Model genetic rules based systems for evaluation of projects

The process of project evaluation is of vital importance for decision-making in organizations. In the particular case of IT projects, the historical average of successful projects is 30.7%, while renegotiated projects are 47.3% and cancelled projects are 22% [1]. These figures mean that huge budgets...

Full description

Autores:
Silva, Jesus
Escobar Gomez, John Freddy
Steffens Sanabria, Ernesto
hernandez Palma, Hugo
Ikeda Tsukazan, Lucía Midori
Linares Weilg, Jorge Luis
Mercado, Nohora
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7800
Acceso en línea:
https://hdl.handle.net/11323/7800
https://doi.org/10.1016/j.procs.2020.03.069
https://repositorio.cuc.edu.co/
Palabra clave:
Genetic Algorithms
Gene Expression Programming
MCGEP Algorithm
Project Evaluation
Rules learning
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_4aab4eca52ba63c7042fca189392fc17
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7800
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Model genetic rules based systems for evaluation of projects
title Model genetic rules based systems for evaluation of projects
spellingShingle Model genetic rules based systems for evaluation of projects
Genetic Algorithms
Gene Expression Programming
MCGEP Algorithm
Project Evaluation
Rules learning
title_short Model genetic rules based systems for evaluation of projects
title_full Model genetic rules based systems for evaluation of projects
title_fullStr Model genetic rules based systems for evaluation of projects
title_full_unstemmed Model genetic rules based systems for evaluation of projects
title_sort Model genetic rules based systems for evaluation of projects
dc.creator.fl_str_mv Silva, Jesus
Escobar Gomez, John Freddy
Steffens Sanabria, Ernesto
hernandez Palma, Hugo
Ikeda Tsukazan, Lucía Midori
Linares Weilg, Jorge Luis
Mercado, Nohora
dc.contributor.author.spa.fl_str_mv Silva, Jesus
Escobar Gomez, John Freddy
Steffens Sanabria, Ernesto
hernandez Palma, Hugo
Ikeda Tsukazan, Lucía Midori
Linares Weilg, Jorge Luis
Mercado, Nohora
dc.subject.spa.fl_str_mv Genetic Algorithms
Gene Expression Programming
MCGEP Algorithm
Project Evaluation
Rules learning
topic Genetic Algorithms
Gene Expression Programming
MCGEP Algorithm
Project Evaluation
Rules learning
description The process of project evaluation is of vital importance for decision-making in organizations. In the particular case of IT projects, the historical average of successful projects is 30.7%, while renegotiated projects are 47.3% and cancelled projects are 22% [1]. These figures mean that huge budgets are affected every year by errors in planning or control and monitoring of projects, with an economic and social impact. The objective of this research is to evaluate the MCGEP evolutionary algorithm in different versions databases with information on the evaluation of IT projects. The aim is to determine the possibility of applying an evolutionary algorithm that uses programming of genetic expressions as opposed to others of greater use.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-29T19:04:02Z
dc.date.available.none.fl_str_mv 2021-01-29T19:04:02Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7800
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.03.069
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7800
https://doi.org/10.1016/j.procs.2020.03.069
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1 L. Thames, D. Schaefer Softwaredefined Cloud Manufacturing for Industry 4.0 Procedía CIRP, 52 (2016), pp. 12-17
2 Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.
3 Schweidel D.A., Knox G. Incorporating direct marketing activity into latent attrition models Marke¬ting Science, 31 (3) (2013), pp. 471-487
4 Setnes M., Kaymak U. Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing Fuzzy Systems, IEEE Transactions on, 9 (1) (2001), pp. 153-163
5 Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206
6 Sosinsky B. Cloud Computing Bible, Wiley Publishing Inc., Indiana (2011), p. 3
7 Bravo M., Alvarado M. Similarity measures for substituting Web services International Journal of Web Services Research, 7 (3) (2010), pp. 1-29
8 Chen L., Zhang Y., Song Z.L., Miao Z. Automatic web services classification based on rough set theory Journal of Central South University, 20 (2013), pp. 2708-2714
9 Pineda Lezama O., Gómez Dorta R. Techniques of multivariate statistical analysis: An application for the Honduran banking sector Innovare: Journal of Science and Technology, 5 (2) (2017), pp. 61-75
10 Viloria A., Lis-Gutiérrez J.P., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)
11 Nisa, R., Qamar, U.: A text mining-based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).
12 Wu J., Chen L., Zheng Z., Lyu M.R., Wu Z. Clustering web services to facilitate service discovery Knowledge and information systems, 38 (1) (2014), pp. 207-229
13 Alderson J. A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future Journal of Science and Medicine in Sport, 19 (2015), p. e79 doi: 10.1016/j.jsams.2015.12.192.
