Surf. Interfaces 23,.https://doi.org/10.1016/j.surfin.2021.100977100977.
Afroze, S., Sen, T.K., Ang, H.M., 2016. Adsorption removal of zinc (II) from aqueousphase by raw and base modified Eucalyptus sheathiana bark: Kinetics,mechanism and equilibrium study. Process Saf. Environ. Prot. 102, 336–352.https://doi.org/10.1016/j.psep.2016.04.009.
Aguayo-Villarreal et al., 2016 I.A. Aguayo-Villarreal, V. Hernández-Montoya, E.M. Ramírez-López, A. Bonilla-Petriciolet, M.A. Montes-Morán Effect of surface chemistry of carbons from pine sawdust for the adsorption of acid, basic and reactive dyes and their bioregeneration using Pseudomona putida Ecol. Eng., 95 (2016), pp. 112-118, 10.1016/j.ecoleng.2016.06.056
Ahmad, 2009 R. Ahmad Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP) J. Hazard. Mater., 171 (2009), pp. 767-773, 10.1016/j.jhazmat.2009.06.060
Ahmed et al., 2016 M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater Bioresour. Technol. (2016), 10.1016/j.biortech.2016.05.057
Ahmed and Theydan, 2014 M.J. Ahmed, S.K. Theydan Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption J. Anal. Appl. Pyrol., 105 (2014), pp. 199-208, 10.1016/j.jaap.2013.11.005
Ahmed and Theydan, 2013a M.J. Ahmed, S.K. Theydan Adsorption of p-chlorophenol onto microporous activated carbon from Albizia lebbeck seed pods by one-step microwave assisted activation J. Anal. Appl. Pyrol., 100 (2013), pp. 253-260, 10.1016/j.jaap.2013.01.008
hmed and Theydan, 2013b M.J. Ahmed, S.K. Theydan Microwave assisted preparation of microporous activated carbon from Siris seed pods for adsorption of metronidazole antibiotic Chem. Eng. J., 214 (2013), pp. 310-318, 10.1016/j.cej.2012.10.101
Ahmed and Theydan, 2012 M.J. Ahmed, S.K. Theydan Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations Chem. Eng. J., 211–212 (2012), pp. 200-207, 10.1016/j.cej.2012.09.089
Ajaelu et al., 2018 C.J. Ajaelu, V. Nwosu, L. Ibironke, A. Adeleye Adsorptive removal of cationic dye from aqueous solution using chemically modified African Border Tree (Newbouldia laevis) bark J. Appl. Sci. Environ. Manag., 21 (2018), p. 1323, 10.4314/jasem.v21i7.18
Ajmal et al., 1996 Ajmal, M., Ali Khan Rao, R., Siddiqui, B.A., 1996. Studies on removal and recovery of Cr(VI) from electroplating wastes. Water Res. 30, 1478–1482. https://doi.org/10.1016/0043-1354(95)00301-0
Akar et al., 2019 S. Akar, B. Lorestani, S. Sobhanardakani, M. Cheraghi, O. Moradi Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample Environ. Monit. Assess., 191 (2019), pp. 1-19, 10.1007/s10661-019-7479-z
Akhtar et al., 2018 A. Akhtar, V. Krepl, T. Ivanova A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass Energy Fuels (2018), 10.1021/acs.energyfuels.8b01678
Akinwande et al., 2021 A.A. Akinwande, A.A. Adediran, O.A. Balogun, O.S. Olusoju, O.S. Adesina Influence of alkaline modification on selected properties of banana fiber paperbricks Sci. Rep., 11 (2021), p. 5793, 10.1038/s41598-021-85106-8
Al Bsoul et al., 2021 A. Al Bsoul, M. Hailat, A. Abdelhay, M. Tawalbeh, A. Al-Othman, I.N. Al-kharabsheh, A.A. Al-Taani Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent Sci. Total Environ., 761 (2021), 10.1016/j.scitotenv.2020.143229
Albayari et al., 2021 M. Albayari, M.K. Nazal, F.I. Khalili, N. Nordin, R. Adnan Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water J. Radioanal. Nucl. Chem., 1–10 (2021), 10.1007/s10967-021-07667-2
Álvarez-Torrellas et al., 2016 S. Álvarez-Torrellas, M. Muñoz, J.A. Zazo, J.A. Casas, J. García Synthesis of high surface area carbon adsorbents prepared from pine sawdust- Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption J. Environ. Manage., 183 (2016), pp. 294-305, 10.1016/j.jenvman.2016.08.077
Andrew Ofudje et al., 2015 E. Andrew Ofudje, O. Kolawole Akiode, G. Opeoluwa Oladipo, A. Emmanuel Adedapo, L. Olanike Adebayo, A. Olushola Awotula Application of raw and alkaline-modified coconut shaft as a biosorbent for Pb2+ removal BioResources (2015)
Angin et al., 2013 D. Angin, E. Altintig, T.E. Köse Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation Bioresour. Technol., 148 (2013), pp. 542-549, 10.1016/j.biortech.2013.08.164
Arenas Esteban et al., 2020 D. Arenas Esteban, A. Guerrero Martínez, J. Carretero González, V.I. Birss, L.C. Otero-Díaz, D. Ávila Brande Tunable Supercapacitor Materials Derived from Hydrochar/Gold Nanograpes ACS Appl. Energy Mater., 3 (2020), pp. 9348-9359, 10.1021/acsaem.0c01711
Argun and Dursun, 2008 M.E. Argun, S. Dursun A new approach to modification of natural adsorbent for heavy metal adsorption Bioresour. Technol., 99 (2008), pp. 2516-2527, 10.1016/j.biortech.2007.04.037
Argun et al., 2005 M.E. Argun, S. Dursun, K. Gur, C. Ozdemir, M. Karatas, S. Dogan Nickel adsorption on the modified pine tree materials Environ. Technol., 26 (2005), pp. 479-488, 10.1080/09593332608618532
Arim et al., 2019 A.L. Arim, M.J. Quina, L.M. Gando-Ferreira Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: Characterization, batch and column studies Process Saf. Environ. Prot., 121 (2019), pp. 374-386, 10.1016/j.psep.2018.11.001
Asfour et al., 2007 H.M. Asfour, M.M. Nassar, O.A. Fadali, M.S. El-Geundi Colour removal from textile effluents using hardwood sawdust as an absorbent J. Chem. Technol. Biotechnol. Chem. Technol., 35 (2007), pp. 28-35, 10.1002/jctb.5040350106
Asif Tahir et al., 2016 M. Asif Tahir, H.N. Bhatti, M. Iqbal Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies J. Environ. Chem. Eng., 4 (2016), pp. 2431-2439, 10.1016/j.jece.2016.04.020
Ateş et al., 2019 F. Ateş, S. Şahin, Z. İlbay, I. Kırbaşlar A Green Valorisation Approach Using Microwaves and Supercritical CO 2 for High-Added Value Ingredients from Mandarin (Citrus deliciosa Tenore) Leaf Waste Waste Biomass Valorization, 10 (2019), pp. 533-546, 10.1007/s12649-017-0074-z
Babalola et al., 2016 J.O. Babalola, B.A. Koiki, Y. Eniayewu, A. Salimonu, J.O. Olowoyo, V.O. Oninla, H.A. Alabi, A.E. Ofomaja, M.O. Omorogie Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies J. Environ. Chem. Eng., 4 (2016), pp. 3527-3536, 10.1016/j.jece.2016.07.027
Babeker and Chen, 2021 Babeker, T.M.A., Chen, Q., 2021. Heavy Metal Removal from Wastewater by Adsorption with Hydrochar Derived from Biomass: Current Applications and Research Trends. Curr. Pollut. Reports. https://doi.org/10.1007/s40726-020-00172-2
Bach, 2007 Bach, M.T., 2007. IMPACT OF SURFACE CHEMISTRY ON ADSORPTION: TAILORING OF ACTIVATED CARBON.
Bakar et al., 2021 N.A. Bakar, N. Othman, Z.M. Yunus, W.A.H. Altowayti, M. Tahir, N. Fitriani, S.N.A. Mohd-Salleh An insight review of lignocellulosic materials as activated carbon precursor for textile wastewater treatment Environ. Technol. Innov., 22 (2021), Article 101445, 10.1016/j.eti.2021.101445
Bandosz and Block, 2006 T.J. Bandosz, K. Block Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents Appl. Catal. B Environ., 67 (2006), pp. 77-85, 10.1016/j.apcatb.2006.04.006
Bargmann et al., 2014 I. Bargmann, M.C. Rillig, A. Kruse, J.-M. Greef, M. Kücke Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability J. Plant Nutr. Soil Sci., 177 (2014), pp. 48-58, 10.1002/jpln.201300069
Batzias and Sidiras, 2007 F.A. Batzias, D.K. Sidiras Simulation of dye adsorption by beech sawdust as affected by pH J. Hazard. Mater., 141 (2007), pp. 668-679, 10.1016/j.jhazmat.2006.07.033
Bello et al., 2020 O.S. Bello, E.O. Alabi, K.A. Adegoke, S.A. Adegboyega, A.A. Inyinbor, A.O. Dada Rhodamine B dye sequestration using Gmelina aborea leaf powder Heliyon, 6 (2020), Article e02872, 10.1016/j.heliyon.2019.e02872
Bergius, 1913 Bergius, F.C.R., 1913. Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle, 1st ed. W. Knapp.
Berlan et al., 1994 J. Berlan, F. Trabelsi, H. Delmas, A.M. Wilhelm, J.F. Petrignani Oxidative degradation of phenol in aqueous media using ultrasound Ultrason. - Sonochemistry, 1 (1994), pp. S97-S102, 10.1016/1350-4177(94)90005-1
Bharali and Bhattacharyya, 2015 R.K. Bharali, K.G. Bhattacharyya Biosorption of fluoride on Neem (Azadirachta indica) leaf powder J. Environ. Chem. Eng., 3 (2015), pp. 662-669, 10.1016/j.jece.2015.02.007
Bhattacharya et al., 2008 A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents Chem. Eng. J., 137 (2008), pp. 529-541, 10.1016/j.cej.2007.05.021
Bhattacharya and Sharma, 2005 K.G. Bhattacharya, A. Sharma Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder Dye. Pigment., 65 (2005), pp. 51-59, 10.1016/j.dyepig.2004.06.016
Bhattacharyya et al., 2009 K.G. Bhattacharyya, J. Sarma, A. Sarma Azadirachta indica leaf powder as a biosorbent for Ni(II) in aqueous medium J. Hazard. Mater., 165 (2009), pp. 271-278, 10.1016/j.jhazmat.2008.09.109
Bhattacharyya and Sharma, 2004 Krishna G. Bhattacharyya, A. Sharma Azadirachta indica leaf powder as an effective biosorbent for dyes: A case study with aqueous Congo Red solutions J. Environ. Manage., 71 (2004), pp. 217-229, 10.1016/j.jenvman.2004.03.002
Bhattacharyya and Sharma, 2004c Krishna G Bhattacharyya, A. Sharma Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder J. Hazard. Mater., 113 (2004), pp. 97-109, 10.1016/j.jhazmat.2004.05.034
Bobleter, 1994 Bobleter, O., 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. https://doi.org/10.1016/0079-6700(94)90033-7
Boehm, 2002 H.P. Boehm Surface oxides on carbon and their analysis: A critical assessment Carbon N. Y., 40 (2002), pp. 145-149, 10.1016/S0008-6223(01)00165-8
Boni et al., 2020 M.R. Boni, A. Chiavola, S. Marzeddu Remediation of Lead-Contaminated Water by Virgin Coniferous Wood Biochar Adsorbent: Batch and Column Application Water Air Soil Pollut., 231 (2020), pp. 1-16, 10.1007/s11270-020-04496-z
Bose et al., 2020 S. Bose, A. Ghosh, A. Das, M. Rahaman Development of Mango Peel Derived Activated Carbon-Nickel Nanocomposite as an Adsorbent towards Removal of Heavy Metal and Organic Dye Removal from Aqueous Solution ChemistrySelect, 5 (2020), pp. 14168-14176, 10.1002/slct.202003606
Bugg et al., 2011 Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. https://doi.org/10.1039/c1np00042j
Cambero et al., 2015 C. Cambero, T. Sowlati, M. Marinescu, D. Röser Strategic optimization of forest residues to bioenergy and biofuel supply chain Int. J. Energy Res., 39 (2015), pp. 439-452, 10.1002/er.3233
Cao et al., 2016 D. Cao, X. Jin, L. Gan, T. Wang, Z. Chen Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant Chemosphere, 159 (2016), pp. 23-31, 10.1016/j.chemosphere.2016.05.080
Çelekli et al., 2019 A. Çelekli, A.I. Al-Nuaimi, H. Bozkurt Adsorption kinetic and isotherms of Reactive Red 120 on Moringa oleifera seed as an eco-friendly process J. Mol. Struct., 1195 (2019), pp. 168-178, 10.1016/j.molstruc.2019.05.106
Cemin et al., 2021 A. Cemin, F. Ferrarini, M. Poletto, L.R. Bonetto, J. Bortoluz, L. Lemée, R. Guégan, V.I. Esteves, M. Giovanela Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye Int. J. Biol. Macromol., 170 (2021), pp. 375-389, 10.1016/j.ijbiomac.2020.12.155
Cha et al., 2016 J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park Production and utilization of biochar: A review J. Ind. Eng. Chem. (2016), 10.1016/j.jiec.2016.06.002
haudhari, 2010 U.E. Chaudhari Evaluation of adsorption efficiency of Ferronia elefuntum fruit shell for methylene blue from aqueous solution Asian J. Chem., 22 (2010), pp. 6722-6728
Chen et al., 2010 H. Chen, J. Zhao, G. Dai, J. Wu, H. Yan Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves Desalination, 262 (2010), pp. 174-182, 10.1016/j.desal.2010.06.006
Cheng et al., 2012 Z. Cheng, Z. Gao, W. Ma, Q. Sun, B. Wang, X. Wang Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions Chem. Eng. J., 209 (2012), pp. 451-457, 10.1016/j.cej.2012.07.078
Choi et al., 2015 I.S. Choi, Y.G. Lee, S.K. Khanal, B.J. Park, H.J. Bae A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production Appl. Energy, 140 (2015), pp. 65-74, 10.1016/j.apenergy.2014.11.070
Colmenares, 2013 Colmenares Q., J.C., 2013. Ultrasound and photochemical procedures for nanocatalysts preparation: Application in photocatalytic biomass valorization. J. Nanosci. Nanotechnol. https://doi.org/10.1166/jnn.2013.7567
Conde-Cid et al., 2021 M. Conde-Cid, R. Cela-Dablanca, G. Ferreira-Coelho, D. Fernández-Calviño, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, M. Arias-Estévez, E. Álvarez-Rodríguez Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, “oak ash” and mussel shell Environ. Res., 195 (2021), Article 110814, 10.1016/j.envres.2021.110814
Conde-Cid et al., 2019 M. Conde-Cid, G. Ferreira-Coelho, M. Arias-Estévez, C. Álvarez-Esmorís, J.C. Nóvoa-Muñoz, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell J. Environ. Manage., 250 (2019), Article 109509, 10.1016/j.jenvman.2019.109509
Cravotto and Cintas, 2012 G. Cravotto, P. Cintas Harnessing mechanochemical effects with ultrasound-induced reactions Chem. Sci., 3 (2012), pp. 295-307, 10.1039/c1sc00740h
Cutillas-Barreiro et al., 2014 L. Cutillas-Barreiro, L. Ansias-Manso, D. Fernández-Calviño, M. Arias-Estévez, J.C. Nóvoa-Muñoz, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments J. Environ. Manage., 144 (2014), pp. 258-264, 10.1016/j.jenvman.2014.06.008
Da Silva Correia et al., 2018 I.K. Da Silva Correia, P.F. Santos, C.S. Santana, J.B. Neris, F.H.M. Luzardo, F.G. Velasco Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water J. Environ. Chem. Eng., 6 (2018), pp. 2319-2334, 10.1016/j.jece.2018.03.033
Dahmoune et al., 2013 F. Dahmoune, L. Boulekbache, K. Moussi, O. Aoun, G. Spigno, K. Madani Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction Ind. Crops Prod., 50 (2013), pp. 77-87, 10.1016/j.indcrop.2013.07.013
Dao et al., 2020 M.U. Dao, H.S. Le, H.Y. Hoang, V.A. Tran, V.D. Doan, T.T.N. Le, A. Sirotkin, V.T. Le Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties Environ. Res., 110481 (2020), 10.1016/j.envres.2020.110481
Dawodu et al., 2021 F.A. Dawodu, C.J. Abonyi, K.G. Akpomie Feldspar-banana peel composite adsorbent for efficient crude oil removal from solution Appl. Water Sci., 11 (2021), 10.1007/s13201-020-01335-8
de León-Martínez et al., 2020 P.A. de León-Martínez, A. Sáenz-Galindo, C.A. Ávila-Orta, A.O. Castañeda-Facio, M.L. Andrade-Guel, U. Sierra, G. Alvarado-Tenorio, J. Bernal-Martínez Ultrasound-Assisted Surface Modification of MWCNT Using Organic Acids Materials (Basel)., 14 (2020), p. 72, 10.3390/ma14010072
de Oliveira et al., 2017 P.R. de Oliveira, C. Kalinke, J.L. Gogola, A.S. Mangrich, L.H.M. Junior, M.F. Bergamini The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion J. Electroanal. Chem., 799 (2017), pp. 602-608, 10.1016/j.jelechem.2017.06.020
de Salomón et al., 2021 Y.L.O. de Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, E.L. Foletto, D. Allasia, G.L. Dotto Application of seed residues from Anadenanthera macrocarpa and Cedrela fissilis as alternative adsorbents for remarkable removal of methylene blue dye in aqueous solutions Environ. Sci. Pollut. Res., 28 (2021), pp. 2342-2354, 10.1007/s11356-020-10635-0
Demirbaş and Arin, 2002 A. Demirbaş, G. Arin An overview of biomass pyrolysis Energy Sources, 24 (2002), pp. 471-482, 10.1080/00908310252889979
Deng et al., 2019 J. Deng, X. Li, X. Wei, Y. Liu, J. Liang, N. Tang, B. Song, X. Chen, X. Cheng Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism Bioresour. Technol., 290 (2019), Article 121765, 10.1016/j.biortech.2019.121765
Deng, 2020 Deng, Y., 2020. Low-cost adsorbents for urban stormwater pollution control. Front. Environ. Sci. Eng. https://doi.org/10.1007/s11783-020-1262-9
eniz and Saygideger, 2010 F. Deniz, S.D. Saygideger Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent Bioresour. Technol., 101 (2010), pp. 5137-5143, 10.1016/j.biortech.2010.02.004
Dhaouadi et al., 2020 F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A. Ben Lamine Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model J. Mol. Liq., 305 (2020), Article 112815, 10.1016/j.molliq.2020.112815
Dhaouadi et al., 2021 F. Dhaouadi, L. Sellaoui, L. Enrique Hernández-Hernández, A. Bonilla-Petriciolet, D. Ileana Mendoza-Castillo, H. Elizabeth Reynel-Ávila, H. Antonio González-Ponce, S. Taamalli, F. Louis, A. Ben Lamine Preparation of an avocado seed hydrochar and its application as heavy metal adsorbent: Properties and advanced statistical physics modeling Chem. Eng. J., 129472 (2021), 10.1016/j.cej.2021.129472
Djilali et al., 2016 Y. Djilali, E.H. Elandaloussi, A. Aziz, L.C. de Ménorval Alkaline treatment of timber sawdust: A straightforward route toward effective low-cost adsorbent for the enhanced removal of basic dyes from aqueous solutions J. Saudi Chem. Soc., 20 (2016), pp. S241-S249, 10.1016/j.jscs.2012.10.013
Do et al., 2021 T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D. Van Kiet, T.T.K. Ngan, L. Van Tan Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf Mater. Today:. Proc., 38 (2021), pp. 3405-3413, 10.1016/j.matpr.2020.10.834
Dutta et al., 2001 S. Dutta, J.K. Basu, R.N. Ghar Studies on adsorption of p-nitrophenol on charred saw-dust Sep. Purif. Technol., 21 (2001), pp. 227-235, 10.1016/S1383-5866(00)00205-7
El-Sheikh et al., 2018 A.H. El-Sheikh, I.I. Fasfous, R.M. Al-Salamin, A.P. Newman Immobilization of citric acid and magnetite on sawdust for competitive adsorption and extraction of metal ions from environmental waters J. Environ. Chem. Eng., 6 (2018), pp. 5186-5195, 10.1016/j.jece.2018.08.020
El Hajam et al., 2020 M. El Hajam, N.I. Kandri, G.I. Plavan, A.H. Harrath, L. Mansour, F. Boufahja, A. Zerouale Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs J. King Saud Univ. - Sci., 32 (2020), pp. 2176-2189, 10.1016/j.jksus.2020.02.027
steves and Pereira, 2009 B.M. Esteves, H.M. Pereira Heat treatment of wood BioResources (2009)
Ferrari et al., 2010 L. Ferrari, J. Kaufmann, F. Winnefeld, J. Plank Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements J. Colloid Interface Sci., 347 (2010), pp. 15-24, 10.1016/j.jcis.2010.03.005
Ferrentino et al., 2020 R. Ferrentino, R. Ceccato, V. Marchetti, G. Andreottola, L. Fiori Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater Appl. Sci., 10 (2020), p. 3445, 10.3390/app10103445
Ferrero, 2007 F. Ferrero Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust J. Hazard. Mater., 142 (2007), pp. 144-152, 10.1016/j.jhazmat.2006.07.072
Funke and Ziegler, 2010 A. Funke, F. Ziegler Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining, 4 (2010), pp. 160-177, 10.1002/bbb.198
G, 2018 G., M., P., S.K., A., S., 2018. Modelling and analysis on the removal of methylene blue dye from aqueous solution using physically/chemically modified Ceiba pentandra seeds. J. Ind. Eng. Chem. 62, 446–461. https://doi.org/10.1016/j.jiec.2018.01.028
Jayan et al., 2021 G, P., AS, S., Jayan, J.S., Raman, A., Saritha, A., 2021. Lignin based nano-composites: Synthesis and applications. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2020.11.017
Gao et al., 2019 Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust Environ. Res., 172 (2019), pp. 561-568, 10.1016/j.envres.2019.03.010
Gao et al., 2013 Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH Chem. Eng. J., 232 (2013), pp. 582-590, 10.1016/j.cej.2013.08.011
