New biparametric families of apostol-frobenius-euler polynomials of level m

We introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level-mm. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λλ-Stirling type numbers of the second kind, the generalized Apostol--Bernoulli pol...

Full description

Autores:
Bedoya, D.
Ortega, M.
Ramírez, W.
Urieles, A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8005
Acceso en línea:
https://hdl.handle.net/11323/8005
https://doi.org/10.30970/ms.55.1.10-23
https://repositorio.cuc.edu.co/
Palabra clave:
Generalized Apostol-type polynomials
Apostol–frobennius–euler polynomials
Apostol-bernoulli polynomials of higher order
Apostol–genocchi polynomials of higher order
Generalized λ -Stirling numbers of second kind
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_4a5d576933e2979858ba4325a0949049
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8005
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv New biparametric families of apostol-frobenius-euler polynomials of level m
title New biparametric families of apostol-frobenius-euler polynomials of level m
spellingShingle New biparametric families of apostol-frobenius-euler polynomials of level m
Generalized Apostol-type polynomials
Apostol–frobennius–euler polynomials
Apostol-bernoulli polynomials of higher order
Apostol–genocchi polynomials of higher order
Generalized λ -Stirling numbers of second kind
title_short New biparametric families of apostol-frobenius-euler polynomials of level m
title_full New biparametric families of apostol-frobenius-euler polynomials of level m
title_fullStr New biparametric families of apostol-frobenius-euler polynomials of level m
title_full_unstemmed New biparametric families of apostol-frobenius-euler polynomials of level m
title_sort New biparametric families of apostol-frobenius-euler polynomials of level m
dc.creator.fl_str_mv Bedoya, D.
Ortega, M.
Ramírez, W.
Urieles, A.
dc.contributor.author.spa.fl_str_mv Bedoya, D.
Ortega, M.
Ramírez, W.
Urieles, A.
dc.subject.spa.fl_str_mv Generalized Apostol-type polynomials
Apostol–frobennius–euler polynomials
Apostol-bernoulli polynomials of higher order
Apostol–genocchi polynomials of higher order
Generalized λ -Stirling numbers of second kind
topic Generalized Apostol-type polynomials
Apostol–frobennius–euler polynomials
Apostol-bernoulli polynomials of higher order
Apostol–genocchi polynomials of higher order
Generalized λ -Stirling numbers of second kind
description We introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level-mm. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λλ-Stirling type numbers of the second kind, the generalized Apostol--Bernoulli polynomials, the generalized Apostol--Genocchi polynomials, the generalized Apostol--Euler polynomials and Jacobi polynomials. Finally, we will show the differential properties of this new family of polynomials.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-12T21:34:06Z
dc.date.available.none.fl_str_mv 2021-03-12T21:34:06Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1027-4634
2411-0620
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8005
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.30970/ms.55.1.10-23
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1027-4634
2411-0620
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8005
https://doi.org/10.30970/ms.55.1.10-23
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Araci S., Acikgoz M., Construction of fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Difference Equ., 2018.
2. Askey R., Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol 3, England, 1975.
3. Carlitz L., Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260.
4. Comtet L., Advanced combinatorics: the art of finite and infinite expansions, Reidel, Dordrecht and Boston, 1974.
5. Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York, 1994. 6. Kurt B., Simsek Y., On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ., 1 (2013).
7. Masjed-Jamei M., Koepf W., Symbolic computation of some power-trigonometric series, J. Symbolic Comput., 80 (2017), 273–284.
8. Natalini P., Bernardini A., A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155–163.
9. Kilar N., Simsek Y., Two parametric kinds of Eulerian-type polynomials associated with Eulers formula, Symmetry, 11 (2019), 1–19.
10. Quintana Y., Ram´irez W., Urieles A., On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 53 (2018).
11. Quintana Y., Ram´irez W., Urieles G., Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Repor., 2, (2019), №2.
12. Quintana Y., Ram´irez, W., Urieles A., Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14, (2020), №4, 583–596.
13. Ram´irez W., Castilla L., Urieles A., An extended generalized q–extensions for the Apostol type polynomials, Abstr. Appl. Anal., 2018, Article ID 2937950, DOI: 10.1155/2018/2937950.