14 Project Management Institute A Guide to the Project Management Body of Knowledge (6th Edition), Project Management Institute, Pennsylvania (2017)
15 Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, Anand Ghalsas Cloud computing — The business perspective Decision support systems, Elsevier (2011), pp. 176-189 2010, Volume 51, Issue 1April
16 Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Retrieved from https://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAMOA.
17 Mell Grance The NIST definition of cloud computing., NIST Special Publication (2011), pp. 800-845
18 Sitto K., M. Presser Field Guide to Hadoop, O’REILLY, California (2015), pp. 31-33
19 Alcalá R., Alcalá-Fdez J., Herrera F. A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection IEEE Transactions on Fuzzy Systems, 15 (4) (2007), pp. 616-635
20 Elsaid A., Salem R., Abdul-Kader H. A Dynamic Stakeholder Classification and Prioritization Based on Hybrid Rough-fuzzy Method Journal of Software Engineering, 11 (2017), pp. 143-159
21 Tan K.C., Yu Q., Ang J.H. A coevolutionary algorithm for rules discovery in data mining [Publicación periódica] // International Journal of Systems Science -, 37 (2006), p. 12
22 Bojarczuk C.C., Lopes H.S., Freitas A.A., Michalkiewicz E.L. A constrained-syntax genetic programming system for discovering classification rules: Application to medical data sets Artificial Intelligence in Medicine, 30 (1) (2004), pp. 27-48 ISSN 0933-3657.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920305068#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c4c8335a-4ca8-402d-97dc-068e86c0473b/download
https://repositorio.cuc.edu.co/bitstreams/e32c32ee-d673-4498-bfec-4d435e30ccee/download
https://repositorio.cuc.edu.co/bitstreams/759b95a9-5293-4217-bdd9-9e4e680a0c7b/download
https://repositorio.cuc.edu.co/bitstreams/d230032f-15b0-45de-a456-5307b868f331/download
https://repositorio.cuc.edu.co/bitstreams/fe66c130-fa40-43ed-92ae-dff313af5748/download
bitstream.checksum.fl_str_mv ea50c3e4929caf5f398ecc0fcdc22d20
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
edd45b898a226fe2512aa637ab38a5d7
e0efff150620eff0f424f37597e6fe20
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760824331534336
spelling Silva, JesusEscobar Gomez, John FreddySteffens Sanabria, Ernestohernandez Palma, HugoIkeda Tsukazan, Lucía MidoriLinares Weilg, Jorge LuisMercado, Nohora2021-01-29T19:04:02Z2021-01-29T19:04:02Z2021https://hdl.handle.net/11323/7800https://doi.org/10.1016/j.procs.2020.03.069Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The process of project evaluation is of vital importance for decision-making in organizations. In the particular case of IT projects, the historical average of successful projects is 30.7%, while renegotiated projects are 47.3% and cancelled projects are 22% [1]. These figures mean that huge budgets are affected every year by errors in planning or control and monitoring of projects, with an economic and social impact. The objective of this research is to evaluate the MCGEP evolutionary algorithm in different versions databases with information on the evaluation of IT projects. The aim is to determine the possibility of applying an evolutionary algorithm that uses programming of genetic expressions as opposed to others of greater use.Silva, JesusEscobar Gomez, John FreddySteffens Sanabria, Ernestohernandez Palma, HugoIkeda Tsukazan, Lucía Midori-will be generated-orcid-0000-0003-2466-7232-600Linares Weilg, Jorge Luis-will be generated-orcid-0000-0003-2570-4701-600Mercado, Nohoraapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920305068#!Genetic AlgorithmsGene Expression ProgrammingMCGEP AlgorithmProject EvaluationRules learningModel genetic rules based systems for evaluation of projectsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1 L. Thames, D. Schaefer Softwaredefined Cloud Manufacturing for Industry 4.0 Procedía CIRP, 52 (2016), pp. 12-172 Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.3 Schweidel D.A., Knox G. Incorporating direct marketing activity into latent attrition models Marke¬ting Science, 31 (3) (2013), pp. 471-4874 Setnes M., Kaymak U. Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing Fuzzy Systems, IEEE Transactions on, 9 (1) (2001), pp. 153-1635 Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-12066 Sosinsky B. Cloud Computing Bible, Wiley Publishing Inc., Indiana (2011), p. 37 Bravo M., Alvarado M. Similarity measures for substituting Web services International Journal of Web Services Research, 7 (3) (2010), pp. 1-298 Chen L., Zhang Y., Song Z.L., Miao Z. Automatic web services classification based on rough set theory Journal of Central South University, 20 (2013), pp. 2708-27149 Pineda Lezama O., Gómez Dorta R. Techniques of multivariate statistical analysis: An application for the Honduran banking sector Innovare: Journal of Science and Technology, 5 (2) (2017), pp. 61-7510 Viloria A., Lis-Gutiérrez J.P., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)11 Nisa, R., Qamar, U.: A text mining-based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).12 Wu J., Chen L., Zheng Z., Lyu M.R., Wu Z. Clustering web services to facilitate service discovery Knowledge and information systems, 38 (1) (2014), pp. 207-22913 Alderson J. A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future Journal of Science and Medicine in Sport, 19 (2015), p. e79 doi: 10.1016/j.jsams.2015.12.192.14 Project Management Institute A Guide to the Project Management Body of Knowledge (6th Edition), Project Management Institute, Pennsylvania (2017)15 Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, Anand Ghalsas Cloud computing — The business perspective Decision support systems, Elsevier (2011), pp. 176-189 2010, Volume 51, Issue 1April16 Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Retrieved from https://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAMOA.17 Mell Grance The NIST definition of cloud computing., NIST Special Publication (2011), pp. 800-84518 Sitto K., M. Presser Field Guide to Hadoop, O’REILLY, California (2015), pp. 31-3319 Alcalá R., Alcalá-Fdez J., Herrera F. A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection IEEE Transactions on Fuzzy Systems, 15 (4) (2007), pp. 616-63520 Elsaid A., Salem R., Abdul-Kader H. A Dynamic Stakeholder Classification and Prioritization Based on Hybrid Rough-fuzzy Method Journal of Software Engineering, 11 (2017), pp. 143-15921 Tan K.C., Yu Q., Ang J.H. A coevolutionary algorithm for rules discovery in data mining [Publicación periódica] // International Journal of Systems Science -, 37 (2006), p. 1222 Bojarczuk C.C., Lopes H.S., Freitas A.A., Michalkiewicz E.L. A constrained-syntax genetic programming system for discovering classification rules: Application to medical data sets Artificial Intelligence in Medicine, 30 (1) (2004), pp. 27-48 ISSN 0933-3657.PublicationORIGINALModel genetic rules based systems for evaluation of projects.pdfModel genetic rules based systems for evaluation of projects.pdfapplication/pdf98714https://repositorio.cuc.edu.co/bitstreams/c4c8335a-4ca8-402d-97dc-068e86c0473b/downloadea50c3e4929caf5f398ecc0fcdc22d20MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/e32c32ee-d673-4498-bfec-4d435e30ccee/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/759b95a9-5293-4217-bdd9-9e4e680a0c7b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILModel genetic rules based systems for evaluation of projects.pdf.jpgModel genetic rules based systems for evaluation of projects.pdf.jpgimage/jpeg29846https://repositorio.cuc.edu.co/bitstreams/d230032f-15b0-45de-a456-5307b868f331/downloadedd45b898a226fe2512aa637ab38a5d7MD54TEXTModel genetic rules based systems for evaluation of projects.pdf.txtModel genetic rules based systems for evaluation of projects.pdf.txttext/plain1097https://repositorio.cuc.edu.co/bitstreams/fe66c130-fa40-43ed-92ae-dff313af5748/downloade0efff150620eff0f424f37597e6fe20MD5511323/7800oai:repositorio.cuc.edu.co:11323/78002024-09-17 14:05:41.996http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==