arg et al., 2004 V.K. Garg, M. Amita, R. Kumar, R. Gupta Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste Dye. Pigment., 63 (2004), pp. 243-250, 10.1016/j.dyepig.2004.03.005
Garg et al., 2003 V.K. Garg, R. Gupta, A.B. Yadav, R. Kumar Dye removal from aqueous solution by adsorption on treated sawdust Bioresour. Technol., 89 (2003), pp. 121-124, 10.1016/S0960-8524(03)00058-0
Gautam et al., 2020 P.K. Gautam, S. Shivalkar, S. Banerjee Synthesis of M. oleifera leaf extract capped magnetic nanoparticles for effective lead [Pb (II)] removal from solution: Kinetics, isotherm and reusability study J. Mol. Liq., 305 (2020), Article 112811, 10.1016/j.molliq.2020.112811
Gemici et al., 2021 B.T. Gemici, H.U. Ozel, H.B. Ozel Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis Environ. Technol. Innov., 101501 (2021), 10.1016/j.eti.2021.101501
Georgin et al., 2018 J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents Water Sci. Technol., 78 (2018), pp. 1693-1703, 10.2166/wst.2018.448
Georgin et al., 2019 J. Georgin, D.S.P. Franco, P. Grassi, D. Tonato, D.G.A. Piccilli, L. Meili, G.L. Dotto Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents Environ. Sci. Pollut. Res., 26 (2019), pp. 19207-19219, 10.1007/s11356-019-05321-9
Georgin et al., 2020 J. Georgin, D.S.P. Franco, M.S. Netto, D. Allasia, M.L.S. Oliveira, G.L. Dotto Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches Environ. Sci. Pollut. Res., 27 (2020), pp. 25727-25739, 10.1007/s11356-020-08854-6
Giannakoudakis et al., 2020a Giannakoudakis, D.A., Chatel, G., Colmenares, J.C., 2020a. Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Top. Curr. Chem. https://doi.org/10.1007/s41061-019-0262-3
D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J.C. Colmenares Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors Chem. Eng. J., 395 (2020), Article 125099, 10.1016/j.cej.2020.125099
Giwa et al., 2021 Giwa, A.R.A., Adesokan, S.A., Bello, I.A., 2021. Adsorption of pyrimethamine from wastewater using activated carbons prepared from Daniellia-oliveri sawdust. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1884858
A.C. Gonçalves Junior, L. Strey, C.A. Lindino, H. Nacke, D. Schwantes, E.P. Seidel Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions Acta Sci. Technol., 34 (2012), pp. 79-87, 10.4025/actascitechnol.v34i1.9585
Grassi et al., 2021 P. Grassi, F.C. Drumm, J. Georgin, D.S.P. Franco, G.L. Dotto, E.L. Foletto, S.L. Jahn Application of Cordia trichotoma sawdust as an effective biosorbent for removal of crystal violet from aqueous solution in batch system and fixed-bed column Environ. Sci. Pollut. Res., 28 (2021), pp. 6771-6783, 10.1007/s11356-020-11005-6
Gupta and Babu, 2009 S. Gupta, B.V. Babu Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies Chem. Eng. J., 150 (2009), pp. 352-365, 10.1016/j.cej.2009.01.013
upta et al., 2015 Gupta, V.K., Nayak, A., Agarwal, S., 2015. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. https://doi.org/10.4491/eer.2015.018
Hafshejani et al., 2015 L.D. Hafshejani, S.B. Nasab, R.M. Gholami, M. Moradzadeh, Z. Izadpanah, S.B. Hafshejani, A. Bhatnagar Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent J. Mol. Liq., 211 (2015), pp. 448-456, 10.1016/j.molliq.2015.07.044
Hamadeen et al., 2021 H.M. Hamadeen, E.A. Elkhatib, M.E.I. Badawy, S.A.M. Abdelgaleil Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies J. Environ. Chem. Eng., 9 (2021), Article 105376, 10.1016/j.jece.2021.105376
Hamdaoui, 2006 O. Hamdaoui Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick J. Hazard. Mater., 135 (2006), pp. 264-273, 10.1016/j.jhazmat.2005.11.062
Hameed and Daud, 2008 B. Hameed, F. Daud Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat Chem. Eng. J., 139 (2008), pp. 48-55, 10.1016/j.cej.2007.07.089
Hameed et al., 2007 B.H. Hameed, A.L. Ahmad, K.N.A. Latiff Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust Dye. Pigment., 75 (2007), pp. 143-149, 10.1016/j.dyepig.2006.05.039
Hameed et al., 2008 B.H. Hameed, L.H. Chin, S. Rengaraj Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust Desalination, 225 (2008), pp. 185-198, 10.1016/j.desal.2007.04.095
B.H. Hameed, M.I. El-Khaiary Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling J. Hazard. Mater., 159 (2008), pp. 574-579, 10.1016/j.jhazmat.2008.02.054
Han et al., 2012 X. Han, X. Niu, X. Ma Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics Korean J. Chem. Eng., 29 (2012), pp. 494-502, 10.1007/s11814-011-0211-5
Hanafiah et al., 2012 M.A.K.M. Hanafiah, W.S.W. Ngah, S.H. Zolkafly, L.C. Teong, Z.A.A. Majid Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis J. Environ. Sci., 24 (2012), pp. 261-268, 10.1016/S1001-0742(11)60764-X
Hasan et al., 2021 M.N. Hasan, M.A. Shenashen, M.M. Hasan, H. Znad, M.R. Awual Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent Chemosphere, 270 (2021), Article 128668, 10.1016/j.chemosphere.2020.128668
Hashem et al., 2020 A. Hashem, S.M. Badawy, S. Farag, L.A. Mohamed, A.J. Fletcher, G.M. Taha Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd(II) from aqueous systems J. Environ. Chem. Eng., 8 (2020), Article 103966, 10.1016/j.jece.2020.103966
Hashem et al., 2019 M.A. Hashem, M.A. Momen, M. Hasan, M.S. Nur-A-Tomal, M.H.R. Sheikh Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent Int. J. Environ. Sci. Technol., 16 (2019), pp. 1395-1404, 10.1007/s13762-018-1714-y
Hashemian and Mirshamsi, 2012 S. Hashemian, M. Mirshamsi Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution J. Ind. Eng. Chem., 18 (2012), pp. 2010-2015, 10.1016/j.jiec.2012.05.020
B. Hayati, N.M. Mahmoodi Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: Mechanism, isotherm and kinetic Desalin. Water Treat., 47 (2012), pp. 322-333, 10.1080/19443994.2012.696429
He et al., 2013 C. He, A. Giannis, J.Y. Wang Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior Appl. Energy, 111 (2013), pp. 257-266, 10.1016/j.apenergy.2013.04.084
He et al., 2019 C. He, Z. Zhang, C. Ge, W. Liu, Y. Tang, X. Zhuang, R. Qiu Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior Waste Manag., 100 (2019), pp. 171-181, 10.1016/j.wasman.2019.09.018
Hernandes et al., 2019 P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus) Environ. Sci. Pollut. Res., 26 (2019), pp. 31924-31933, 10.1007/s11356-019-06353-x
Hu et al., 2008 B. Hu, S.H. Yu, K. Wang, L. Liu, X.W. Xu Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process Dalt. Trans., 5414–5423 (2008), 10.1039/b804644c
uang et al., 2014 Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies Appl. Surf. Sci., 293 (2014), pp. 160-168, 10.1016/j.apsusc.2013.12.123
Huff and Lee, 2016 M.D. Huff, J.W. Lee Biochar-surface oxygenation with hydrogen peroxide J. Environ. Manage., 165 (2016), pp. 17-21, 10.1016/j.jenvman.2015.08.046
Igalavithana et al., 2020 A.D. Igalavithana, S.W. Choi, J. Shang, A. Hanif, P.D. Dissanayake, D.C.W. Tsang, J.H. Kwon, K.B. Lee, Y.S. Ok Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry Sci. Total Environ., 739 (2020), Article 139845, 10.1016/j.scitotenv.2020.139845
Ighalo and Adeniyi, 2020 J.O. Ighalo, A.G. Adeniyi Adsorption of pollutants by plant bark derived adsorbents: An empirical review J. Water Process Eng., 35 (2020), Article 101228, 10.1016/j.jwpe.2020.101228
Inguanzo et al., 2001 M. Inguanzo, J.A. Menéndez, E. Fuente, J.J. Pis Reactivity of pyrolyzed sewage sludge in air and CO2 J. Anal. Appl. Pyrol., 58–59 (2001), pp. 943-954, 10.1016/S0165-2370(00)00143-1
Ippolito et al., 2012 J.A. Ippolito, D.G. Strawn, K.G. Scheckel, J.M. Novak, M. Ahmedna, M.A.S. Niandou Macroscopic and Molecular Investigations of Copper Sorption by a Steam-Activated Biochar J. Environ. Qual., 41 (2012), pp. 1150-1156, 10.2134/jeq2011.0113
Isiuku et al., 2019 B.O. Isiuku, J.C. Iwu, D.C. Emeagwara, F.C. Ibe ADSORPTION PERFORMANCE OF ACID-ACTIVATED CARBON DERIVED FROM GMELINA ARBOREA IN BATCH REMOVAL OF METHYL VIOLET FROM AQEUOUS SOLUTION J. Chem Soc. Niger., 44 (2019), pp. 11-021
IUPAC, 2019 IUPAC, 2019. The IUPAC Compendium of Chemical Terminology, 2nd ed, Compendium of Chemical Terminology. Blackwell Scientific Publications, Oxford (1997). https://doi.org/10.1351/goldbook
Jastrzab and Lomozik, 2010 R. Jastrzab, L. Lomozik Stability and coordination mode of complexes of polyphosphates and polymetaphosphates with copper(II) ions in aqueous solution-potentiometric, spectral and theoretical studies J. Solution Chem., 39 (2010), pp. 909-919, 10.1007/s10953-010-9558-1
Jeon et al., 2015 C. Jeon, J.H. Cha, J.Y. Choi Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater J. Ind. Eng. Chem., 27 (2015), pp. 201-206, 10.1016/j.jiec.2014.12.036
Jiang et al., 2019 Q. Jiang, W. Xie, S. Han, Y. Wang, Y. Zhang Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism Colloids Surfaces A Physicochem. Eng. Asp., 583 (2019), Article 123962, 10.1016/j.colsurfa.2019.123962
Jin et al., 2018 X. Jin, N. Li, X. Weng, C. Li, Z. Chen Green reduction of graphene oxide using eucalyptus leaf extract and its application to remove dye Chemosphere, 208 (2018), pp. 417-424, 10.1016/j.chemosphere.2018.05.199
Kalavathy et al., 2009 Kalavathy M., H., Regupathi, I., Pillai, M.G., Miranda, L.R., 2009. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surfaces B Biointerfaces 70, 35–45. https://doi.org/10.1016/j.colsurfb.2008.12.007
Kamari and Ngah, 2010 A. Kamari, W.S. Ngah Adsorption of Cu(II) and Cr(VI) onto treated shorea dasyphylla bark: Isotherm, kinetics, and thermodynamic studies Sep. Sci. Technol., 45 (2010), pp. 486-496, 10.1080/01496390903526717
Kambo and Dutta, 2015 Kambo, H.S., Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2015.01.050
Kannan et al., 2010 N. Kannan, A. Vijayakumar, P. Subramaniam Studies on the removal of red industrial dye using teak leaf, maize corn and babool tree bark carbons -A comparison E-Journal Chem., 7 (2010), pp. 770-774, 10.1155/2010/474109
Kapur and Mondal, 2013 M. Kapur, M.K. Mondal Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust Chem. Eng. J., 218 (2013), pp. 138-146, 10.1016/j.cej.2012.12.054
Karthikeyan et al., 2005 T. Karthikeyan, S. Rajgopal, L.R. Miranda Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon J. Hazard. Mater., 124 (2005), pp. 192-199, 10.1016/j.jhazmat.2005.05.003
Kayser, 1881 H. Kayser Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperatur Ann. Phys., 248 (1881), pp. 526-537, 10.1002/andp.18812480404
Kebede et al., 2018a T.G. Kebede, S. Dube, A.A. Mengistie, T.T. Nkambule, M.M. Nindi Moringa stenopetala bark: A novel green adsorbent for the removal of metal ions from industrial effluents Phys. Chem. Earth., 107 (2018), pp. 45-57, 10.1016/j.pce.2018.08.002
Kebede et al., 2018b T.G. Kebede, A.A. Mengistie, S. Dube, T.T.I. Nkambule, M.M. Nindi Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder J. Environ. Chem. Eng., 6 (2018), pp. 1378-1389, 10.1016/j.jece.2018.01.012
Kgatitsoe et al., 2019 M.M. Kgatitsoe, S. Ncube, H. Tutu, I.A. Nyambe, L. Chimuka Synthesis and characterization of a magnetic nanosorbent modified with Moringa oleifera leaf extracts for removal of nitroaromatic explosive compounds in water samples J. Environ. Chem. Eng., 7 (2019), Article 103128, 10.1016/j.jece.2019.103128
Khan Rao and Khatoon, 2016 R.A. Khan Rao, A. Khatoon Adsorption characteristics of chemically modified Caryota urens seeds for the removal of Cu(II) from aqueous solution: Isotherms and kinetic studies Groundw. Sustain. Dev., 2–3 (2016), pp. 42-52, 10.1016/j.gsd.2016.05.004
Khemchandani et al., 1974 G.V. Khemchandani, T.B. Ray, S. Sarkar Studies on artificial coal. 1 Caking power and chloroform extracts. Fuel, 53 (1974), pp. 163-167, 10.1016/0016-2361(74)90003-9
Khosla et al., 2012 E. Khosla, S. Kaur, P.N. Dave Adsorption mechanism of basic red-12 over eucalyptus bark and its surface derivatives J. Chem. Eng. Data, 57 (2012), pp. 2004-2011, 10.1021/je300296k
Kiruba et al., 2014 U.P. Kiruba, P.S. Kumar, C. Prabhakaran, V. Aditya Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system J. Taiwan Inst. Chem. Eng., 45 (2014), pp. 2957-2968, 10.1016/j.jtice.2014.08.016
Koetlisi and Muchaonyerwa, 2019 K.A. Koetlisi, P. Muchaonyerwa Sorption of Selected Heavy Metals with Different Relative Concentrations in Industrial Effluent on Biochar from Human Faecal Products and Pine-Bark Materials (Basel)., 12 (2019), p. 1768, 10.3390/ma12111768
Krishnan, 2008 K.A. Krishnan Adsorption of nitrilotriacetic acid onto activated carbon prepared by steam pyrolysis of sawdust: Kinetic and isotherm studies Colloids Surfaces A Physicochem. Eng. Asp., 317 (2008), pp. 344-351, 10.1016/j.colsurfa.2007.11.002
Kulkarni, 2020 Kulkarni, S., 2020. Synthesis, Characterization and Performance of Low-Cost Unconventional Adsorbents Derived from Waste Materials. Review 10, 7243–7256. https://doi.org/10.33263/BRIAC106.72437256
Kumar and Gupta, 2020 A. Kumar, H. Gupta Activated carbon from sawdust for naphthalene removal from contaminated water Environ. Technol. Innov., 20 (2020), Article 101080, 10.1016/j.eti.2020.101080
Kumar et al., 2005 B.G.P. Kumar, L.R. Miranda, M. Velan Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods J. Hazard. Mater., 126 (2005), pp. 63-70, 10.1016/j.jhazmat.2005.05.043
Kumar et al., 2018 N.S. Kumar, M. Asif, M.I. Al-Hazzaa, A.A. Ibrahim Biosorption of 2,4,6-trichlorophenol from aqueous medium using agro-waste: Pine (Pinus densiflora Sieb) bark powder Acta Chim. Slov., 65 (2018), pp. 221-230 https://doi.org/10.17344/acsi.2017.3886
Lattao et al., 2014 C. Lattao, X. Cao, J. Mao, K. Schmidt-Rohr, J.J. Pignatello Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars Environ. Sci. Technol., 48 (2014), pp. 4790-4798, 10.1021/es405096q
Lee et al., 2013 Y. Lee, J. Park, C. Ryu, K.S. Gang, W. Yang, Y.K. Park, J. Jung, S. Hyun Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C Bioresour. Technol., 148 (2013), pp. 196-201, 10.1016/j.biortech.2013.08.135
Li et al., 2007a B. Li, S. Kado, Y. Mukainakano, T. Miyazawa, T. Miyao, S. Naito, K. Okumura, K. Kunimori, K. Tomishige Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane J. Catal., 245 (2007), pp. 144-155, 10.1016/j.jcat.2006.10.004
D. Li, J. Huang, L. Huang, S. Tan, T. Liu High-Performance Three-Dimensional Aerogel Based on Hydrothermal Pomelo Peel and Reduced Graphene Oxide as an Efficient Adsorbent for Water/Oil Separation Langmuir, 37 (2021), pp. 1521-1530, 10.1021/acs.langmuir.0c03062
Li and Chase, 2009 J. Li, H.A. Chase Characterization and evaluation of a macroporous adsorbent for possible use in the expanded bed adsorption of flavonoids from Ginkgo biloba L J. Chromatogr. A, 1216 (2009), pp. 8730-8740, 10.1016/j.chroma.2009.02.092
Li et al., 2007b Q. Li, J. Zhai, W. Zhang, M. Wang, J. Zhou Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk J. Hazard. Mater., 141 (2007), pp. 163-167, 10.1016/j.jhazmat.2006.06.109
Li et al., 2016 R. Li, J.J. Wang, B. Zhou, M.K. Awasthi, A. Ali, Z. Zhang, L.A. Gaston, A.H. Lahori, A. Mahar Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios Sci. Total Environ., 559 (2016), pp. 121-129, 10.1016/j.scitotenv.2016.03.151
Li et al., 2019a Y. Li, S. Fan, Q. Zhou Synthesis of Carboxyl-Rich Biosorbent by UV-Induced Graft Polymerization Method for High Efficiency Adsorption of Ce3+ from Aqueous Solution: Activation and Adsorption Mechanism J. Polym. Environ., 27 (2019), pp. 2259-2266, 10.1007/s10924-019-01515-x
Li and Liu, 2014 Y. Li, X. Liu Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor Mater. Chem. Phys., 148 (2014), pp. 380-386, 10.1016/j.matchemphys.2014.07.058
Li et al., 2014 Y. Li, J. Shao, X. Wang, Y. Deng, H. Yang, H. Chen Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption Energy Fuels, 28 (2014), pp. 5119-5127, 10.1021/ef500725c
Li et al., 2019b Z. Li, G.L. Dotto, A. Bajahzar, L. Sellaoui, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: Experimental and theoretical analysis Chem. Eng. J., 373 (2019), pp. 1247-1253, 10.1016/j.cej.2019.05.134
Li et al., 2010a Z. Li, S. Imaizumi, T. Katsumi, T. Inui, X. Tang, Q. Tang Manganese removal from aqueous solution using a thermally decomposed leaf J. Hazard. Mater., 177 (2010), pp. 501-507, 10.1016/j.jhazmat.2009.12.061
i et al., 2010b Z. Li, Q. Tang, T. Katsumi, X. Tang, T. Inui, S. Imaizumi Leaf char: An alternative adsorbent for Cr(III) Desalination, 264 (2010), pp. 70-77, 10.1016/j.desal.2010.07.006
Li et al., 2009 Z. Li, X. Tang, Y. Chen, L. Wei, Y. Wang Activation of Firmiana Simplex leaf and the enhanced Pb(II) adsorption performance: Equilibrium and kinetic studies J. Hazard. Mater., 169 (2009), pp. 386-394, 10.1016/j.jhazmat.2009.03.108
Lim et al., 2020 L.B.L. Lim, N. Priyantha, S.A.A. Latip, Y.C. Lu, A.H. Mahadi Converting hylocereus undatus (White dragon fruit) peel waste into a useful potential adsorbent for the removal of toxic congo red dye Desalin. Water Treat., 185 (2020), pp. 307-317, 10.5004/dwt.2020.25390
Lin et al., 2015 Y. Lin, X. Ma, X. Peng, S. Hu, Z. Yu, S. Fang Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge Appl. Therm. Eng., 91 (2015), pp. 574-582, 10.1016/j.applthermaleng.2015.08.064
Liu and Xiao, 2018 M. Liu, C. Xiao Research progress on modification of activated carbon E3S Web Conf., 38 (2018), p. 02005, 10.1051/e3sconf/20183802005
iu et al., 2013 S. Liu, Z. Huang, R. Wang A carbon foam with a bimodal micro-mesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption Mater. Res. Bull., 48 (2013), pp. 2437-2441, 10.1016/j.materresbull.2013.02.069
Liu et al., 2015 Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. https://doi.org/10.1021/acs.chemrev.5b00195
Liu et al., 2011 W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang Preparation of high adsorption capacity bio-chars from waste biomass Bioresour. Technol., 102 (2011), pp. 8247-8252, 10.1016/j.biortech.2011.06.014
Liu et al., 2018 Y. Liu, X. Jin, Z. Chen The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI) Sci. Total Environ., 627 (2018), pp. 470-479, 10.1016/j.scitotenv.2018.01.241
Lonappan et al., 2020 L. Lonappan, Y. Liu, T. Rouissi, S.K. Brar, R.Y. Surampalli Development of biochar-based green functional materials using organic acids for environmental applications J. Clean. Prod., 244 (2020), Article 118841, 10.1016/j.jclepro.2019.118841
Low et al., 2004 K.S. Low, C.K. Lee, S.M. Mak Sorption of copper and lead by citric acid modified wood Wood Sci. Technol., 38 (2004), pp. 629-640, 10.1007/s00226-003-0201-9
u et al., 1995 G.Q. Lu, J.C.F. Low, C.Y. Liu, A.C. Lua Surface area development of sewage sludge during pyrolysis Fuel, 74 (1995), pp. 344-348, 10.1016/0016-2361(95)93465-P
Lussier et al., 1998 M.G. Lussier, Z. Zhang, D.J. Miller Characterizing rate inhibition in steam/hydrogen gasification via analysis of adsorbed hydrogen Carbon N. Y., 36 (1998), pp. 1361-1369, 10.1016/S0008-6223(98)00123-7
Lütke et al., 2019 S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption J. Environ. Chem. Eng., 7 (2019), Article 103396, 10.1016/j.jece.2019.103396
Magdziarz and Colmenares, 2017 A. Magdziarz, J. Colmenares In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis Molecules, 22 (2017), p. 216, 10.3390/molecules22020216
Mahdi et al., 2019 Z. Mahdi, A. El Hanandeh, Q.J. Yu Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions J. Environ. Chem. Eng., 7 (2019), Article 103379, 10.1016/j.jece.2019.103379
Maity and Ray, 2018 J. Maity, S.K. Ray Removal of Pb(II) from water using a bio-composite adsorbent-A systematic approach of optimizing synthesis and process parameters by response surface methodology J. Environ. Manage., 209 (2018), pp. 112-125, 10.1016/j.jenvman.2017.12.039
Mália et al., 2013 M. Mália, J. De Brito, M.D. Pinheiro, M. Bravo Construction and demolition waste indicators Waste Manag. Res., 31 (2013), pp. 241-255, 10.1177/0734242X12471707
Malik, 2003 P.K. Malik Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: A case study of acid yellow 36 Dye. Pigment., 56 (2003), pp. 239-249, 10.1016/S0143-7208(02)00159-6
Mandal et al., 2020 A. Mandal, N. Bar, S.K. Das Phenol removal from wastewater using low-cost natural bioadsorbent neem (Azadirachta indica) leaves: Adsorption study and MLR modeling Sustain. Chem. Pharm., 17 (2020), Article 100308, 10.1016/j.scp.2020.100308
Mandal and Singh, 2016 A. Mandal, N. Singh Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L. J. Environ. Sci. Heal. - Part B Pestic Food Contam. Agric. Wastes, 51 (2016), pp. 192-203, 10.1080/03601234.2015.1108817
Martini et al., 2020 S. Martini, S. Afroze, K. Ahmad Roni Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater Alexandria Eng. J., 59 (2020), pp. 1637-1648, 10.1016/j.aej.2020.04.010
McKay and Poots, 2007 G. McKay, V.J.P. Poots Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent J. Chem. Technol. Biotechnol., 30 (2007), pp. 279-292, 10.1002/jctb.503300134
Meinlschmidt et al., 2016 P. Meinlschmidt, D. Mauruschat, R. Briesemeister Altholzsituation in Europa und Deutschland Chemie Ing. Tech., 88 (2016), pp. 475-482, 10.1002/cite.201500023
Mohanty et al., 2005 K. Mohanty, D. Das, M.N. Biswas Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation Chem. Eng. J., 115 (2005), pp. 121-131, 10.1016/j.cej.2005.09.016
Molino et al., 2016 A. Molino, S. Chianese, D. Musmarra Biomass gasification technology: The state of the art overview J. Energy Chem., 25 (2016), pp. 10-25, 10.1016/j.jechem.2015.11.005
Molino et al., 2018 A. Molino, V. Larocca, S. Chianese, D. Musmarra Biofuels Production by Biomass Gasification: A Review Energies, 11 (2018), p. 811, 10.3390/en11040811
Mosoarca et al., 2020 G. Mosoarca, C. Vancea, S. Popa, M. Gheju, S. Boran Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method Sci. Rep., 10 (2020), 10.1038/s41598-020-74819-x
Mullen et al., 2010 C.A. Mullen, A.A. Boateng, N.M. Goldberg, I.M. Lima, D.A. Laird, K.B. Hicks Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis Biomass Bioenergy, 34 (2010), pp. 67-74, 10.1016/j.biombioe.2009.09.012
Nadir et al., 2021 I. Nadir, Y. Achour, A. El Kassimi, M. El Himri, M.R. Laamari, M. El Haddad Removal of Antibiotic Sulfamethazine from Aqueous Media Using Watermelon Seeds as a New Low Cost and Ecofriendly Adsorbent Phys. Chem. Res., 9 (2021), pp. 165-180 https://doi.org/10.22036/pcr.2020.249992.1839
Nag et al., 2020 S. Nag, N. Bar, S.K. Das Cr(VI) removal from aqueous solution using green adsorbents in continuous bed column – statistical and GA-ANN hybrid modelling Chem. Eng. Sci., 226 (2020), Article 115904, 10.1016/j.ces.2020.115904
ag et al., 2018 S. Nag, A. Mondal, D.N. Roy, N. Bar, S.K. Das Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling Environ. Technol. Innov., 11 (2018), pp. 83-104, 10.1016/j.eti.2018.04.009
Naghipour et al., 2018 D. Naghipour, L. Hoseinzadeh, K. Taghavi, J. Jaafari Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree Data Br., 18 (2018), pp. 1082-1087, 10.1016/j.dib.2018.03.068
Naron et al., 2017 D.R. Naron, F.X. Collard, L. Tyhoda, J.F. Görgens Characterisation of lignins from different sources by appropriate analytical methods: Introducing thermogravimetric analysis-thermal desorption-gas chromatography–mass spectroscopy Ind. Crops Prod., 101 (2017), pp. 61-74, 10.1016/j.indcrop.2017.02.041
Nasir et al., 2007 M.H. Nasir, R. Nadeem, K. Akhtar, M.A. Hanif, A.M. Khalid Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions J. Hazard. Mater., 147 (2007), pp. 1006-1014, 10.1016/j.jhazmat.2007.01.131
Nazal et al., 2019 M.K. Nazal, M. Al-Bayyari, F.I. Khalili Salvadora Persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study J. Radioanal. Nucl. Chem., 321 (2019), pp. 985-996, 10.1007/s10967-019-06668-6
Nazir et al., 2020 N.A.M. Nazir, M. Raoov, S. Mohamad Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis Microchem. J., 159 (2020), 10.1016/j.microc.2020.105581
Ndjientcheu Yossa et al., 2020 L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron Sci. African, 9 (2020), Article e00476, 10.1016/j.sciaf.2020.e00476
Neppiras, 1980 Neppiras, E.A., 1980. Acoustic cavitation. Phys. Rep. https://doi.org/10.1016/0370-1573(80)90115-5
Ng et al., 2019 Ng, C.Y., Tan, Y.Y., Mun, A.C.K., Ng, L.Y., 2019. Comparison study of adsorbent produced from renewable resources: Oil palm empty fruit bunch and rice husk, in: Materials Today: Proceedings. Elsevier Ltd, pp. 149–155. https://doi.org/10.1016/j.matpr.2020.05.642
Niculau et al., 2020 Niculau, E.D.S., Alves, P.B., Nogueira, P.C. de L., Romão, L.P.C., Cunha, G. da C., Blank, A.F., Silva, A. de C., 2020. Chemical Profile and Use of the Peat as an Adsorbent for Extraction of Volatile Compounds from Leaves of Geranium (Pelargonium graveolens L’ Herit). Molecules 25. https://doi.org/10.3390/molecules25214923
Njoku et al., 2013 V.O. Njoku, K.Y. Foo, B.H. Hameed Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid Chem. Eng. J., 215–216 (2013), pp. 383-388, 10.1016/j.cej.2012.10.068
Njoku et al., 2014 V.O. Njoku, M.A. Islam, M. Asif, B.H. Hameed Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption Chem. Eng. J., 251 (2014), pp. 183-191, 10.1016/j.cej.2014.04.015
OECD, 2020 OECD, 2020. Environment at a Glance 2020: OECD Indicators, Environment at a Glance. OECD. https://doi.org/10.1787/4ea7d35f-en
OECD, 2015 OECD, 2015. Environment at a Glance 2015: OECD Indicators, Environment at a Glance. OECD. https://doi.org/10.1787/9789264235199-en
Ofomaja, 2011 A.E. Ofomaja Kinetics and pseudo-isotherm studies of 4-nitrophenol adsorption onto mansonia wood sawdust Ind. Crops Prod., 33 (2011), pp. 418-428, 10.1016/j.indcrop.2010.10.036
Ofomaja and Unuabonah, 2013 A.E. Ofomaja, E.I. Unuabonah Kinetics and time-dependent Langmuir modeling of 4-nitrophenol adsorption onto Mansonia sawdust J. Taiwan Inst. Chem. Eng., 44 (2013), pp. 566-576, 10.1016/j.jtice.2012.12.021
Ogunmodede et al., 2021 Ogunmodede, J., Akanji, S.B., Bello, O.S., 2021. Moringa oleifera seed pod-based adsorbent for the removal of paracetamol from aqueous solution: A novel approach toward diversification. Environ. Prog. Sustain. Energy. https://doi.org/10.1002/ep.13615
Olasehinde et al., 2018 E.F. Olasehinde, A.V. Adegunloye, M.A. Adebayo, A.A. Oshodi Sequestration of Aqueous Lead(II) Using Modified and Unmodified Red Onion Skin Anal. Lett., 51 (2018), pp. 2708-2730, 10.1080/00032719.2018.1448989
Olu-Owolabi et al., 2021 B.I. Olu-Owolabi, P.N. Diagboya, F.M. Mtunzi, R.-A. Düring Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media J. Environ. Manage., 279 (2021), Article 111619, 10.1016/j.jenvman.2020.111619
Omorogie et al., 2020 M.O. Omorogie, J.O. Babalola, A.M. Olatunde, T. Alimi, K.I. John, S.A. Adegboyega, S.K. Abesa Microwave-synthesized and Fenton-functionalized Pinus sylvestris bark activated carbon/metal oxides for the effective uptake of tetracycline and congo red dye Biomass Convers. Biorefinery, 10 (2020), pp. 959-975, 10.1007/s13399-019-00460-y
Omri and Benzina, 2012 A. Omri, M. Benzina Removal of manganese(II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor: Ziziphus spina-christi seeds Alexandria Eng. J., 51 (2012), pp. 343-350, 10.1016/j.aej.2012.06.003
arzei et al., 2014 S. Parzei, S. Krigstin, K. Hayashi, S. Wetzel Forest harvest residues available in Eastern Canada – a critical review of estimations For. Chron., 90 (2014), pp. 778-784, 10.5558/tfc2014-150
Pekkuz et al., 2008 H. Pekkuz, I. Uzun, F. Güzel Kinetics and thermodynamics of the adsorption of some dyestuffs from aqueous solution by poplar sawdust Bioresour. Technol., 99 (2008), pp. 2009-2017, 10.1016/j.biortech.2007.03.014
Peng et al., 2017 H. Peng, P. Gao, G. Chu, B. Pan, J. Peng, B. Xing Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars Environ. Pollut., 229 (2017), pp. 846-853, 10.1016/j.envpol.2017.07.004
Peter et al., 2019 Peter, A., Chabot, B., Loranger, E., 2019. Enhancing Surface Properties of Softwood Biochar by Ultrasound Assisted Slow Pyrolysis, in: IEEE International Ultrasonics Symposium, IUS. IEEE Computer Society, pp. 2477–2480. https://doi.org/10.1109/ULTSYM.2019.8925793
Peterson et al., 2008 A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, J.W. Tester Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies Energy Environ. Sci. (2008), 10.1039/b810100k
Peydayesh and Rahbar-Kelishami, 2015 M. Peydayesh, A. Rahbar-Kelishami Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies J. Ind. Eng. Chem., 21 (2015), pp. 1014-1019, 10.1016/j.jiec.2014.05.010
okhrel et al., 2016 Pokhrel, N., Vabbina, P.K., Pala, N., 2016. Sonochemistry: Science and Engineering. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2015.07.023
Ponnusami et al., 2009 V. Ponnusami, V. Gunasekar, S.N. Srivastava Kinetics of methylene blue removal from aqueous solution using gulmohar (Delonix regia) plant leaf powder: Multivariate regression analysis J. Hazard. Mater., 169 (2009), pp. 119-127, 10.1016/j.jhazmat.2009.03.066
Prado et al., 2010 A.G.S. Prado, A.O. Moura, M.S. Holanda, T.O. Carvalho, R.D.A. Andrade, I.C. Pescara, A.H.A. de Oliveira, E.Y.A. Okino, T.C.M. Pastore, D.J. Silva, L.F. Zara Thermodynamic aspects of the Pb adsorption using Brazilian sawdust samples: Removal of metal ions from battery industry wastewater Chem. Eng. J., 160 (2010), pp. 549-555, 10.1016/j.cej.2010.03.066
Rajapaksha et al., 2015 A.U. Rajapaksha, M. Vithanage, M. Ahmad, D.C. Seo, J.S. Cho, S.E. Lee, S.S. Lee, Y.S. Ok Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar J. Hazard. Mater., 290 (2015), pp. 43-50, 10.1016/j.jhazmat.2015.02.046
Ravulapalli and Kunta, 2018 S. Ravulapalli, R. Kunta Removal of lead (II) from wastewater using active carbon of Caryota urens seeds and its embedded calcium alginate beads as adsorbents J. Environ. Chem. Eng., 6 (2018), pp. 4298-4309, 10.1016/j.jece.2018.06.033
Reck et al., 2018 I.M. Reck, R.M. Paixão, R. Bergamasco, M.F. Vieira, A.M.S. Vieira Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds J. Clean. Prod., 171 (2018), pp. 85-97, 10.1016/j.jclepro.2017.09.237
Rehman et al., 2019 A. Rehman, M. Park, S.-J. Park Current Progress on the Surface Chemical Modification of Carbonaceous Materials Coatings, 9 (2019), p. 103, 10.3390/coatings9020103
Rengaraj et al., 2002 S. Rengaraj, S.-H. Moon, R. Sivabalan, B. Arabindoo, V. Murugesan Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon Waste Manag., 22 (2002), pp. 543-548, 10.1016/S0956-053X(01)00016-2
Rombaut et al., 2020 N. Rombaut, T. Chave, S.I. Nikitenko, M. El Maâtaoui, A.S. Fabiano-Tixier, F. Chemat Modification of Olive Leaves’ Surface by Ultrasound Cavitation. Correlation with Polyphenol Extraction Enhancement Appl. Sci., 11 (2020), p. 232, 10.3390/app11010232
Salazar-Rabago and Leyva-Ramos, 2016 J.J. Salazar-Rabago, R. Leyva-Ramos Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb(II) from aqueous solutions J. Environ. Manage., 169 (2016), pp. 303-312, 10.1016/j.jenvman.2015.12.040
Saliba et al., 2005 R. Saliba, H. Gauthier, R. Gauthier Adsorption of Heavy Metal Ions on Virgin and Chemically-Modified Lignocellulosic Materials Adsorpt. Sci. Technol., 23 (2005), pp. 313-322, 10.1260/0263617054770039
Santos et al., 2021 A.S. Santos, T.S.M. Santos, V.A. Lemos, A.O. De Souza Yellow mombin (spondias mombin l.) seeds from agro-industrial waste as a novel adsorbent for removal of hexavalent chromium from aqueous solutions J. Braz. Chem. Soc., 32 (2021), pp. 437-446 https://doi.org/10.21577/0103-5053.20200196
Saravanan et al., 2020 A. Saravanan, S. Karishma, S. Jeevanantham, S. Jeyasri, A.R. Kiruthika, P.S. Kumar, P.R. Yaashikaa Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters Surf. Interfaces, 20 (2020), Article 100520, 10.1016/j.surfin.2020.100520
Sarin and Pant, 2006 V. Sarin, K.K. Pant Removal of chromium from industrial waste by using eucalyptus bark Bioresour. Technol., 97 (2006), pp. 15-20, 10.1016/j.biortech.2005.02.010
Schimmelpfennig et al., 2014 S. Schimmelpfennig, C. Müller, L. Grünhage, C. Koch, C. Kammann Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth Agric. Ecosyst. Environ., 191 (2014), pp. 39-52, 10.1016/j.agee.2014.03.027
Schwantes et al., 2018 D. Schwantes, A.C. Gonçalves, M.A. Campagnolo, C.R.T. Tarley, D.C. Dragunski, A. de Varennes, A.K. dos Santos Silva, E. Conradi Chemical modifications on pinus bark for adsorption of toxic metals J. Environ. Chem. Eng., 6 (2018), pp. 1271-1278, 10.1016/j.jece.2018.01.044
Sebastian et al., 2019 A. Sebastian, A. Nangia, M.N.V. Prasad Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice J. Hazard. Mater., 371 (2019), pp. 261-272, 10.1016/j.jhazmat.2019.03.021
Sellaoui et al., 2020 L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. Bonilla-Petriciolet, H. Belmabrouk, A. Bajahzar Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations Chem. Eng. J., 394 (2020), Article 125011, 10.1016/j.cej.2020.125011
Semerjian, 2010 L. Semerjian Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust J. Hazard. Mater., 173 (2010), pp. 236-242, 10.1016/j.jhazmat.2009.08.074
Şen et al., 2015 Şen, A., Pereira, H., Olivella, M.A., Villaescusa, I., 2015. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-014-0525-z
Septevani et al., 2020 Septevani, A.A., Rifathin, A., Sari, A.A., Sampora, Y., Ariani, G.N., Sudiyarmanto, Sondari, D., 2020. Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydr. Polym. 229. https://doi.org/10.1016/j.carbpol.2019.115433
Sert et al., 2008 Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, M. Eral Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder Hydrometallurgy, 90 (2008), pp. 13-18, 10.1016/j.hydromet.2007.09.006
Shah et al., 2021 Shah, Q.U., Tasleem, S., Naeem, A., Din, I.U., Alharthi, A.I., Saeed, T., Alotaibi, M.A., Bakht, M.A., 2021. Reporting the application of Lycopersicon esculentum peel and Brassica botrytis leaves as adsorbents for Cd removal from aqueous solution. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03244-y
Shaheen et al., 2019 S.M. Shaheen, N.K. Niazi, N.E.E. Hassan, I. Bibi, H. Wang, D.C.W. Tsang, Y.S. Ok, N. Bolan, J. Rinklebe Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review Int. Mater. Rev., 64 (2019), pp. 216-247, 10.1080/09506608.2018.1473096
Shaikh et al., 2021 W.A. Shaikh, R.U. Islam, S. Chakraborty Stable silver nanoparticle doped mesoporous biochar-based nanocomposite for efficient removal of toxic dyes J. Environ. Chem. Eng., 9 (2021), Article 104982, 10.1016/j.jece.2020.104982
Shakoor and Nasar, 2018 S. Shakoor, A. Nasar Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste Groundw. Sustain. Dev., 7 (2018), pp. 30-38, 10.1016/j.gsd.2018.03.004
Shao et al., 2019 Shao, H., Zhao, H., Xie, J., Qi, J., Shupe, T.F., 2019. Agricultural and Forest Residues towards Renewable Chemicals and Materials Using Microwave Liquefaction. Int. J. Polym. Sci. https://doi.org/10.1155/2019/7231263
Sharma and Bhattacharyya, 2005 A. Sharma, K.G. Bhattacharyya Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium J. Hazard. Mater., 125 (2005), pp. 102-112, 10.1016/j.jhazmat.2005.05.012
Shen et al., 2008 W. Shen, Z. Li, Y. Liu Surface Chemical Functional Groups Modification of Porous Carbon Recent Patents Chem. Eng., 1 (2008), pp. 27-40
hi et al., 2017 J. Shi, Z. Yang, H. Dai, X. Lu, L. Peng, X. Tan, L. Shi, R. Fahim Preparation and application of modified zeolites as adsorbents in wastewater treatment Water Sci. Technol., 2017 (2017), pp. 621-635, 10.2166/wst.2018.249
Shim et al., 2001 J.W. Shim, S.J. Park, S.K. Ryu Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers Carbon N. Y., 39 (2001), pp. 1635-1642, 10.1016/S0008-6223(00)00290-6
Shimizu et al., 2010 M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses J. Appl. Phys., 108 (2010), Article 073533, 10.1063/1.3483238
Shukla and Skhardande, 1992 S.R. Shukla, V.D. Skhardande Column studies on metal ion removal by dyed cellulosic materials J. Appl. Polym. Sci., 44 (1992), pp. 903-910, 10.1002/app.1992.070440518
da Silva et al., 2020 F.A. da Silva, F.J. Simioni, D.N. Hoff Diagnosis of circular economy in the forest sector in southern Brazil Sci. Total Environ., 706 (2020), Article 135973, 10.1016/j.scitotenv.2019.135973
Singha et al., 2011 Singha, B., Naiya, T.K., Bhattacharya, A. kumar, Das, S.K., 2011. Cr(VI) Ions Removal from Aqueous Solutions Using Natural Adsorbents – FTIR Studies. J. Environ. Prot. (Irvine,. Calif). 02, 729–735. https://doi.org/10.4236/jep.2011.26084
Sirajudheen et al., 2021 P. Sirajudheen, P. Karthikeyan, K. Ramkumar, P. Nisheetha, S. Meenakshi Magnetic carbon-biomass from the seeds of Moringa oleifera@MnFe2O4 composite as an effective and recyclable adsorbent for the removal of organic pollutants from water J. Mol. Liq., 327 (2021), Article 114829, 10.1016/j.molliq.2020.114829
Sommerhuber et al., 2015 P.F. Sommerhuber, J. Welling, A. Krause Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites Waste Manag., 46 (2015), pp. 76-85, 10.1016/j.wasman.2015.09.011
Sonal et al., 2020 S. Sonal, P. Prakash, B.K. Mishra, G.C. Nayak Synthesis, characterization and sorption studies of a zirconium(IV) impregnated highly functionalized mesoporous actIVated carbonsb RSC Adv., 10 (2020), pp. 13783-13798, 10.1039/c9ra10103a
Sousa et al., 2011 S. Sousa, P. Jiménez-Guerrero, A. Ruiz, N. Ratola, A. Alves Organochlorine pesticides removal from wastewater by pine bark adsorption after activated sludge treatment Environ. Technol., 32 (2011), pp. 673-683, 10.1080/09593330.2010.510535
Srivastava and Rupainwar, 2010 R. Srivastava, D.C. Rupainwar Liquid phase adsorption of Indigo Carmine and Methylene Blue on Neem bark Desalin. Water Treat., 24 (2010), pp. 74-84, 10.5004/dwt.2010.1195
Stute, 1992 R. Stute Hydrothermal Modification of Starches: The Difference between Annealing and Heat/Moisture -Treatment Starch - Stärke, 44 (1992), pp. 205-214, 10.1002/star.19920440603
Subratti et al., 2021 A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue Sustain. Chem. Pharm., 21 (2021), Article 100421, 10.1016/j.scp.2021.100421
Suganya et al., 2017 S. Suganya, P. Senthil Kumar, A. Saravanan, P. Sundar Rajan, C. Ravikumar Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis Environ. Toxicol. Pharmacol., 50 (2017), pp. 45-57, 10.1016/j.etap.2017.01.014
Sugimoto and Miki, 1997 Sugimoto, Y., Miki, Y., 1997. Chemical structure of artificial coals obtained from cellulose, wood and peat (Miscellaneous) | ETDEWEB, in: Ziegler, A., van Heek, K., Klein, J., Wanzl, W. (Eds.), . . Proceedings of the 9th International Conference on Coal Science ICCS ’97. pp. 187–190.
Summons, 1993 Summons, R.E., 1993. Biogeochemical Cycles. pp. 3–21. https://doi.org/10.1007/978-1-4615-2890-6_1
Sun et al., 2013 L. Sun, S. Wan, W. Luo Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies Bioresour. Technol., 140 (2013), pp. 406-413, 10.1016/j.biortech.2013.04.116
Sunsandee et al., 2020 N. Sunsandee, P. Ramakul, S. Phatanasri, U. Pancharoen Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: Kinetic and equilibrium studies Biotechnol. Reports, 27 (2020), Article e00488, 10.1016/j.btre.2020.e00488
Suslick et al., 1986 K.S. Suslick, D.A. Hammerton, R.E. Cline The Sonochemical Hot Spot J. Am. Chem. Soc., 108 (1986), pp. 5641-5642, 10.1021/ja00278a055
Tamon and Okazaki, 1996 H. Tamon, M. Okazaki Influence of acidic surface oxides of activated carbon on gas adsorption characteristics Carbon N. Y., 34 (1996), pp. 741-746, 10.1016/0008-6223(96)00029-2
Tan, 2016 Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Xu, Y., Zeng, G. ming, Hu, X. jiang, Liu, Shao bo, Wang, X., Liu, Si mian, Li, J., 2016. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.04.093
Tang et al., 2010 Q. Tang, X. Tang, M. Hu, Z. Li, Y. Chen, P. Lou Removal of Cd(II) from aqueous solution with activated Firmiana Simplex Leaf: Behaviors and affecting factors J. Hazard. Mater., 179 (2010), pp. 95-103, 10.1016/j.jhazmat.2010.02.062
Taty-Costodes et al., 2003 V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris J. Hazard. Mater., 105 (2003), pp. 121-142, 10.1016/j.jhazmat.2003.07.009
Telkapalliwar and Shivankar, 2018 N.G. Telkapalliwar, V.M. Shivankar Adsorption of Zinc onto Microwave assisted carbonized Acacia nilotica bark Materials Today: Proceedings, Elsevier Ltd (2018), pp. 22694-22705, 10.1016/j.matpr.2018.06.646
Thilagavathy and Santhi, 2014 P. Thilagavathy, T. Santhi Kinetics, Isotherms and Equilibrium Study of Co(II) Adsorption from Single and Binary Aqueous Solutions by Acacia nilotica Leaf Carbon Chinese J. Chem. Eng., 22 (2014), pp. 1193-1198, 10.1016/j.cjche.2014.08.006
Tirkey et al., 2018 P. Tirkey, T. Bhattacharya, S. Chakraborty Optimization of fluoride removal from aqueous solution using Jamun (Syzygium cumini) leaf ash Process Saf. Environ. Prot., 115 (2018), pp. 125-138, 10.1016/j.psep.2017.10.022
Tony, 2021 M.A. Tony Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications J. Dispers. Sci. Technol. (2021), 10.1080/01932691.2021.1878037
Tu et al., 2021 W. Tu, Y. Liu, Z. Xie, M. Chen, L. Ma, G. Du, M. Zhu A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties J. Colloid Interface Sci., 593 (2021), pp. 390-407, 10.1016/j.jcis.2021.02.133
Unugul and Nigiz, 2020 Unugul, T., Nigiz, F.U., 2020. Preparation and Characterization an Active Carbon Adsorbent from Waste Mandarin Peel and Determination of Adsorption Behavior on Removal of Synthetic Dye Solutions. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-020-04903-5
Vázquez et al., 2007 G. Vázquez, J. González-Álvarez, A.I. García, M.S. Freire, G. Antorrena Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: Equilibrium and kinetics Bioresour. Technol., 98 (2007), pp. 1535-1540, 10.1016/j.biortech.2006.06.024
Veksha et al., 2014 A. Veksha, H. McLaughlin, D.B. Layzell, J.M. Hill Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity Bioresour. Technol., 153 (2014), pp. 173-179, 10.1016/j.biortech.2013.11.082
Vieira et al., 2021 Y. Vieira, M.S. Netto, É.C. Lima, I. Anastopoulos, M.L.S. Oliveira, G.L. Dotto An overview of geological originated materials as a trend for adsorption in wastewater treatment Geosci. Front., 101150 (2021), 10.1016/j.gsf.2021.101150
Vinke et al., 1994 P. Vinke, M. van der Eijk, M. Verbree, A.F. Voskamp, H. van Bekkum Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia Carbon N. Y., 32 (1994), pp. 675-686, 10.1016/0008-6223(94)90089-2
Vishnu Priyan et al., 2021 V. Vishnu Priyan, T. Shahnaz, E. Suganya, S. Sivaprakasam, S. Narayanasamy Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies J. Hazard. Mater., 403 (2021), Article 123532, 10.1016/j.jhazmat.2020.123532
Wahab et al., 2010 M.A. Wahab, S. Jellali, N. Jedidi Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling Bioresour. Technol., 101 (2010), pp. 5070-5075, 10.1016/j.biortech.2010.01.121
Wan Ngah and Hanafiah, 2008 W.S. Wan Ngah, M.A.K.M. Hanafiah Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies Biochem. Eng. J., 39 (2008), pp. 521-530, 10.1016/j.bej.2007.11.006
Wang et al., 2015a H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood Bioresour. Technol., 197 (2015), pp. 356-362, 10.1016/j.biortech.2015.08.132
Wang et al., 2018a H. Wang, Y. Liu, J. Ifthikar, L. Shi, A. Khan, Zhulei Chen, Zhuqi Chen Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with Γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment Bioresour. Technol., 256 (2018), pp. 269-276, 10.1016/j.biortech.2018.02.019
Wang and Wang, 2019 J. Wang, S. Wang Preparation, modification and environmental application of biochar: A review J. Clean. Prod. (2019), 10.1016/j.jclepro.2019.04.282
Wang et al., 2018b Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G., 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2018.03.071
Wang et al., 2018c X. Wang, W. Lian, X. Sun, J. Ma, P. Ning Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution Front. Environ. Sci. Eng., 12 (2018), pp. 1-11, 10.1007/s11783-018-1066-3
Wang et al., 2015b Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao, S. Deng Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-) Chemosphere, 119 (2015), pp. 646-653, 10.1016/j.chemosphere.2014.07.084
Watkins et al., 2015 D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, S. Jeelani Extraction and characterization of lignin from different biomass resources J. Mater. Res. Technol., 4 (2015), pp. 26-32, 10.1016/j.jmrt.2014.10.009
Watson et al., 2018 Watson, J., Zhang, Y., Si, B., Chen, W.T., de Souza, R., 2018. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.10.003
Wei et al., 2015 Z. Wei, T. Xia, M. Liu, Q. Cao, Y. Xu, K. Zhu, X. Zhu Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration Front. Chem. Sci. Eng., 9 (2015), pp. 450-460, 10.1007/s11705-015-1542-2
Wong et al., 2020 S. Wong, N.A. Ghafar, N. Ngadi, F.A. Razmi, I.M. Inuwa, R. Mat, N.A.S. Amin Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste Sci. Rep., 10 (2020), pp. 1-13, 10.1038/s41598-020-60021-6
Wu et al., 2017 H. Wu, Q. Feng, H. Yang, E. Alam, B. Gao, D. Gu Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms Colloids Surfaces A Physicochem. Eng. Asp., 517 (2017), pp. 63-71, 10.1016/j.colsurfa.2017.01.005
Xiao et al., 2020 F. Xiao, A.H. Bedane, S. Mallula, P.C. Sasi, A. Alinezhad, D. Soli, Z.M. Hagen, M.D. Mann Production of granular activated carbon by thermal air oxidation of biomass charcoal/biochar for water treatment in rural communities: A mechanistic investigation Chem. Eng. J. Adv., 4 (2020), Article 100035, 10.1016/j.ceja.2020.100035
Xiong et al., 2013 Z. Xiong, Z. Shihong, Y. Haiping, S. Tao, C. Yingquan, C. Hanping Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture Bioenergy Res., 6 (2013), pp. 1147-1153, 10.1007/s12155-013-9304-9
Xu et al., 2021a S. Xu, J. Chen, H. Peng, S. Leng, Hui Li, W. Qu, Y. Hu, Hailong Li, S. Jiang, W. Zhou, L. Leng Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar Fuel, 291 (2021), Article 120128, 10.1016/j.fuel.2021.120128
Xu et al., 2021b Y. Xu, T. Bai, Q. Li, H. Yang, Y. Yan, B. Sarkar, S.S. Lam, N. Bolan Influence of pyrolysis temperature on the characteristics and lead(II) adsorption capacity of phosphorus-engineered poplar sawdust biochar J. Anal. Appl. Pyrol., 154 (2021), Article 105010, 10.1016/j.jaap.2020.105010
Yagub et al., 2012 M.T. Yagub, T.K. Sen, H.M. Ang Equilibrium, Kinetics, and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves Water Air Soil Pollut., 223 (2012), pp. 5267-5282, 10.1007/s11270-012-1277-3
Yan et al., 2016 H. Yan, H. Yang, A. Li, R. Cheng pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water Chem. Eng. J., 284 (2016), pp. 1397-1405, 10.1016/j.cej.2015.06.030
Yan et al., 2021 T. Yan, Z. Wang, C. Liao, W. Xu, L. Wan Experimental data on the adsorption of water by branches and leaves as affected by different the morphological characteristics of plants Data Br., 34 (2021), Article 106689, 10.1016/j.dib.2020.106689
Yang et al., 2015 J. Yang, M. Yu, W. Chen Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics J. Ind. Eng. Chem., 21 (2015), pp. 414-422, 10.1016/j.jiec.2014.02.054
Yang et al., 2019 Yang, X., Zhang, S., Ju, M., Liu, L., 2019. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. https://doi.org/10.3390/app9071365
Yao et al., 2013 X. Yao, J. Liu, G. Gong, Y. Jiang, Q. Xie Preparation and modification of activated carbon for benzene adsorption by steam activation in the presence of KOH Int. J. Min. Sci. Technol., 23 (2013), pp. 395-401, 10.1016/j.ijmst.2013.05.015
Yildiz and Gümüşkaya, 2007 S. Yildiz, E. Gümüşkaya The effects of thermal modification on crystalline structure of cellulose in soft and hardwood Build. Environ., 42 (2007), pp. 62-67, 10.1016/j.buildenv.2005.07.009
Yin et al., 2018 Z. Yin, Y. Liu, Shaobo Liu, L. Jiang, X. Tan, G. Zeng, M. Li, Sijia Liu, S. Tian, Y. Fang Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper Sci. Total Environ., 639 (2018), pp. 1530-1542, 10.1016/j.scitotenv.2018.05.130
Yu et al., 2001 J.C. Yu, J. Yu, W. Ho, L. Zhang Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation Chem. Commun., 1 (2001), pp. 1942-1943, 10.1039/b105471f
Zhang et al., 2010 C. Zhang, X. Guo, C. Song, S. Zhao, X. Wang Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol Catal. Today, 149 (2010), pp. 196-201, 10.1016/j.cattod.2009.04.015
Zhang et al., 2021 F. Zhang, S. Zhang, L. Chen, Z. Liu, J. Qin Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater Ind. Crops Prod., 160 (2021), Article 113157, 10.1016/j.indcrop.2020.113157
Zhang et al., 2015 J. Zhang, J. Liu, R. Liu Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate Bioresour. Technol., 176 (2015), pp. 288-291, 10.1016/j.biortech.2014.11.011
Zhang et al., 2014 J. Zhang, F. Lü, L. Shao, P. He The use of biochar-amended composting to improve the humification and degradation of sewage sludge Bioresour. Technol., 168 (2014), pp. 252-258, 10.1016/j.biortech.2014.02.080
Zhou et al., 2019 R. Zhou, M. Zhang, J. Zhou, J. Wang Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+ Sci. Rep., 9 (2019), pp. 1-17, 10.1038/s41598-019-54105-1
Zhou et al., 2017 Y. Zhou, R. Zhang, K. Chen, X. Zhao, X. Gu, J. Lu Enhanced adsorption and photo-degradation of bisphenol A by β-cyclodextrin modified pine sawdust in an aquatic environment J. Taiwan Inst. Chem. Eng., 78 (2017), pp. 510-516, 10.1016/j.jtice.2017.06.025
Zieliński et al., 2016 M. Zieliński, M. Zielińska, M. Dębowski Ammonium removal on zeolite modified by ultrasound Desalin. Water Treat., 57 (2016), pp. 8748-8753, 10.1080/19443994.2015.1024750
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Gondwana Research
dc.source.spa.fl_str_mv Gondwana Research
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1342937X21001994?via%3Dihub#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8587/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8587/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8587/5/AN%20OVERVIEW%20OF%20FOREST%20RESIDUES%20AS%20PROMISING%20LOW-COST%20ADSORBENTS.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/8587/7/An%20overview%20of%20forest%20residues%20as%20promising%20low-cost%20adsorbents.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/8587/6/An%20overview%20of%20forest%20residues%20as%20promising%20low-cost%20adsorbents.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8587/8/An%20overview%20of%20forest%20residues%20as%20promising%20low-cost%20adsorbents.pdf.jpg
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
ca08eb068a89fe6b0f2b815acf39ee5a
4cc050466e60db5f78e2780a12f0c7fd
efcb12304d5b23eb5419464bfab75060
25c7b274e75c06c604b237a9f5bc2f13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400064424443904
spelling Vieira, Yasminf0bac7585b854c1686485e8904e1f99bN. dos Santos, Juliana M.abaf143e875eea99ece62c5491e4065dgeorgin, jordana2d39c339719cc6762ad701d72a27af54S. Oliveira, Marcos L.b7b33a3baa2ce350d6fbd94f4e176a7cPinto, Dianaa479960920eb3541c1ab5253a34dd8abDotto, Guilherme Luizdb0ab5734a8bbe410bb09d3a2d6f3a412021-08-24T16:57:34Z2021-08-24T16:57:34Z2021-06-262022-06-261342-937Xhttps://hdl.handle.net/11323/8587https://doi.org/10.1016/j.gr.2021.06.018Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Anthropogenic activities have severely affected biogeochemical cycles on a global scale, resulting in a drastic increase in environmental problems, intensified by wastewater generation containing high levels of pollutants. As it is known that water is precious yet limited, viable wastewater treatments must be developed. Adsorption is an environmentally friendly option, and it offers the possibility of resolving two problems simultaneously. Besides removing pollutants from water, many adsorbents can be produced using wooden forestry residues. Such materials are generally considered as waste, which leads to their direct disposal. In addition, there are types of wooden forestry waste that have little or no use for humankind, such as fallen leaves or rotten fruits. Therefore, the utilization of wooden forestry residues for preparing low-cost adsorbents is promising. In this review, we briefly approach adsorption advantages to wastewater treatment. Later on, we focus on several types of wooden forestry residues as alternative low-cost adsorbents. © 2021 International Association for Gondwana Research.application/pdfengGondwana ResearchCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfGondwana Researchhttps://www.sciencedirect.com/science/article/pii/S1342937X21001994?via%3Dihub#!AdsorptionBarkLeavesSawdustSeedsAn overview of forest residues as promising low-cost adsorbentsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbatal, M., Anastopoulos, I., Giannakoudakis, D.A., Olguin, M.T., 2020. Carbonaceousmaterial obtained from bark biomass as adsorbent of phenolic compounds fromaqueous solutions. J. Environ. Chem. Eng. 8,.https://doi.org/10.1016/j.jece.2020.103784103784Abegunde, S.M., Idowu, K.S., Adejuwon, O.M., Adeyemi-Adejolu, T., 2020. A reviewon the influence of chemical modification on the performance of adsorbents.Resour. Environ. Sustain. 1,.https://doi.org/10.1016/j.resenv.2020.100001100001.Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impactof biochar and hydrochar addition on water retention and water repellency ofsandy soil. Geoderma 202–203, 183–191.https://doi.org/10.1016/j.geoderma.2013.03.003.Abu El-Rub, Z., Bramer, E.A., Brem, G., 2008. Experimental comparison of biomasschars with other catalysts for tar reduction. Fuel 87, 2243–2252.https://doi.org/10.1016/j.fuel.2008.01.004Achour, Y., Bahsis, L., Ablouh, E.H., Yazid, H., Laamari, M.R., Haddad, M. El, 2021.Insight into adsorption mechanism of Congo red dye onto BombaxBuonopozense bark Activated-carbon using Central composite design and DFTstudies. Surf. Interfaces 23,.https://doi.org/10.1016/j.surfin.2021.100977100977.Afroze, S., Sen, T.K., Ang, H.M., 2016. Adsorption removal of zinc (II) from aqueousphase by raw and base modified Eucalyptus sheathiana bark: Kinetics,mechanism and equilibrium study. Process Saf. Environ. Prot. 102, 336–352.https://doi.org/10.1016/j.psep.2016.04.009.Aguayo-Villarreal et al., 2016 I.A. Aguayo-Villarreal, V. Hernández-Montoya, E.M. Ramírez-López, A. Bonilla-Petriciolet, M.A. Montes-Morán Effect of surface chemistry of carbons from pine sawdust for the adsorption of acid, basic and reactive dyes and their bioregeneration using Pseudomona putida Ecol. Eng., 95 (2016), pp. 112-118, 10.1016/j.ecoleng.2016.06.056Ahmad, 2009 R. Ahmad Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP) J. Hazard. Mater., 171 (2009), pp. 767-773, 10.1016/j.jhazmat.2009.06.060Ahmed et al., 2016 M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater Bioresour. Technol. (2016), 10.1016/j.biortech.2016.05.057Ahmed and Theydan, 2014 M.J. Ahmed, S.K. Theydan Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption J. Anal. Appl. Pyrol., 105 (2014), pp. 199-208, 10.1016/j.jaap.2013.11.005Ahmed and Theydan, 2013a M.J. Ahmed, S.K. Theydan Adsorption of p-chlorophenol onto microporous activated carbon from Albizia lebbeck seed pods by one-step microwave assisted activation J. Anal. Appl. Pyrol., 100 (2013), pp. 253-260, 10.1016/j.jaap.2013.01.008hmed and Theydan, 2013b M.J. Ahmed, S.K. Theydan Microwave assisted preparation of microporous activated carbon from Siris seed pods for adsorption of metronidazole antibiotic Chem. Eng. J., 214 (2013), pp. 310-318, 10.1016/j.cej.2012.10.101Ahmed and Theydan, 2012 M.J. Ahmed, S.K. Theydan Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations Chem. Eng. J., 211–212 (2012), pp. 200-207, 10.1016/j.cej.2012.09.089Ajaelu et al., 2018 C.J. Ajaelu, V. Nwosu, L. Ibironke, A. Adeleye Adsorptive removal of cationic dye from aqueous solution using chemically modified African Border Tree (Newbouldia laevis) bark J. Appl. Sci. Environ. Manag., 21 (2018), p. 1323, 10.4314/jasem.v21i7.18Ajmal et al., 1996 Ajmal, M., Ali Khan Rao, R., Siddiqui, B.A., 1996. Studies on removal and recovery of Cr(VI) from electroplating wastes. Water Res. 30, 1478–1482. https://doi.org/10.1016/0043-1354(95)00301-0Akar et al., 2019 S. Akar, B. Lorestani, S. Sobhanardakani, M. Cheraghi, O. Moradi Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample Environ. Monit. Assess., 191 (2019), pp. 1-19, 10.1007/s10661-019-7479-zAkhtar et al., 2018 A. Akhtar, V. Krepl, T. Ivanova A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass Energy Fuels (2018), 10.1021/acs.energyfuels.8b01678Akinwande et al., 2021 A.A. Akinwande, A.A. Adediran, O.A. Balogun, O.S. Olusoju, O.S. Adesina Influence of alkaline modification on selected properties of banana fiber paperbricks Sci. Rep., 11 (2021), p. 5793, 10.1038/s41598-021-85106-8Al Bsoul et al., 2021 A. Al Bsoul, M. Hailat, A. Abdelhay, M. Tawalbeh, A. Al-Othman, I.N. Al-kharabsheh, A.A. Al-Taani Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent Sci. Total Environ., 761 (2021), 10.1016/j.scitotenv.2020.143229Albayari et al., 2021 M. Albayari, M.K. Nazal, F.I. Khalili, N. Nordin, R. Adnan Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water J. Radioanal. Nucl. Chem., 1–10 (2021), 10.1007/s10967-021-07667-2Álvarez-Torrellas et al., 2016 S. Álvarez-Torrellas, M. Muñoz, J.A. Zazo, J.A. Casas, J. García Synthesis of high surface area carbon adsorbents prepared from pine sawdust- Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption J. Environ. Manage., 183 (2016), pp. 294-305, 10.1016/j.jenvman.2016.08.077Andrew Ofudje et al., 2015 E. Andrew Ofudje, O. Kolawole Akiode, G. Opeoluwa Oladipo, A. Emmanuel Adedapo, L. Olanike Adebayo, A. Olushola Awotula Application of raw and alkaline-modified coconut shaft as a biosorbent for Pb2+ removal BioResources (2015)Angin et al., 2013 D. Angin, E. Altintig, T.E. Köse Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation Bioresour. Technol., 148 (2013), pp. 542-549, 10.1016/j.biortech.2013.08.164Arenas Esteban et al., 2020 D. Arenas Esteban, A. Guerrero Martínez, J. Carretero González, V.I. Birss, L.C. Otero-Díaz, D. Ávila Brande Tunable Supercapacitor Materials Derived from Hydrochar/Gold Nanograpes ACS Appl. Energy Mater., 3 (2020), pp. 9348-9359, 10.1021/acsaem.0c01711Argun and Dursun, 2008 M.E. Argun, S. Dursun A new approach to modification of natural adsorbent for heavy metal adsorption Bioresour. Technol., 99 (2008), pp. 2516-2527, 10.1016/j.biortech.2007.04.037Argun et al., 2005 M.E. Argun, S. Dursun, K. Gur, C. Ozdemir, M. Karatas, S. Dogan Nickel adsorption on the modified pine tree materials Environ. Technol., 26 (2005), pp. 479-488, 10.1080/09593332608618532Arim et al., 2019 A.L. Arim, M.J. Quina, L.M. Gando-Ferreira Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: Characterization, batch and column studies Process Saf. Environ. Prot., 121 (2019), pp. 374-386, 10.1016/j.psep.2018.11.001Asfour et al., 2007 H.M. Asfour, M.M. Nassar, O.A. Fadali, M.S. El-Geundi Colour removal from textile effluents using hardwood sawdust as an absorbent J. Chem. Technol. Biotechnol. Chem. Technol., 35 (2007), pp. 28-35, 10.1002/jctb.5040350106Asif Tahir et al., 2016 M. Asif Tahir, H.N. Bhatti, M. Iqbal Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies J. Environ. Chem. Eng., 4 (2016), pp. 2431-2439, 10.1016/j.jece.2016.04.020Ateş et al., 2019 F. Ateş, S. Şahin, Z. İlbay, I. Kırbaşlar A Green Valorisation Approach Using Microwaves and Supercritical CO 2 for High-Added Value Ingredients from Mandarin (Citrus deliciosa Tenore) Leaf Waste Waste Biomass Valorization, 10 (2019), pp. 533-546, 10.1007/s12649-017-0074-zBabalola et al., 2016 J.O. Babalola, B.A. Koiki, Y. Eniayewu, A. Salimonu, J.O. Olowoyo, V.O. Oninla, H.A. Alabi, A.E. Ofomaja, M.O. Omorogie Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies J. Environ. Chem. Eng., 4 (2016), pp. 3527-3536, 10.1016/j.jece.2016.07.027Babeker and Chen, 2021 Babeker, T.M.A., Chen, Q., 2021. Heavy Metal Removal from Wastewater by Adsorption with Hydrochar Derived from Biomass: Current Applications and Research Trends. Curr. Pollut. Reports. https://doi.org/10.1007/s40726-020-00172-2Bach, 2007 Bach, M.T., 2007. IMPACT OF SURFACE CHEMISTRY ON ADSORPTION: TAILORING OF ACTIVATED CARBON.Bakar et al., 2021 N.A. Bakar, N. Othman, Z.M. Yunus, W.A.H. Altowayti, M. Tahir, N. Fitriani, S.N.A. Mohd-Salleh An insight review of lignocellulosic materials as activated carbon precursor for textile wastewater treatment Environ. Technol. Innov., 22 (2021), Article 101445, 10.1016/j.eti.2021.101445Bandosz and Block, 2006 T.J. Bandosz, K. Block Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents Appl. Catal. B Environ., 67 (2006), pp. 77-85, 10.1016/j.apcatb.2006.04.006Bargmann et al., 2014 I. Bargmann, M.C. Rillig, A. Kruse, J.-M. Greef, M. Kücke Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability J. Plant Nutr. Soil Sci., 177 (2014), pp. 48-58, 10.1002/jpln.201300069Batzias and Sidiras, 2007 F.A. Batzias, D.K. Sidiras Simulation of dye adsorption by beech sawdust as affected by pH J. Hazard. Mater., 141 (2007), pp. 668-679, 10.1016/j.jhazmat.2006.07.033Bello et al., 2020 O.S. Bello, E.O. Alabi, K.A. Adegoke, S.A. Adegboyega, A.A. Inyinbor, A.O. Dada Rhodamine B dye sequestration using Gmelina aborea leaf powder Heliyon, 6 (2020), Article e02872, 10.1016/j.heliyon.2019.e02872Bergius, 1913 Bergius, F.C.R., 1913. Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle, 1st ed. W. Knapp.Berlan et al., 1994 J. Berlan, F. Trabelsi, H. Delmas, A.M. Wilhelm, J.F. Petrignani Oxidative degradation of phenol in aqueous media using ultrasound Ultrason. - Sonochemistry, 1 (1994), pp. S97-S102, 10.1016/1350-4177(94)90005-1Bharali and Bhattacharyya, 2015 R.K. Bharali, K.G. Bhattacharyya Biosorption of fluoride on Neem (Azadirachta indica) leaf powder J. Environ. Chem. Eng., 3 (2015), pp. 662-669, 10.1016/j.jece.2015.02.007Bhattacharya et al., 2008 A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents Chem. Eng. J., 137 (2008), pp. 529-541, 10.1016/j.cej.2007.05.021Bhattacharya and Sharma, 2005 K.G. Bhattacharya, A. Sharma Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder Dye. Pigment., 65 (2005), pp. 51-59, 10.1016/j.dyepig.2004.06.016Bhattacharyya et al., 2009 K.G. Bhattacharyya, J. Sarma, A. Sarma Azadirachta indica leaf powder as a biosorbent for Ni(II) in aqueous medium J. Hazard. Mater., 165 (2009), pp. 271-278, 10.1016/j.jhazmat.2008.09.109Bhattacharyya and Sharma, 2004 Krishna G. Bhattacharyya, A. Sharma Azadirachta indica leaf powder as an effective biosorbent for dyes: A case study with aqueous Congo Red solutions J. Environ. Manage., 71 (2004), pp. 217-229, 10.1016/j.jenvman.2004.03.002Bhattacharyya and Sharma, 2004c Krishna G Bhattacharyya, A. Sharma Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder J. Hazard. Mater., 113 (2004), pp. 97-109, 10.1016/j.jhazmat.2004.05.034Bobleter, 1994 Bobleter, O., 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. https://doi.org/10.1016/0079-6700(94)90033-7Boehm, 2002 H.P. Boehm Surface oxides on carbon and their analysis: A critical assessment Carbon N. Y., 40 (2002), pp. 145-149, 10.1016/S0008-6223(01)00165-8Boni et al., 2020 M.R. Boni, A. Chiavola, S. Marzeddu Remediation of Lead-Contaminated Water by Virgin Coniferous Wood Biochar Adsorbent: Batch and Column Application Water Air Soil Pollut., 231 (2020), pp. 1-16, 10.1007/s11270-020-04496-zBose et al., 2020 S. Bose, A. Ghosh, A. Das, M. Rahaman Development of Mango Peel Derived Activated Carbon-Nickel Nanocomposite as an Adsorbent towards Removal of Heavy Metal and Organic Dye Removal from Aqueous Solution ChemistrySelect, 5 (2020), pp. 14168-14176, 10.1002/slct.202003606Bugg et al., 2011 Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. https://doi.org/10.1039/c1np00042jCambero et al., 2015 C. Cambero, T. Sowlati, M. Marinescu, D. Röser Strategic optimization of forest residues to bioenergy and biofuel supply chain Int. J. Energy Res., 39 (2015), pp. 439-452, 10.1002/er.3233Cao et al., 2016 D. Cao, X. Jin, L. Gan, T. Wang, Z. Chen Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant Chemosphere, 159 (2016), pp. 23-31, 10.1016/j.chemosphere.2016.05.080Çelekli et al., 2019 A. Çelekli, A.I. Al-Nuaimi, H. Bozkurt Adsorption kinetic and isotherms of Reactive Red 120 on Moringa oleifera seed as an eco-friendly process J. Mol. Struct., 1195 (2019), pp. 168-178, 10.1016/j.molstruc.2019.05.106Cemin et al., 2021 A. Cemin, F. Ferrarini, M. Poletto, L.R. Bonetto, J. Bortoluz, L. Lemée, R. Guégan, V.I. Esteves, M. Giovanela Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye Int. J. Biol. Macromol., 170 (2021), pp. 375-389, 10.1016/j.ijbiomac.2020.12.155Cha et al., 2016 J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park Production and utilization of biochar: A review J. Ind. Eng. Chem. (2016), 10.1016/j.jiec.2016.06.002haudhari, 2010 U.E. Chaudhari Evaluation of adsorption efficiency of Ferronia elefuntum fruit shell for methylene blue from aqueous solution Asian J. Chem., 22 (2010), pp. 6722-6728Chen et al., 2010 H. Chen, J. Zhao, G. Dai, J. Wu, H. Yan Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves Desalination, 262 (2010), pp. 174-182, 10.1016/j.desal.2010.06.006Cheng et al., 2012 Z. Cheng, Z. Gao, W. Ma, Q. Sun, B. Wang, X. Wang Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions Chem. Eng. J., 209 (2012), pp. 451-457, 10.1016/j.cej.2012.07.078Choi et al., 2015 I.S. Choi, Y.G. Lee, S.K. Khanal, B.J. Park, H.J. Bae A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production Appl. Energy, 140 (2015), pp. 65-74, 10.1016/j.apenergy.2014.11.070Colmenares, 2013 Colmenares Q., J.C., 2013. Ultrasound and photochemical procedures for nanocatalysts preparation: Application in photocatalytic biomass valorization. J. Nanosci. Nanotechnol. https://doi.org/10.1166/jnn.2013.7567Conde-Cid et al., 2021 M. Conde-Cid, R. Cela-Dablanca, G. Ferreira-Coelho, D. Fernández-Calviño, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, M. Arias-Estévez, E. Álvarez-Rodríguez Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, “oak ash” and mussel shell Environ. Res., 195 (2021), Article 110814, 10.1016/j.envres.2021.110814Conde-Cid et al., 2019 M. Conde-Cid, G. Ferreira-Coelho, M. Arias-Estévez, C. Álvarez-Esmorís, J.C. Nóvoa-Muñoz, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell J. Environ. Manage., 250 (2019), Article 109509, 10.1016/j.jenvman.2019.109509Cravotto and Cintas, 2012 G. Cravotto, P. Cintas Harnessing mechanochemical effects with ultrasound-induced reactions Chem. Sci., 3 (2012), pp. 295-307, 10.1039/c1sc00740hCutillas-Barreiro et al., 2014 L. Cutillas-Barreiro, L. Ansias-Manso, D. Fernández-Calviño, M. Arias-Estévez, J.C. Nóvoa-Muñoz, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments J. Environ. Manage., 144 (2014), pp. 258-264, 10.1016/j.jenvman.2014.06.008Da Silva Correia et al., 2018 I.K. Da Silva Correia, P.F. Santos, C.S. Santana, J.B. Neris, F.H.M. Luzardo, F.G. Velasco Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water J. Environ. Chem. Eng., 6 (2018), pp. 2319-2334, 10.1016/j.jece.2018.03.033Dahmoune et al., 2013 F. Dahmoune, L. Boulekbache, K. Moussi, O. Aoun, G. Spigno, K. Madani Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction Ind. Crops Prod., 50 (2013), pp. 77-87, 10.1016/j.indcrop.2013.07.013Dao et al., 2020 M.U. Dao, H.S. Le, H.Y. Hoang, V.A. Tran, V.D. Doan, T.T.N. Le, A. Sirotkin, V.T. Le Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties Environ. Res., 110481 (2020), 10.1016/j.envres.2020.110481Dawodu et al., 2021 F.A. Dawodu, C.J. Abonyi, K.G. Akpomie Feldspar-banana peel composite adsorbent for efficient crude oil removal from solution Appl. Water Sci., 11 (2021), 10.1007/s13201-020-01335-8de León-Martínez et al., 2020 P.A. de León-Martínez, A. Sáenz-Galindo, C.A. Ávila-Orta, A.O. Castañeda-Facio, M.L. Andrade-Guel, U. Sierra, G. Alvarado-Tenorio, J. Bernal-Martínez Ultrasound-Assisted Surface Modification of MWCNT Using Organic Acids Materials (Basel)., 14 (2020), p. 72, 10.3390/ma14010072de Oliveira et al., 2017 P.R. de Oliveira, C. Kalinke, J.L. Gogola, A.S. Mangrich, L.H.M. Junior, M.F. Bergamini The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion J. Electroanal. Chem., 799 (2017), pp. 602-608, 10.1016/j.jelechem.2017.06.020de Salomón et al., 2021 Y.L.O. de Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, E.L. Foletto, D. Allasia, G.L. Dotto Application of seed residues from Anadenanthera macrocarpa and Cedrela fissilis as alternative adsorbents for remarkable removal of methylene blue dye in aqueous solutions Environ. Sci. Pollut. Res., 28 (2021), pp. 2342-2354, 10.1007/s11356-020-10635-0Demirbaş and Arin, 2002 A. Demirbaş, G. Arin An overview of biomass pyrolysis Energy Sources, 24 (2002), pp. 471-482, 10.1080/00908310252889979Deng et al., 2019 J. Deng, X. Li, X. Wei, Y. Liu, J. Liang, N. Tang, B. Song, X. Chen, X. Cheng Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism Bioresour. Technol., 290 (2019), Article 121765, 10.1016/j.biortech.2019.121765Deng, 2020 Deng, Y., 2020. Low-cost adsorbents for urban stormwater pollution control. Front. Environ. Sci. Eng. https://doi.org/10.1007/s11783-020-1262-9eniz and Saygideger, 2010 F. Deniz, S.D. Saygideger Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent Bioresour. Technol., 101 (2010), pp. 5137-5143, 10.1016/j.biortech.2010.02.004Dhaouadi et al., 2020 F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A. Ben Lamine Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model J. Mol. Liq., 305 (2020), Article 112815, 10.1016/j.molliq.2020.112815Dhaouadi et al., 2021 F. Dhaouadi, L. Sellaoui, L. Enrique Hernández-Hernández, A. Bonilla-Petriciolet, D. Ileana Mendoza-Castillo, H. Elizabeth Reynel-Ávila, H. Antonio González-Ponce, S. Taamalli, F. Louis, A. Ben Lamine Preparation of an avocado seed hydrochar and its application as heavy metal adsorbent: Properties and advanced statistical physics modeling Chem. Eng. J., 129472 (2021), 10.1016/j.cej.2021.129472Djilali et al., 2016 Y. Djilali, E.H. Elandaloussi, A. Aziz, L.C. de Ménorval Alkaline treatment of timber sawdust: A straightforward route toward effective low-cost adsorbent for the enhanced removal of basic dyes from aqueous solutions J. Saudi Chem. Soc., 20 (2016), pp. S241-S249, 10.1016/j.jscs.2012.10.013Do et al., 2021 T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D. Van Kiet, T.T.K. Ngan, L. Van Tan Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf Mater. Today:. Proc., 38 (2021), pp. 3405-3413, 10.1016/j.matpr.2020.10.834Dutta et al., 2001 S. Dutta, J.K. Basu, R.N. Ghar Studies on adsorption of p-nitrophenol on charred saw-dust Sep. Purif. Technol., 21 (2001), pp. 227-235, 10.1016/S1383-5866(00)00205-7El-Sheikh et al., 2018 A.H. El-Sheikh, I.I. Fasfous, R.M. Al-Salamin, A.P. Newman Immobilization of citric acid and magnetite on sawdust for competitive adsorption and extraction of metal ions from environmental waters J. Environ. Chem. Eng., 6 (2018), pp. 5186-5195, 10.1016/j.jece.2018.08.020El Hajam et al., 2020 M. El Hajam, N.I. Kandri, G.I. Plavan, A.H. Harrath, L. Mansour, F. Boufahja, A. Zerouale Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs J. King Saud Univ. - Sci., 32 (2020), pp. 2176-2189, 10.1016/j.jksus.2020.02.027steves and Pereira, 2009 B.M. Esteves, H.M. Pereira Heat treatment of wood BioResources (2009)Ferrari et al., 2010 L. Ferrari, J. Kaufmann, F. Winnefeld, J. Plank Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements J. Colloid Interface Sci., 347 (2010), pp. 15-24, 10.1016/j.jcis.2010.03.005Ferrentino et al., 2020 R. Ferrentino, R. Ceccato, V. Marchetti, G. Andreottola, L. Fiori Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater Appl. Sci., 10 (2020), p. 3445, 10.3390/app10103445Ferrero, 2007 F. Ferrero Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust J. Hazard. Mater., 142 (2007), pp. 144-152, 10.1016/j.jhazmat.2006.07.072Funke and Ziegler, 2010 A. Funke, F. Ziegler Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining, 4 (2010), pp. 160-177, 10.1002/bbb.198G, 2018 G., M., P., S.K., A., S., 2018. Modelling and analysis on the removal of methylene blue dye from aqueous solution using physically/chemically modified Ceiba pentandra seeds. J. Ind. Eng. Chem. 62, 446–461. https://doi.org/10.1016/j.jiec.2018.01.028Jayan et al., 2021 G, P., AS, S., Jayan, J.S., Raman, A., Saritha, A., 2021. Lignin based nano-composites: Synthesis and applications. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2020.11.017Gao et al., 2019 Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust Environ. Res., 172 (2019), pp. 561-568, 10.1016/j.envres.2019.03.010Gao et al., 2013 Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH Chem. Eng. J., 232 (2013), pp. 582-590, 10.1016/j.cej.2013.08.011arg et al., 2004 V.K. Garg, M. Amita, R. Kumar, R. Gupta Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste Dye. Pigment., 63 (2004), pp. 243-250, 10.1016/j.dyepig.2004.03.005Garg et al., 2003 V.K. Garg, R. Gupta, A.B. Yadav, R. Kumar Dye removal from aqueous solution by adsorption on treated sawdust Bioresour. Technol., 89 (2003), pp. 121-124, 10.1016/S0960-8524(03)00058-0Gautam et al., 2020 P.K. Gautam, S. Shivalkar, S. Banerjee Synthesis of M. oleifera leaf extract capped magnetic nanoparticles for effective lead [Pb (II)] removal from solution: Kinetics, isotherm and reusability study J. Mol. Liq., 305 (2020), Article 112811, 10.1016/j.molliq.2020.112811Gemici et al., 2021 B.T. Gemici, H.U. Ozel, H.B. Ozel Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis Environ. Technol. Innov., 101501 (2021), 10.1016/j.eti.2021.101501Georgin et al., 2018 J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents Water Sci. Technol., 78 (2018), pp. 1693-1703, 10.2166/wst.2018.448Georgin et al., 2019 J. Georgin, D.S.P. Franco, P. Grassi, D. Tonato, D.G.A. Piccilli, L. Meili, G.L. Dotto Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents Environ. Sci. Pollut. Res., 26 (2019), pp. 19207-19219, 10.1007/s11356-019-05321-9Georgin et al., 2020 J. Georgin, D.S.P. Franco, M.S. Netto, D. Allasia, M.L.S. Oliveira, G.L. Dotto Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches Environ. Sci. Pollut. Res., 27 (2020), pp. 25727-25739, 10.1007/s11356-020-08854-6Giannakoudakis et al., 2020a Giannakoudakis, D.A., Chatel, G., Colmenares, J.C., 2020a. Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Top. Curr. Chem. https://doi.org/10.1007/s41061-019-0262-3D.A. Giannakoudakis, N. Farahmand, D. Łomot, K. Sobczak, T.J. Bandosz, J.C. Colmenares Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors Chem. Eng. J., 395 (2020), Article 125099, 10.1016/j.cej.2020.125099Giwa et al., 2021 Giwa, A.R.A., Adesokan, S.A., Bello, I.A., 2021. Adsorption of pyrimethamine from wastewater using activated carbons prepared from Daniellia-oliveri sawdust. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1884858A.C. Gonçalves Junior, L. Strey, C.A. Lindino, H. Nacke, D. Schwantes, E.P. Seidel Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions Acta Sci. Technol., 34 (2012), pp. 79-87, 10.4025/actascitechnol.v34i1.9585Grassi et al., 2021 P. Grassi, F.C. Drumm, J. Georgin, D.S.P. Franco, G.L. Dotto, E.L. Foletto, S.L. Jahn Application of Cordia trichotoma sawdust as an effective biosorbent for removal of crystal violet from aqueous solution in batch system and fixed-bed column Environ. Sci. Pollut. Res., 28 (2021), pp. 6771-6783, 10.1007/s11356-020-11005-6Gupta and Babu, 2009 S. Gupta, B.V. Babu Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies Chem. Eng. J., 150 (2009), pp. 352-365, 10.1016/j.cej.2009.01.013upta et al., 2015 Gupta, V.K., Nayak, A., Agarwal, S., 2015. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. https://doi.org/10.4491/eer.2015.018Hafshejani et al., 2015 L.D. Hafshejani, S.B. Nasab, R.M. Gholami, M. Moradzadeh, Z. Izadpanah, S.B. Hafshejani, A. Bhatnagar Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent J. Mol. Liq., 211 (2015), pp. 448-456, 10.1016/j.molliq.2015.07.044Hamadeen et al., 2021 H.M. Hamadeen, E.A. Elkhatib, M.E.I. Badawy, S.A.M. Abdelgaleil Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater: Mechanism and sorption studies J. Environ. Chem. Eng., 9 (2021), Article 105376, 10.1016/j.jece.2021.105376Hamdaoui, 2006 O. Hamdaoui Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick J. Hazard. Mater., 135 (2006), pp. 264-273, 10.1016/j.jhazmat.2005.11.062Hameed and Daud, 2008 B. Hameed, F. Daud Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat Chem. Eng. J., 139 (2008), pp. 48-55, 10.1016/j.cej.2007.07.089Hameed et al., 2007 B.H. Hameed, A.L. Ahmad, K.N.A. Latiff Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust Dye. Pigment., 75 (2007), pp. 143-149, 10.1016/j.dyepig.2006.05.039Hameed et al., 2008 B.H. Hameed, L.H. Chin, S. Rengaraj Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust Desalination, 225 (2008), pp. 185-198, 10.1016/j.desal.2007.04.095B.H. Hameed, M.I. El-Khaiary Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling J. Hazard. Mater., 159 (2008), pp. 574-579, 10.1016/j.jhazmat.2008.02.054Han et al., 2012 X. Han, X. Niu, X. Ma Adsorption characteristics of methylene blue on poplar leaf in batch mode: Equilibrium, kinetics and thermodynamics Korean J. Chem. Eng., 29 (2012), pp. 494-502, 10.1007/s11814-011-0211-5Hanafiah et al., 2012 M.A.K.M. Hanafiah, W.S.W. Ngah, S.H. Zolkafly, L.C. Teong, Z.A.A. Majid Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis J. Environ. Sci., 24 (2012), pp. 261-268, 10.1016/S1001-0742(11)60764-XHasan et al., 2021 M.N. Hasan, M.A. Shenashen, M.M. Hasan, H. Znad, M.R. Awual Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent Chemosphere, 270 (2021), Article 128668, 10.1016/j.chemosphere.2020.128668Hashem et al., 2020 A. Hashem, S.M. Badawy, S. Farag, L.A. Mohamed, A.J. Fletcher, G.M. Taha Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd(II) from aqueous systems J. Environ. Chem. Eng., 8 (2020), Article 103966, 10.1016/j.jece.2020.103966Hashem et al., 2019 M.A. Hashem, M.A. Momen, M. Hasan, M.S. Nur-A-Tomal, M.H.R. Sheikh Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent Int. J. Environ. Sci. Technol., 16 (2019), pp. 1395-1404, 10.1007/s13762-018-1714-yHashemian and Mirshamsi, 2012 S. Hashemian, M. Mirshamsi Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution J. Ind. Eng. Chem., 18 (2012), pp. 2010-2015, 10.1016/j.jiec.2012.05.020B. Hayati, N.M. Mahmoodi Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: Mechanism, isotherm and kinetic Desalin. Water Treat., 47 (2012), pp. 322-333, 10.1080/19443994.2012.696429He et al., 2013 C. He, A. Giannis, J.Y. Wang Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior Appl. Energy, 111 (2013), pp. 257-266, 10.1016/j.apenergy.2013.04.084He et al., 2019 C. He, Z. Zhang, C. Ge, W. Liu, Y. Tang, X. Zhuang, R. Qiu Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior Waste Manag., 100 (2019), pp. 171-181, 10.1016/j.wasman.2019.09.018Hernandes et al., 2019 P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus) Environ. Sci. Pollut. Res., 26 (2019), pp. 31924-31933, 10.1007/s11356-019-06353-xHu et al., 2008 B. Hu, S.H. Yu, K. Wang, L. Liu, X.W. Xu Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process Dalt. Trans., 5414–5423 (2008), 10.1039/b804644cuang et al., 2014 Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies Appl. Surf. Sci., 293 (2014), pp. 160-168, 10.1016/j.apsusc.2013.12.123Huff and Lee, 2016 M.D. Huff, J.W. Lee Biochar-surface oxygenation with hydrogen peroxide J. Environ. Manage., 165 (2016), pp. 17-21, 10.1016/j.jenvman.2015.08.046Igalavithana et al., 2020 A.D. Igalavithana, S.W. Choi, J. Shang, A. Hanif, P.D. Dissanayake, D.C.W. Tsang, J.H. Kwon, K.B. Lee, Y.S. Ok Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry Sci. Total Environ., 739 (2020), Article 139845, 10.1016/j.scitotenv.2020.139845Ighalo and Adeniyi, 2020 J.O. Ighalo, A.G. Adeniyi Adsorption of pollutants by plant bark derived adsorbents: An empirical review J. Water Process Eng., 35 (2020), Article 101228, 10.1016/j.jwpe.2020.101228Inguanzo et al., 2001 M. Inguanzo, J.A. Menéndez, E. Fuente, J.J. Pis Reactivity of pyrolyzed sewage sludge in air and CO2 J. Anal. Appl. Pyrol., 58–59 (2001), pp. 943-954, 10.1016/S0165-2370(00)00143-1Ippolito et al., 2012 J.A. Ippolito, D.G. Strawn, K.G. Scheckel, J.M. Novak, M. Ahmedna, M.A.S. Niandou Macroscopic and Molecular Investigations of Copper Sorption by a Steam-Activated Biochar J. Environ. Qual., 41 (2012), pp. 1150-1156, 10.2134/jeq2011.0113Isiuku et al., 2019 B.O. Isiuku, J.C. Iwu, D.C. Emeagwara, F.C. Ibe ADSORPTION PERFORMANCE OF ACID-ACTIVATED CARBON DERIVED FROM GMELINA ARBOREA IN BATCH REMOVAL OF METHYL VIOLET FROM AQEUOUS SOLUTION J. Chem Soc. Niger., 44 (2019), pp. 11-021IUPAC, 2019 IUPAC, 2019. The IUPAC Compendium of Chemical Terminology, 2nd ed, Compendium of Chemical Terminology. Blackwell Scientific Publications, Oxford (1997). https://doi.org/10.1351/goldbookJastrzab and Lomozik, 2010 R. Jastrzab, L. Lomozik Stability and coordination mode of complexes of polyphosphates and polymetaphosphates with copper(II) ions in aqueous solution-potentiometric, spectral and theoretical studies J. Solution Chem., 39 (2010), pp. 909-919, 10.1007/s10953-010-9558-1Jeon et al., 2015 C. Jeon, J.H. Cha, J.Y. Choi Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater J. Ind. Eng. Chem., 27 (2015), pp. 201-206, 10.1016/j.jiec.2014.12.036Jiang et al., 2019 Q. Jiang, W. Xie, S. Han, Y. Wang, Y. Zhang Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism Colloids Surfaces A Physicochem. Eng. Asp., 583 (2019), Article 123962, 10.1016/j.colsurfa.2019.123962Jin et al., 2018 X. Jin, N. Li, X. Weng, C. Li, Z. Chen Green reduction of graphene oxide using eucalyptus leaf extract and its application to remove dye Chemosphere, 208 (2018), pp. 417-424, 10.1016/j.chemosphere.2018.05.199Kalavathy et al., 2009 Kalavathy M., H., Regupathi, I., Pillai, M.G., Miranda, L.R., 2009. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surfaces B Biointerfaces 70, 35–45. https://doi.org/10.1016/j.colsurfb.2008.12.007Kamari and Ngah, 2010 A. Kamari, W.S. Ngah Adsorption of Cu(II) and Cr(VI) onto treated shorea dasyphylla bark: Isotherm, kinetics, and thermodynamic studies Sep. Sci. Technol., 45 (2010), pp. 486-496, 10.1080/01496390903526717Kambo and Dutta, 2015 Kambo, H.S., Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2015.01.050Kannan et al., 2010 N. Kannan, A. Vijayakumar, P. Subramaniam Studies on the removal of red industrial dye using teak leaf, maize corn and babool tree bark carbons -A comparison E-Journal Chem., 7 (2010), pp. 770-774, 10.1155/2010/474109Kapur and Mondal, 2013 M. Kapur, M.K. Mondal Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust Chem. Eng. J., 218 (2013), pp. 138-146, 10.1016/j.cej.2012.12.054Karthikeyan et al., 2005 T. Karthikeyan, S. Rajgopal, L.R. Miranda Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon J. Hazard. Mater., 124 (2005), pp. 192-199, 10.1016/j.jhazmat.2005.05.003Kayser, 1881 H. Kayser Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperatur Ann. Phys., 248 (1881), pp. 526-537, 10.1002/andp.18812480404Kebede et al., 2018a T.G. Kebede, S. Dube, A.A. Mengistie, T.T. Nkambule, M.M. Nindi Moringa stenopetala bark: A novel green adsorbent for the removal of metal ions from industrial effluents Phys. Chem. Earth., 107 (2018), pp. 45-57, 10.1016/j.pce.2018.08.002Kebede et al., 2018b T.G. Kebede, A.A. Mengistie, S. Dube, T.T.I. Nkambule, M.M. Nindi Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder J. Environ. Chem. Eng., 6 (2018), pp. 1378-1389, 10.1016/j.jece.2018.01.012Kgatitsoe et al., 2019 M.M. Kgatitsoe, S. Ncube, H. Tutu, I.A. Nyambe, L. Chimuka Synthesis and characterization of a magnetic nanosorbent modified with Moringa oleifera leaf extracts for removal of nitroaromatic explosive compounds in water samples J. Environ. Chem. Eng., 7 (2019), Article 103128, 10.1016/j.jece.2019.103128Khan Rao and Khatoon, 2016 R.A. Khan Rao, A. Khatoon Adsorption characteristics of chemically modified Caryota urens seeds for the removal of Cu(II) from aqueous solution: Isotherms and kinetic studies Groundw. Sustain. Dev., 2–3 (2016), pp. 42-52, 10.1016/j.gsd.2016.05.004Khemchandani et al., 1974 G.V. Khemchandani, T.B. Ray, S. Sarkar Studies on artificial coal. 1 Caking power and chloroform extracts. Fuel, 53 (1974), pp. 163-167, 10.1016/0016-2361(74)90003-9Khosla et al., 2012 E. Khosla, S. Kaur, P.N. Dave Adsorption mechanism of basic red-12 over eucalyptus bark and its surface derivatives J. Chem. Eng. Data, 57 (2012), pp. 2004-2011, 10.1021/je300296kKiruba et al., 2014 U.P. Kiruba, P.S. Kumar, C. Prabhakaran, V. Aditya Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system J. Taiwan Inst. Chem. Eng., 45 (2014), pp. 2957-2968, 10.1016/j.jtice.2014.08.016Koetlisi and Muchaonyerwa, 2019 K.A. Koetlisi, P. Muchaonyerwa Sorption of Selected Heavy Metals with Different Relative Concentrations in Industrial Effluent on Biochar from Human Faecal Products and Pine-Bark Materials (Basel)., 12 (2019), p. 1768, 10.3390/ma12111768Krishnan, 2008 K.A. Krishnan Adsorption of nitrilotriacetic acid onto activated carbon prepared by steam pyrolysis of sawdust: Kinetic and isotherm studies Colloids Surfaces A Physicochem. Eng. Asp., 317 (2008), pp. 344-351, 10.1016/j.colsurfa.2007.11.002Kulkarni, 2020 Kulkarni, S., 2020. Synthesis, Characterization and Performance of Low-Cost Unconventional Adsorbents Derived from Waste Materials. Review 10, 7243–7256. https://doi.org/10.33263/BRIAC106.72437256Kumar and Gupta, 2020 A. Kumar, H. Gupta Activated carbon from sawdust for naphthalene removal from contaminated water Environ. Technol. Innov., 20 (2020), Article 101080, 10.1016/j.eti.2020.101080Kumar et al., 2005 B.G.P. Kumar, L.R. Miranda, M. Velan Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods J. Hazard. Mater., 126 (2005), pp. 63-70, 10.1016/j.jhazmat.2005.05.043Kumar et al., 2018 N.S. Kumar, M. Asif, M.I. Al-Hazzaa, A.A. Ibrahim Biosorption of 2,4,6-trichlorophenol from aqueous medium using agro-waste: Pine (Pinus densiflora Sieb) bark powder Acta Chim. Slov., 65 (2018), pp. 221-230 https://doi.org/10.17344/acsi.2017.3886Lattao et al., 2014 C. Lattao, X. Cao, J. Mao, K. Schmidt-Rohr, J.J. Pignatello Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars Environ. Sci. Technol., 48 (2014), pp. 4790-4798, 10.1021/es405096qLee et al., 2013 Y. Lee, J. Park, C. Ryu, K.S. Gang, W. Yang, Y.K. Park, J. Jung, S. Hyun Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C Bioresour. Technol., 148 (2013), pp. 196-201, 10.1016/j.biortech.2013.08.135Li et al., 2007a B. Li, S. Kado, Y. Mukainakano, T. Miyazawa, T. Miyao, S. Naito, K. Okumura, K. Kunimori, K. Tomishige Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane J. Catal., 245 (2007), pp. 144-155, 10.1016/j.jcat.2006.10.004D. Li, J. Huang, L. Huang, S. Tan, T. Liu High-Performance Three-Dimensional Aerogel Based on Hydrothermal Pomelo Peel and Reduced Graphene Oxide as an Efficient Adsorbent for Water/Oil Separation Langmuir, 37 (2021), pp. 1521-1530, 10.1021/acs.langmuir.0c03062Li and Chase, 2009 J. Li, H.A. Chase Characterization and evaluation of a macroporous adsorbent for possible use in the expanded bed adsorption of flavonoids from Ginkgo biloba L J. Chromatogr. A, 1216 (2009), pp. 8730-8740, 10.1016/j.chroma.2009.02.092Li et al., 2007b Q. Li, J. Zhai, W. Zhang, M. Wang, J. Zhou Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk J. Hazard. Mater., 141 (2007), pp. 163-167, 10.1016/j.jhazmat.2006.06.109Li et al., 2016 R. Li, J.J. Wang, B. Zhou, M.K. Awasthi, A. Ali, Z. Zhang, L.A. Gaston, A.H. Lahori, A. Mahar Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios Sci. Total Environ., 559 (2016), pp. 121-129, 10.1016/j.scitotenv.2016.03.151Li et al., 2019a Y. Li, S. Fan, Q. Zhou Synthesis of Carboxyl-Rich Biosorbent by UV-Induced Graft Polymerization Method for High Efficiency Adsorption of Ce3+ from Aqueous Solution: Activation and Adsorption Mechanism J. Polym. Environ., 27 (2019), pp. 2259-2266, 10.1007/s10924-019-01515-xLi and Liu, 2014 Y. Li, X. Liu Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor Mater. Chem. Phys., 148 (2014), pp. 380-386, 10.1016/j.matchemphys.2014.07.058Li et al., 2014 Y. Li, J. Shao, X. Wang, Y. Deng, H. Yang, H. Chen Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption Energy Fuels, 28 (2014), pp. 5119-5127, 10.1021/ef500725cLi et al., 2019b Z. Li, G.L. Dotto, A. Bajahzar, L. Sellaoui, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: Experimental and theoretical analysis Chem. Eng. J., 373 (2019), pp. 1247-1253, 10.1016/j.cej.2019.05.134Li et al., 2010a Z. Li, S. Imaizumi, T. Katsumi, T. Inui, X. Tang, Q. Tang Manganese removal from aqueous solution using a thermally decomposed leaf J. Hazard. Mater., 177 (2010), pp. 501-507, 10.1016/j.jhazmat.2009.12.061i et al., 2010b Z. Li, Q. Tang, T. Katsumi, X. Tang, T. Inui, S. Imaizumi Leaf char: An alternative adsorbent for Cr(III) Desalination, 264 (2010), pp. 70-77, 10.1016/j.desal.2010.07.006Li et al., 2009 Z. Li, X. Tang, Y. Chen, L. Wei, Y. Wang Activation of Firmiana Simplex leaf and the enhanced Pb(II) adsorption performance: Equilibrium and kinetic studies J. Hazard. Mater., 169 (2009), pp. 386-394, 10.1016/j.jhazmat.2009.03.108Lim et al., 2020 L.B.L. Lim, N. Priyantha, S.A.A. Latip, Y.C. Lu, A.H. Mahadi Converting hylocereus undatus (White dragon fruit) peel waste into a useful potential adsorbent for the removal of toxic congo red dye Desalin. Water Treat., 185 (2020), pp. 307-317, 10.5004/dwt.2020.25390Lin et al., 2015 Y. Lin, X. Ma, X. Peng, S. Hu, Z. Yu, S. Fang Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge Appl. Therm. Eng., 91 (2015), pp. 574-582, 10.1016/j.applthermaleng.2015.08.064Liu and Xiao, 2018 M. Liu, C. Xiao Research progress on modification of activated carbon E3S Web Conf., 38 (2018), p. 02005, 10.1051/e3sconf/20183802005iu et al., 2013 S. Liu, Z. Huang, R. Wang A carbon foam with a bimodal micro-mesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption Mater. Res. Bull., 48 (2013), pp. 2437-2441, 10.1016/j.materresbull.2013.02.069Liu et al., 2015 Liu, W.J., Jiang, H., Yu, H.Q., 2015. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. https://doi.org/10.1021/acs.chemrev.5b00195Liu et al., 2011 W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang Preparation of high adsorption capacity bio-chars from waste biomass Bioresour. Technol., 102 (2011), pp. 8247-8252, 10.1016/j.biortech.2011.06.014Liu et al., 2018 Y. Liu, X. Jin, Z. Chen The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI) Sci. Total Environ., 627 (2018), pp. 470-479, 10.1016/j.scitotenv.2018.01.241Lonappan et al., 2020 L. Lonappan, Y. Liu, T. Rouissi, S.K. Brar, R.Y. Surampalli Development of biochar-based green functional materials using organic acids for environmental applications J. Clean. Prod., 244 (2020), Article 118841, 10.1016/j.jclepro.2019.118841Low et al., 2004 K.S. Low, C.K. Lee, S.M. Mak Sorption of copper and lead by citric acid modified wood Wood Sci. Technol., 38 (2004), pp. 629-640, 10.1007/s00226-003-0201-9u et al., 1995 G.Q. Lu, J.C.F. Low, C.Y. Liu, A.C. Lua Surface area development of sewage sludge during pyrolysis Fuel, 74 (1995), pp. 344-348, 10.1016/0016-2361(95)93465-PLussier et al., 1998 M.G. Lussier, Z. Zhang, D.J. Miller Characterizing rate inhibition in steam/hydrogen gasification via analysis of adsorbed hydrogen Carbon N. Y., 36 (1998), pp. 1361-1369, 10.1016/S0008-6223(98)00123-7Lütke et al., 2019 S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption J. Environ. Chem. Eng., 7 (2019), Article 103396, 10.1016/j.jece.2019.103396Magdziarz and Colmenares, 2017 A. Magdziarz, J. Colmenares In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis Molecules, 22 (2017), p. 216, 10.3390/molecules22020216Mahdi et al., 2019 Z. Mahdi, A. El Hanandeh, Q.J. Yu Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions J. Environ. Chem. Eng., 7 (2019), Article 103379, 10.1016/j.jece.2019.103379Maity and Ray, 2018 J. Maity, S.K. Ray Removal of Pb(II) from water using a bio-composite adsorbent-A systematic approach of optimizing synthesis and process parameters by response surface methodology J. Environ. Manage., 209 (2018), pp. 112-125, 10.1016/j.jenvman.2017.12.039Mália et al., 2013 M. Mália, J. De Brito, M.D. Pinheiro, M. Bravo Construction and demolition waste indicators Waste Manag. Res., 31 (2013), pp. 241-255, 10.1177/0734242X12471707Malik, 2003 P.K. Malik Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: A case study of acid yellow 36 Dye. Pigment., 56 (2003), pp. 239-249, 10.1016/S0143-7208(02)00159-6Mandal et al., 2020 A. Mandal, N. Bar, S.K. Das Phenol removal from wastewater using low-cost natural bioadsorbent neem (Azadirachta indica) leaves: Adsorption study and MLR modeling Sustain. Chem. Pharm., 17 (2020), Article 100308, 10.1016/j.scp.2020.100308Mandal and Singh, 2016 A. Mandal, N. Singh Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L. J. Environ. Sci. Heal. - Part B Pestic Food Contam. Agric. Wastes, 51 (2016), pp. 192-203, 10.1080/03601234.2015.1108817Martini et al., 2020 S. Martini, S. Afroze, K. Ahmad Roni Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater Alexandria Eng. J., 59 (2020), pp. 1637-1648, 10.1016/j.aej.2020.04.010McKay and Poots, 2007 G. McKay, V.J.P. Poots Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent J. Chem. Technol. Biotechnol., 30 (2007), pp. 279-292, 10.1002/jctb.503300134Meinlschmidt et al., 2016 P. Meinlschmidt, D. Mauruschat, R. Briesemeister Altholzsituation in Europa und Deutschland Chemie Ing. Tech., 88 (2016), pp. 475-482, 10.1002/cite.201500023Mohanty et al., 2005 K. Mohanty, D. Das, M.N. Biswas Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation Chem. Eng. J., 115 (2005), pp. 121-131, 10.1016/j.cej.2005.09.016Molino et al., 2016 A. Molino, S. Chianese, D. Musmarra Biomass gasification technology: The state of the art overview J. Energy Chem., 25 (2016), pp. 10-25, 10.1016/j.jechem.2015.11.005Molino et al., 2018 A. Molino, V. Larocca, S. Chianese, D. Musmarra Biofuels Production by Biomass Gasification: A Review Energies, 11 (2018), p. 811, 10.3390/en11040811Mosoarca et al., 2020 G. Mosoarca, C. Vancea, S. Popa, M. Gheju, S. Boran Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method Sci. Rep., 10 (2020), 10.1038/s41598-020-74819-xMullen et al., 2010 C.A. Mullen, A.A. Boateng, N.M. Goldberg, I.M. Lima, D.A. Laird, K.B. Hicks Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis Biomass Bioenergy, 34 (2010), pp. 67-74, 10.1016/j.biombioe.2009.09.012Nadir et al., 2021 I. Nadir, Y. Achour, A. El Kassimi, M. El Himri, M.R. Laamari, M. El Haddad Removal of Antibiotic Sulfamethazine from Aqueous Media Using Watermelon Seeds as a New Low Cost and Ecofriendly Adsorbent Phys. Chem. Res., 9 (2021), pp. 165-180 https://doi.org/10.22036/pcr.2020.249992.1839Nag et al., 2020 S. Nag, N. Bar, S.K. Das Cr(VI) removal from aqueous solution using green adsorbents in continuous bed column – statistical and GA-ANN hybrid modelling Chem. Eng. Sci., 226 (2020), Article 115904, 10.1016/j.ces.2020.115904ag et al., 2018 S. Nag, A. Mondal, D.N. Roy, N. Bar, S.K. Das Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling Environ. Technol. Innov., 11 (2018), pp. 83-104, 10.1016/j.eti.2018.04.009Naghipour et al., 2018 D. Naghipour, L. Hoseinzadeh, K. Taghavi, J. Jaafari Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree Data Br., 18 (2018), pp. 1082-1087, 10.1016/j.dib.2018.03.068Naron et al., 2017 D.R. Naron, F.X. Collard, L. Tyhoda, J.F. Görgens Characterisation of lignins from different sources by appropriate analytical methods: Introducing thermogravimetric analysis-thermal desorption-gas chromatography–mass spectroscopy Ind. Crops Prod., 101 (2017), pp. 61-74, 10.1016/j.indcrop.2017.02.041Nasir et al., 2007 M.H. Nasir, R. Nadeem, K. Akhtar, M.A. Hanif, A.M. Khalid Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions J. Hazard. Mater., 147 (2007), pp. 1006-1014, 10.1016/j.jhazmat.2007.01.131Nazal et al., 2019 M.K. Nazal, M. Al-Bayyari, F.I. Khalili Salvadora Persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study J. Radioanal. Nucl. Chem., 321 (2019), pp. 985-996, 10.1007/s10967-019-06668-6Nazir et al., 2020 N.A.M. Nazir, M. Raoov, S. Mohamad Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis Microchem. J., 159 (2020), 10.1016/j.microc.2020.105581Ndjientcheu Yossa et al., 2020 L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron Sci. African, 9 (2020), Article e00476, 10.1016/j.sciaf.2020.e00476Neppiras, 1980 Neppiras, E.A., 1980. Acoustic cavitation. Phys. Rep. https://doi.org/10.1016/0370-1573(80)90115-5Ng et al., 2019 Ng, C.Y., Tan, Y.Y., Mun, A.C.K., Ng, L.Y., 2019. Comparison study of adsorbent produced from renewable resources: Oil palm empty fruit bunch and rice husk, in: Materials Today: Proceedings. Elsevier Ltd, pp. 149–155. https://doi.org/10.1016/j.matpr.2020.05.642Niculau et al., 2020 Niculau, E.D.S., Alves, P.B., Nogueira, P.C. de L., Romão, L.P.C., Cunha, G. da C., Blank, A.F., Silva, A. de C., 2020. Chemical Profile and Use of the Peat as an Adsorbent for Extraction of Volatile Compounds from Leaves of Geranium (Pelargonium graveolens L’ Herit). Molecules 25. https://doi.org/10.3390/molecules25214923Njoku et al., 2013 V.O. Njoku, K.Y. Foo, B.H. Hameed Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid Chem. Eng. J., 215–216 (2013), pp. 383-388, 10.1016/j.cej.2012.10.068Njoku et al., 2014 V.O. Njoku, M.A. Islam, M. Asif, B.H. Hameed Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption Chem. Eng. J., 251 (2014), pp. 183-191, 10.1016/j.cej.2014.04.015OECD, 2020 OECD, 2020. Environment at a Glance 2020: OECD Indicators, Environment at a Glance. OECD. https://doi.org/10.1787/4ea7d35f-enOECD, 2015 OECD, 2015. Environment at a Glance 2015: OECD Indicators, Environment at a Glance. OECD. https://doi.org/10.1787/9789264235199-enOfomaja, 2011 A.E. Ofomaja Kinetics and pseudo-isotherm studies of 4-nitrophenol adsorption onto mansonia wood sawdust Ind. Crops Prod., 33 (2011), pp. 418-428, 10.1016/j.indcrop.2010.10.036Ofomaja and Unuabonah, 2013 A.E. Ofomaja, E.I. Unuabonah Kinetics and time-dependent Langmuir modeling of 4-nitrophenol adsorption onto Mansonia sawdust J. Taiwan Inst. Chem. Eng., 44 (2013), pp. 566-576, 10.1016/j.jtice.2012.12.021Ogunmodede et al., 2021 Ogunmodede, J., Akanji, S.B., Bello, O.S., 2021. Moringa oleifera seed pod-based adsorbent for the removal of paracetamol from aqueous solution: A novel approach toward diversification. Environ. Prog. Sustain. Energy. https://doi.org/10.1002/ep.13615Olasehinde et al., 2018 E.F. Olasehinde, A.V. Adegunloye, M.A. Adebayo, A.A. Oshodi Sequestration of Aqueous Lead(II) Using Modified and Unmodified Red Onion Skin Anal. Lett., 51 (2018), pp. 2708-2730, 10.1080/00032719.2018.1448989Olu-Owolabi et al., 2021 B.I. Olu-Owolabi, P.N. Diagboya, F.M. Mtunzi, R.-A. Düring Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media J. Environ. Manage., 279 (2021), Article 111619, 10.1016/j.jenvman.2020.111619Omorogie et al., 2020 M.O. Omorogie, J.O. Babalola, A.M. Olatunde, T. Alimi, K.I. John, S.A. Adegboyega, S.K. Abesa Microwave-synthesized and Fenton-functionalized Pinus sylvestris bark activated carbon/metal oxides for the effective uptake of tetracycline and congo red dye Biomass Convers. Biorefinery, 10 (2020), pp. 959-975, 10.1007/s13399-019-00460-yOmri and Benzina, 2012 A. Omri, M. Benzina Removal of manganese(II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor: Ziziphus spina-christi seeds Alexandria Eng. J., 51 (2012), pp. 343-350, 10.1016/j.aej.2012.06.003arzei et al., 2014 S. Parzei, S. Krigstin, K. Hayashi, S. Wetzel Forest harvest residues available in Eastern Canada – a critical review of estimations For. Chron., 90 (2014), pp. 778-784, 10.5558/tfc2014-150Pekkuz et al., 2008 H. Pekkuz, I. Uzun, F. Güzel Kinetics and thermodynamics of the adsorption of some dyestuffs from aqueous solution by poplar sawdust Bioresour. Technol., 99 (2008), pp. 2009-2017, 10.1016/j.biortech.2007.03.014Peng et al., 2017 H. Peng, P. Gao, G. Chu, B. Pan, J. Peng, B. Xing Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars Environ. Pollut., 229 (2017), pp. 846-853, 10.1016/j.envpol.2017.07.004Peter et al., 2019 Peter, A., Chabot, B., Loranger, E., 2019. Enhancing Surface Properties of Softwood Biochar by Ultrasound Assisted Slow Pyrolysis, in: IEEE International Ultrasonics Symposium, IUS. IEEE Computer Society, pp. 2477–2480. https://doi.org/10.1109/ULTSYM.2019.8925793Peterson et al., 2008 A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal, J.W. Tester Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies Energy Environ. Sci. (2008), 10.1039/b810100kPeydayesh and Rahbar-Kelishami, 2015 M. Peydayesh, A. Rahbar-Kelishami Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies J. Ind. Eng. Chem., 21 (2015), pp. 1014-1019, 10.1016/j.jiec.2014.05.010okhrel et al., 2016 Pokhrel, N., Vabbina, P.K., Pala, N., 2016. Sonochemistry: Science and Engineering. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2015.07.023Ponnusami et al., 2009 V. Ponnusami, V. Gunasekar, S.N. Srivastava Kinetics of methylene blue removal from aqueous solution using gulmohar (Delonix regia) plant leaf powder: Multivariate regression analysis J. Hazard. Mater., 169 (2009), pp. 119-127, 10.1016/j.jhazmat.2009.03.066Prado et al., 2010 A.G.S. Prado, A.O. Moura, M.S. Holanda, T.O. Carvalho, R.D.A. Andrade, I.C. Pescara, A.H.A. de Oliveira, E.Y.A. Okino, T.C.M. Pastore, D.J. Silva, L.F. Zara Thermodynamic aspects of the Pb adsorption using Brazilian sawdust samples: Removal of metal ions from battery industry wastewater Chem. Eng. J., 160 (2010), pp. 549-555, 10.1016/j.cej.2010.03.066Rajapaksha et al., 2015 A.U. Rajapaksha, M. Vithanage, M. Ahmad, D.C. Seo, J.S. Cho, S.E. Lee, S.S. Lee, Y.S. Ok Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar J. Hazard. Mater., 290 (2015), pp. 43-50, 10.1016/j.jhazmat.2015.02.046Ravulapalli and Kunta, 2018 S. Ravulapalli, R. Kunta Removal of lead (II) from wastewater using active carbon of Caryota urens seeds and its embedded calcium alginate beads as adsorbents J. Environ. Chem. Eng., 6 (2018), pp. 4298-4309, 10.1016/j.jece.2018.06.033Reck et al., 2018 I.M. Reck, R.M. Paixão, R. Bergamasco, M.F. Vieira, A.M.S. Vieira Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds J. Clean. Prod., 171 (2018), pp. 85-97, 10.1016/j.jclepro.2017.09.237Rehman et al., 2019 A. Rehman, M. Park, S.-J. Park Current Progress on the Surface Chemical Modification of Carbonaceous Materials Coatings, 9 (2019), p. 103, 10.3390/coatings9020103Rengaraj et al., 2002 S. Rengaraj, S.-H. Moon, R. Sivabalan, B. Arabindoo, V. Murugesan Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon Waste Manag., 22 (2002), pp. 543-548, 10.1016/S0956-053X(01)00016-2Rombaut et al., 2020 N. Rombaut, T. Chave, S.I. Nikitenko, M. El Maâtaoui, A.S. Fabiano-Tixier, F. Chemat Modification of Olive Leaves’ Surface by Ultrasound Cavitation. Correlation with Polyphenol Extraction Enhancement Appl. Sci., 11 (2020), p. 232, 10.3390/app11010232Salazar-Rabago and Leyva-Ramos, 2016 J.J. Salazar-Rabago, R. Leyva-Ramos Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb(II) from aqueous solutions J. Environ. Manage., 169 (2016), pp. 303-312, 10.1016/j.jenvman.2015.12.040Saliba et al., 2005 R. Saliba, H. Gauthier, R. Gauthier Adsorption of Heavy Metal Ions on Virgin and Chemically-Modified Lignocellulosic Materials Adsorpt. Sci. Technol., 23 (2005), pp. 313-322, 10.1260/0263617054770039Santos et al., 2021 A.S. Santos, T.S.M. Santos, V.A. Lemos, A.O. De Souza Yellow mombin (spondias mombin l.) seeds from agro-industrial waste as a novel adsorbent for removal of hexavalent chromium from aqueous solutions J. Braz. Chem. Soc., 32 (2021), pp. 437-446 https://doi.org/10.21577/0103-5053.20200196Saravanan et al., 2020 A. Saravanan, S. Karishma, S. Jeevanantham, S. Jeyasri, A.R. Kiruthika, P.S. Kumar, P.R. Yaashikaa Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters Surf. Interfaces, 20 (2020), Article 100520, 10.1016/j.surfin.2020.100520Sarin and Pant, 2006 V. Sarin, K.K. Pant Removal of chromium from industrial waste by using eucalyptus bark Bioresour. Technol., 97 (2006), pp. 15-20, 10.1016/j.biortech.2005.02.010Schimmelpfennig et al., 2014 S. Schimmelpfennig, C. Müller, L. Grünhage, C. Koch, C. Kammann Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth Agric. Ecosyst. Environ., 191 (2014), pp. 39-52, 10.1016/j.agee.2014.03.027Schwantes et al., 2018 D. Schwantes, A.C. Gonçalves, M.A. Campagnolo, C.R.T. Tarley, D.C. Dragunski, A. de Varennes, A.K. dos Santos Silva, E. Conradi Chemical modifications on pinus bark for adsorption of toxic metals J. Environ. Chem. Eng., 6 (2018), pp. 1271-1278, 10.1016/j.jece.2018.01.044Sebastian et al., 2019 A. Sebastian, A. Nangia, M.N.V. Prasad Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice J. Hazard. Mater., 371 (2019), pp. 261-272, 10.1016/j.jhazmat.2019.03.021Sellaoui et al., 2020 L. Sellaoui, D. Franco, H. Ghalla, J. Georgin, M.S. Netto, G. Luiz Dotto, A. Bonilla-Petriciolet, H. Belmabrouk, A. Bajahzar Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations Chem. Eng. J., 394 (2020), Article 125011, 10.1016/j.cej.2020.125011Semerjian, 2010 L. Semerjian Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust J. Hazard. Mater., 173 (2010), pp. 236-242, 10.1016/j.jhazmat.2009.08.074Şen et al., 2015 Şen, A., Pereira, H., Olivella, M.A., Villaescusa, I., 2015. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-014-0525-zSeptevani et al., 2020 Septevani, A.A., Rifathin, A., Sari, A.A., Sampora, Y., Ariani, G.N., Sudiyarmanto, Sondari, D., 2020. Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydr. Polym. 229. https://doi.org/10.1016/j.carbpol.2019.115433Sert et al., 2008 Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, M. Eral Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder Hydrometallurgy, 90 (2008), pp. 13-18, 10.1016/j.hydromet.2007.09.006Shah et al., 2021 Shah, Q.U., Tasleem, S., Naeem, A., Din, I.U., Alharthi, A.I., Saeed, T., Alotaibi, M.A., Bakht, M.A., 2021. Reporting the application of Lycopersicon esculentum peel and Brassica botrytis leaves as adsorbents for Cd removal from aqueous solution. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03244-yShaheen et al., 2019 S.M. Shaheen, N.K. Niazi, N.E.E. Hassan, I. Bibi, H. Wang, D.C.W. Tsang, Y.S. Ok, N. Bolan, J. Rinklebe Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review Int. Mater. Rev., 64 (2019), pp. 216-247, 10.1080/09506608.2018.1473096Shaikh et al., 2021 W.A. Shaikh, R.U. Islam, S. Chakraborty Stable silver nanoparticle doped mesoporous biochar-based nanocomposite for efficient removal of toxic dyes J. Environ. Chem. Eng., 9 (2021), Article 104982, 10.1016/j.jece.2020.104982Shakoor and Nasar, 2018 S. Shakoor, A. Nasar Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste Groundw. Sustain. Dev., 7 (2018), pp. 30-38, 10.1016/j.gsd.2018.03.004Shao et al., 2019 Shao, H., Zhao, H., Xie, J., Qi, J., Shupe, T.F., 2019. Agricultural and Forest Residues towards Renewable Chemicals and Materials Using Microwave Liquefaction. Int. J. Polym. Sci. https://doi.org/10.1155/2019/7231263Sharma and Bhattacharyya, 2005 A. Sharma, K.G. Bhattacharyya Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium J. Hazard. Mater., 125 (2005), pp. 102-112, 10.1016/j.jhazmat.2005.05.012Shen et al., 2008 W. Shen, Z. Li, Y. Liu Surface Chemical Functional Groups Modification of Porous Carbon Recent Patents Chem. Eng., 1 (2008), pp. 27-40hi et al., 2017 J. Shi, Z. Yang, H. Dai, X. Lu, L. Peng, X. Tan, L. Shi, R. Fahim Preparation and application of modified zeolites as adsorbents in wastewater treatment Water Sci. Technol., 2017 (2017), pp. 621-635, 10.2166/wst.2018.249Shim et al., 2001 J.W. Shim, S.J. Park, S.K. Ryu Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers Carbon N. Y., 39 (2001), pp. 1635-1642, 10.1016/S0008-6223(00)00290-6Shimizu et al., 2010 M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses J. Appl. Phys., 108 (2010), Article 073533, 10.1063/1.3483238Shukla and Skhardande, 1992 S.R. Shukla, V.D. Skhardande Column studies on metal ion removal by dyed cellulosic materials J. Appl. Polym. Sci., 44 (1992), pp. 903-910, 10.1002/app.1992.070440518da Silva et al., 2020 F.A. da Silva, F.J. Simioni, D.N. Hoff Diagnosis of circular economy in the forest sector in southern Brazil Sci. Total Environ., 706 (2020), Article 135973, 10.1016/j.scitotenv.2019.135973Singha et al., 2011 Singha, B., Naiya, T.K., Bhattacharya, A. kumar, Das, S.K., 2011. Cr(VI) Ions Removal from Aqueous Solutions Using Natural Adsorbents – FTIR Studies. J. Environ. Prot. (Irvine,. Calif). 02, 729–735. https://doi.org/10.4236/jep.2011.26084Sirajudheen et al., 2021 P. Sirajudheen, P. Karthikeyan, K. Ramkumar, P. Nisheetha, S. Meenakshi Magnetic carbon-biomass from the seeds of Moringa oleifera@MnFe2O4 composite as an effective and recyclable adsorbent for the removal of organic pollutants from water J. Mol. Liq., 327 (2021), Article 114829, 10.1016/j.molliq.2020.114829Sommerhuber et al., 2015 P.F. Sommerhuber, J. Welling, A. Krause Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites Waste Manag., 46 (2015), pp. 76-85, 10.1016/j.wasman.2015.09.011Sonal et al., 2020 S. Sonal, P. Prakash, B.K. Mishra, G.C. Nayak Synthesis, characterization and sorption studies of a zirconium(IV) impregnated highly functionalized mesoporous actIVated carbonsb RSC Adv., 10 (2020), pp. 13783-13798, 10.1039/c9ra10103aSousa et al., 2011 S. Sousa, P. Jiménez-Guerrero, A. Ruiz, N. Ratola, A. Alves Organochlorine pesticides removal from wastewater by pine bark adsorption after activated sludge treatment Environ. Technol., 32 (2011), pp. 673-683, 10.1080/09593330.2010.510535Srivastava and Rupainwar, 2010 R. Srivastava, D.C. Rupainwar Liquid phase adsorption of Indigo Carmine and Methylene Blue on Neem bark Desalin. Water Treat., 24 (2010), pp. 74-84, 10.5004/dwt.2010.1195Stute, 1992 R. Stute Hydrothermal Modification of Starches: The Difference between Annealing and Heat/Moisture -Treatment Starch - Stärke, 44 (1992), pp. 205-214, 10.1002/star.19920440603Subratti et al., 2021 A. Subratti, J.L. Vidal, L.J. Lalgee, F.M. Kerton, N.K. Jalsa Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue Sustain. Chem. Pharm., 21 (2021), Article 100421, 10.1016/j.scp.2021.100421Suganya et al., 2017 S. Suganya, P. Senthil Kumar, A. Saravanan, P. Sundar Rajan, C. Ravikumar Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis Environ. Toxicol. Pharmacol., 50 (2017), pp. 45-57, 10.1016/j.etap.2017.01.014Sugimoto and Miki, 1997 Sugimoto, Y., Miki, Y., 1997. Chemical structure of artificial coals obtained from cellulose, wood and peat (Miscellaneous) | ETDEWEB, in: Ziegler, A., van Heek, K., Klein, J., Wanzl, W. (Eds.), . . Proceedings of the 9th International Conference on Coal Science ICCS ’97. pp. 187–190.Summons, 1993 Summons, R.E., 1993. Biogeochemical Cycles. pp. 3–21. https://doi.org/10.1007/978-1-4615-2890-6_1Sun et al., 2013 L. Sun, S. Wan, W. Luo Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies Bioresour. Technol., 140 (2013), pp. 406-413, 10.1016/j.biortech.2013.04.116Sunsandee et al., 2020 N. Sunsandee, P. Ramakul, S. Phatanasri, U. Pancharoen Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: Kinetic and equilibrium studies Biotechnol. Reports, 27 (2020), Article e00488, 10.1016/j.btre.2020.e00488Suslick et al., 1986 K.S. Suslick, D.A. Hammerton, R.E. Cline The Sonochemical Hot Spot J. Am. Chem. Soc., 108 (1986), pp. 5641-5642, 10.1021/ja00278a055Tamon and Okazaki, 1996 H. Tamon, M. Okazaki Influence of acidic surface oxides of activated carbon on gas adsorption characteristics Carbon N. Y., 34 (1996), pp. 741-746, 10.1016/0008-6223(96)00029-2Tan, 2016 Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Xu, Y., Zeng, G. ming, Hu, X. jiang, Liu, Shao bo, Wang, X., Liu, Si mian, Li, J., 2016. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.04.093Tang et al., 2010 Q. Tang, X. Tang, M. Hu, Z. Li, Y. Chen, P. Lou Removal of Cd(II) from aqueous solution with activated Firmiana Simplex Leaf: Behaviors and affecting factors J. Hazard. Mater., 179 (2010), pp. 95-103, 10.1016/j.jhazmat.2010.02.062Taty-Costodes et al., 2003 V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris J. Hazard. Mater., 105 (2003), pp. 121-142, 10.1016/j.jhazmat.2003.07.009Telkapalliwar and Shivankar, 2018 N.G. Telkapalliwar, V.M. Shivankar Adsorption of Zinc onto Microwave assisted carbonized Acacia nilotica bark Materials Today: Proceedings, Elsevier Ltd (2018), pp. 22694-22705, 10.1016/j.matpr.2018.06.646Thilagavathy and Santhi, 2014 P. Thilagavathy, T. Santhi Kinetics, Isotherms and Equilibrium Study of Co(II) Adsorption from Single and Binary Aqueous Solutions by Acacia nilotica Leaf Carbon Chinese J. Chem. Eng., 22 (2014), pp. 1193-1198, 10.1016/j.cjche.2014.08.006Tirkey et al., 2018 P. Tirkey, T. Bhattacharya, S. Chakraborty Optimization of fluoride removal from aqueous solution using Jamun (Syzygium cumini) leaf ash Process Saf. Environ. Prot., 115 (2018), pp. 125-138, 10.1016/j.psep.2017.10.022Tony, 2021 M.A. Tony Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications J. Dispers. Sci. Technol. (2021), 10.1080/01932691.2021.1878037Tu et al., 2021 W. Tu, Y. Liu, Z. Xie, M. Chen, L. Ma, G. Du, M. Zhu A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties J. Colloid Interface Sci., 593 (2021), pp. 390-407, 10.1016/j.jcis.2021.02.133Unugul and Nigiz, 2020 Unugul, T., Nigiz, F.U., 2020. Preparation and Characterization an Active Carbon Adsorbent from Waste Mandarin Peel and Determination of Adsorption Behavior on Removal of Synthetic Dye Solutions. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-020-04903-5Vázquez et al., 2007 G. Vázquez, J. González-Álvarez, A.I. García, M.S. Freire, G. Antorrena Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: Equilibrium and kinetics Bioresour. Technol., 98 (2007), pp. 1535-1540, 10.1016/j.biortech.2006.06.024Veksha et al., 2014 A. Veksha, H. McLaughlin, D.B. Layzell, J.M. Hill Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity Bioresour. Technol., 153 (2014), pp. 173-179, 10.1016/j.biortech.2013.11.082Vieira et al., 2021 Y. Vieira, M.S. Netto, É.C. Lima, I. Anastopoulos, M.L.S. Oliveira, G.L. Dotto An overview of geological originated materials as a trend for adsorption in wastewater treatment Geosci. Front., 101150 (2021), 10.1016/j.gsf.2021.101150Vinke et al., 1994 P. Vinke, M. van der Eijk, M. Verbree, A.F. Voskamp, H. van Bekkum Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia Carbon N. Y., 32 (1994), pp. 675-686, 10.1016/0008-6223(94)90089-2Vishnu Priyan et al., 2021 V. Vishnu Priyan, T. Shahnaz, E. Suganya, S. Sivaprakasam, S. Narayanasamy Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies J. Hazard. Mater., 403 (2021), Article 123532, 10.1016/j.jhazmat.2020.123532Wahab et al., 2010 M.A. Wahab, S. Jellali, N. Jedidi Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling Bioresour. Technol., 101 (2010), pp. 5070-5075, 10.1016/j.biortech.2010.01.121Wan Ngah and Hanafiah, 2008 W.S. Wan Ngah, M.A.K.M. Hanafiah Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies Biochem. Eng. J., 39 (2008), pp. 521-530, 10.1016/j.bej.2007.11.006Wang et al., 2015a H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood Bioresour. Technol., 197 (2015), pp. 356-362, 10.1016/j.biortech.2015.08.132Wang et al., 2018a H. Wang, Y. Liu, J. Ifthikar, L. Shi, A. Khan, Zhulei Chen, Zhuqi Chen Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with Γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment Bioresour. Technol., 256 (2018), pp. 269-276, 10.1016/j.biortech.2018.02.019Wang and Wang, 2019 J. Wang, S. Wang Preparation, modification and environmental application of biochar: A review J. Clean. Prod. (2019), 10.1016/j.jclepro.2019.04.282Wang et al., 2018b Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G., 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2018.03.071Wang et al., 2018c X. Wang, W. Lian, X. Sun, J. Ma, P. Ning Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution Front. Environ. Sci. Eng., 12 (2018), pp. 1-11, 10.1007/s11783-018-1066-3Wang et al., 2015b Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao, S. Deng Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-) Chemosphere, 119 (2015), pp. 646-653, 10.1016/j.chemosphere.2014.07.084Watkins et al., 2015 D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, S. Jeelani Extraction and characterization of lignin from different biomass resources J. Mater. Res. Technol., 4 (2015), pp. 26-32, 10.1016/j.jmrt.2014.10.009Watson et al., 2018 Watson, J., Zhang, Y., Si, B., Chen, W.T., de Souza, R., 2018. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.10.003Wei et al., 2015 Z. Wei, T. Xia, M. Liu, Q. Cao, Y. Xu, K. Zhu, X. Zhu Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration Front. Chem. Sci. Eng., 9 (2015), pp. 450-460, 10.1007/s11705-015-1542-2Wong et al., 2020 S. Wong, N.A. Ghafar, N. Ngadi, F.A. Razmi, I.M. Inuwa, R. Mat, N.A.S. Amin Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste Sci. Rep., 10 (2020), pp. 1-13, 10.1038/s41598-020-60021-6Wu et al., 2017 H. Wu, Q. Feng, H. Yang, E. Alam, B. Gao, D. Gu Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms Colloids Surfaces A Physicochem. Eng. Asp., 517 (2017), pp. 63-71, 10.1016/j.colsurfa.2017.01.005Xiao et al., 2020 F. Xiao, A.H. Bedane, S. Mallula, P.C. Sasi, A. Alinezhad, D. Soli, Z.M. Hagen, M.D. Mann Production of granular activated carbon by thermal air oxidation of biomass charcoal/biochar for water treatment in rural communities: A mechanistic investigation Chem. Eng. J. Adv., 4 (2020), Article 100035, 10.1016/j.ceja.2020.100035Xiong et al., 2013 Z. Xiong, Z. Shihong, Y. Haiping, S. Tao, C. Yingquan, C. Hanping Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture Bioenergy Res., 6 (2013), pp. 1147-1153, 10.1007/s12155-013-9304-9Xu et al., 2021a S. Xu, J. Chen, H. Peng, S. Leng, Hui Li, W. Qu, Y. Hu, Hailong Li, S. Jiang, W. Zhou, L. Leng Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar Fuel, 291 (2021), Article 120128, 10.1016/j.fuel.2021.120128Xu et al., 2021b Y. Xu, T. Bai, Q. Li, H. Yang, Y. Yan, B. Sarkar, S.S. Lam, N. Bolan Influence of pyrolysis temperature on the characteristics and lead(II) adsorption capacity of phosphorus-engineered poplar sawdust biochar J. Anal. Appl. Pyrol., 154 (2021), Article 105010, 10.1016/j.jaap.2020.105010Yagub et al., 2012 M.T. Yagub, T.K. Sen, H.M. Ang Equilibrium, Kinetics, and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves Water Air Soil Pollut., 223 (2012), pp. 5267-5282, 10.1007/s11270-012-1277-3Yan et al., 2016 H. Yan, H. Yang, A. Li, R. Cheng pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water Chem. Eng. J., 284 (2016), pp. 1397-1405, 10.1016/j.cej.2015.06.030Yan et al., 2021 T. Yan, Z. Wang, C. Liao, W. Xu, L. Wan Experimental data on the adsorption of water by branches and leaves as affected by different the morphological characteristics of plants Data Br., 34 (2021), Article 106689, 10.1016/j.dib.2020.106689Yang et al., 2015 J. Yang, M. Yu, W. Chen Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics J. Ind. Eng. Chem., 21 (2015), pp. 414-422, 10.1016/j.jiec.2014.02.054Yang et al., 2019 Yang, X., Zhang, S., Ju, M., Liu, L., 2019. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci. https://doi.org/10.3390/app9071365Yao et al., 2013 X. Yao, J. Liu, G. Gong, Y. Jiang, Q. Xie Preparation and modification of activated carbon for benzene adsorption by steam activation in the presence of KOH Int. J. Min. Sci. Technol., 23 (2013), pp. 395-401, 10.1016/j.ijmst.2013.05.015Yildiz and Gümüşkaya, 2007 S. Yildiz, E. Gümüşkaya The effects of thermal modification on crystalline structure of cellulose in soft and hardwood Build. Environ., 42 (2007), pp. 62-67, 10.1016/j.buildenv.2005.07.009Yin et al., 2018 Z. Yin, Y. Liu, Shaobo Liu, L. Jiang, X. Tan, G. Zeng, M. Li, Sijia Liu, S. Tian, Y. Fang Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper Sci. Total Environ., 639 (2018), pp. 1530-1542, 10.1016/j.scitotenv.2018.05.130Yu et al., 2001 J.C. Yu, J. Yu, W. Ho, L. Zhang Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation Chem. Commun., 1 (2001), pp. 1942-1943, 10.1039/b105471fZhang et al., 2010 C. Zhang, X. Guo, C. Song, S. Zhao, X. Wang Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol Catal. Today, 149 (2010), pp. 196-201, 10.1016/j.cattod.2009.04.015Zhang et al., 2021 F. Zhang, S. Zhang, L. Chen, Z. Liu, J. Qin Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater Ind. Crops Prod., 160 (2021), Article 113157, 10.1016/j.indcrop.2020.113157Zhang et al., 2015 J. Zhang, J. Liu, R. Liu Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate Bioresour. Technol., 176 (2015), pp. 288-291, 10.1016/j.biortech.2014.11.011Zhang et al., 2014 J. Zhang, F. Lü, L. Shao, P. He The use of biochar-amended composting to improve the humification and degradation of sewage sludge Bioresour. Technol., 168 (2014), pp. 252-258, 10.1016/j.biortech.2014.02.080Zhou et al., 2019 R. Zhou, M. Zhang, J. Zhou, J. Wang Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+ Sci. Rep., 9 (2019), pp. 1-17, 10.1038/s41598-019-54105-1Zhou et al., 2017 Y. Zhou, R. Zhang, K. Chen, X. Zhao, X. Gu, J. Lu Enhanced adsorption and photo-degradation of bisphenol A by β-cyclodextrin modified pine sawdust in an aquatic environment J. Taiwan Inst. Chem. Eng., 78 (2017), pp. 510-516, 10.1016/j.jtice.2017.06.025Zieliński et al., 2016 M. Zieliński, M. Zielińska, M. Dębowski Ammonium removal on zeolite modified by ultrasound Desalin. Water Treat., 57 (2016), pp. 8748-8753, 10.1080/19443994.2015.1024750CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8587/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8587/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTEXTAN OVERVIEW OF FOREST RESIDUES AS PROMISING LOW-COST ADSORBENTS.pdf.txtAN OVERVIEW OF FOREST RESIDUES AS PROMISING LOW-COST ADSORBENTS.pdf.txttext/plain1391https://repositorio.cuc.edu.co/bitstream/11323/8587/5/AN%20OVERVIEW%20OF%20FOREST%20RESIDUES%20AS%20PROMISING%20LOW-COST%20ADSORBENTS.pdf.txtca08eb068a89fe6b0f2b815acf39ee5aMD55open accessAn overview of forest residues as promising low-cost adsorbents.pdf.txtAn overview of forest residues as promising low-cost adsorbents.pdf.txtExtracted texttext/plain221013https://repositorio.cuc.edu.co/bitstream/11323/8587/7/An%20overview%20of%20forest%20residues%20as%20promising%20low-cost%20adsorbents.pdf.txt4cc050466e60db5f78e2780a12f0c7fdMD57embargoed access|||2024-10-01ORIGINALAn overview of forest residues as promising low-cost adsorbents.pdfAn overview of forest residues as promising low-cost adsorbents.pdfArtículoapplication/pdf2002689https://repositorio.cuc.edu.co/bitstream/11323/8587/6/An%20overview%20of%20forest%20residues%20as%20promising%20low-cost%20adsorbents.pdfefcb12304d5b23eb5419464bfab75060MD56embargoed access|||2024-10-01THUMBNAILAn overview of forest residues as promising low-cost adsorbents.pdf.jpgAn overview of forest residues as promising low-cost adsorbents.pdf.jpgGenerated Thumbnailimage/jpeg15754https://repositorio.cuc.edu.co/bitstream/11323/8587/8/An%20overview%20of%20forest%20residues%20as%20promising%20low-cost%20adsorbents.pdf.jpg25c7b274e75c06c604b237a9f5bc2f13MD58embargoed access|||2024-10-0111323/8587oai:repositorio.cuc.edu.co:11323/85872023-12-14 12:54:13.547CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/embargoed access|||2024-10-01Repositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==