14. Ortega M., Ramirez W., Urieles A., New generalized Apostol–Frobenius-Euler polynomials and their matrix approach, Kragujevac. Journal. of Mathematics, 45 (2021), 393–407.
15. Simsek Y., Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application, Fixed point Theory and Applications, 87 (2013).
16. Y. Simsek, q–Analogue of twisted l–series and q–twisted Euler numbers, Journal of Number Theory, 110 (2005), 267–278.
17. Y. Simsek, Generating functions for q–Apostol type Frobenius–Euler numbers and polynomials, Axioms, 1 (2012), 395–403; doi:10.3390/axioms1030395.
18. Y. Simsek, O. Yurekli, V. Kurt, On interpolation functions of the twisted generalized Frobenius–Euler numbers, Advanced Studies in Contemporary Math., 15 (2007), №2, 187–194.
19. Y. Simsek, T. Kim, H.M. Srivastava, q–Bernoulli numbers and polynomials associated with multiple q–zeta functions and basic L–series, Russ. J. Math. Phys., 12 (2005), №2, 241–268.
20. Y. Simsek, T. Kim, D.W. Park, Y.S. Ro, L.C. Jang, S.H. Rim, An explicit formula for the multiple Frobenius-Euler numbers and polynomials, JP J. Algebra Number Theory Appl., 4 (2004), №3, 519–529.
21. Srivastava H.M., Garg M., Choudhary S, A new generalization of the Bernoulli and related polynomials, Russian J. of Math. Phys., 17, (2010), 251–261.
22. Srivastava H.M., Garg M., Choudhary S., Some new families of generalized Euler and Genocchi polynomials, Taiwanese J. Math., 15 (2011), №1, 283–305.
23. Urieles A., Ortega M., Ramirez W., Veg S., New results on the q–generalized Bernoulli polynomials of level m, Demonstratio Mathematica, 52 (2019), 511–522.
24. Urieles A., Ram´irez W., Ortega M.J., et al., Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials, Adv. Differ. Equ., 534 (2020), https://doi.org/ 10.1186/s13662-020-02988-0.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Matematychni Studii
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://www.matstud.org.ua/ojs/index.php/matstud/article/view/70
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/89d28ab7-9e25-4d2f-8bc3-42760599ba67/download
https://repositorio.cuc.edu.co/bitstreams/57773781-e76e-495d-969e-9da83421cec3/download
https://repositorio.cuc.edu.co/bitstreams/385b0998-1dd7-431c-8fc6-37a3d39d3c23/download
https://repositorio.cuc.edu.co/bitstreams/30cdd4a8-4abe-4bcf-96aa-03d890be8805/download
https://repositorio.cuc.edu.co/bitstreams/a11ff69c-4d0d-473b-a32f-e4e69f98553e/download
bitstream.checksum.fl_str_mv dc318bc4de3469cf49d617cd663f126c
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
59043919a13325791764c834b50c8673
e8f0b7a47aa5df43e34afc5299003d44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760700912041984
spelling Bedoya, D.Ortega, M.Ramírez, W.Urieles, A.2021-03-12T21:34:06Z2021-03-12T21:34:06Z20211027-46342411-0620https://hdl.handle.net/11323/8005https://doi.org/10.30970/ms.55.1.10-23Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level-mm. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λλ-Stirling type numbers of the second kind, the generalized Apostol--Bernoulli polynomials, the generalized Apostol--Genocchi polynomials, the generalized Apostol--Euler polynomials and Jacobi polynomials. Finally, we will show the differential properties of this new family of polynomials.Bedoya, D.Ortega, M.Ramírez, W.Urieles, A.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Matematychni Studiihttp://www.matstud.org.ua/ojs/index.php/matstud/article/view/70Generalized Apostol-type polynomialsApostol–frobennius–euler polynomialsApostol-bernoulli polynomials of higher orderApostol–genocchi polynomials of higher orderGeneralized λ -Stirling numbers of second kindNew biparametric families of apostol-frobenius-euler polynomials of level mArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Araci S., Acikgoz M., Construction of fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Difference Equ., 2018.2. Askey R., Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol 3, England, 1975.3. Carlitz L., Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260.4. Comtet L., Advanced combinatorics: the art of finite and infinite expansions, Reidel, Dordrecht and Boston, 1974.5. Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York, 1994. 6. Kurt B., Simsek Y., On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ., 1 (2013).7. Masjed-Jamei M., Koepf W., Symbolic computation of some power-trigonometric series, J. Symbolic Comput., 80 (2017), 273–284.8. Natalini P., Bernardini A., A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155–163.9. Kilar N., Simsek Y., Two parametric kinds of Eulerian-type polynomials associated with Eulers formula, Symmetry, 11 (2019), 1–19.10. Quintana Y., Ram´irez W., Urieles A., On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 53 (2018).11. Quintana Y., Ram´irez W., Urieles G., Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Repor., 2, (2019), №2.12. Quintana Y., Ram´irez, W., Urieles A., Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14, (2020), №4, 583–596.13. Ram´irez W., Castilla L., Urieles A., An extended generalized q–extensions for the Apostol type polynomials, Abstr. Appl. Anal., 2018, Article ID 2937950, DOI: 10.1155/2018/2937950.14. Ortega M., Ramirez W., Urieles A., New generalized Apostol–Frobenius-Euler polynomials and their matrix approach, Kragujevac. Journal. of Mathematics, 45 (2021), 393–407.15. Simsek Y., Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application, Fixed point Theory and Applications, 87 (2013).16. Y. Simsek, q–Analogue of twisted l–series and q–twisted Euler numbers, Journal of Number Theory, 110 (2005), 267–278.17. Y. Simsek, Generating functions for q–Apostol type Frobenius–Euler numbers and polynomials, Axioms, 1 (2012), 395–403; doi:10.3390/axioms1030395.18. Y. Simsek, O. Yurekli, V. Kurt, On interpolation functions of the twisted generalized Frobenius–Euler numbers, Advanced Studies in Contemporary Math., 15 (2007), №2, 187–194.19. Y. Simsek, T. Kim, H.M. Srivastava, q–Bernoulli numbers and polynomials associated with multiple q–zeta functions and basic L–series, Russ. J. Math. Phys., 12 (2005), №2, 241–268.20. Y. Simsek, T. Kim, D.W. Park, Y.S. Ro, L.C. Jang, S.H. Rim, An explicit formula for the multiple Frobenius-Euler numbers and polynomials, JP J. Algebra Number Theory Appl., 4 (2004), №3, 519–529.21. Srivastava H.M., Garg M., Choudhary S, A new generalization of the Bernoulli and related polynomials, Russian J. of Math. Phys., 17, (2010), 251–261.22. Srivastava H.M., Garg M., Choudhary S., Some new families of generalized Euler and Genocchi polynomials, Taiwanese J. Math., 15 (2011), №1, 283–305.23. Urieles A., Ortega M., Ramirez W., Veg S., New results on the q–generalized Bernoulli polynomials of level m, Demonstratio Mathematica, 52 (2019), 511–522.24. Urieles A., Ram´irez W., Ortega M.J., et al., Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials, Adv. Differ. Equ., 534 (2020), https://doi.org/ 10.1186/s13662-020-02988-0.PublicationORIGINALNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULERPOLYNOMIALS OF LEVELm.pdfNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULERPOLYNOMIALS OF LEVELm.pdfapplication/pdf156743https://repositorio.cuc.edu.co/bitstreams/89d28ab7-9e25-4d2f-8bc3-42760599ba67/downloaddc318bc4de3469cf49d617cd663f126cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/57773781-e76e-495d-969e-9da83421cec3/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/385b0998-1dd7-431c-8fc6-37a3d39d3c23/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULERPOLYNOMIALS OF LEVELm.pdf.jpgNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULERPOLYNOMIALS OF LEVELm.pdf.jpgimage/jpeg61088https://repositorio.cuc.edu.co/bitstreams/30cdd4a8-4abe-4bcf-96aa-03d890be8805/download59043919a13325791764c834b50c8673MD54TEXTNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULERPOLYNOMIALS OF LEVELm.pdf.txtNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULERPOLYNOMIALS OF LEVELm.pdf.txttext/plain32839https://repositorio.cuc.edu.co/bitstreams/a11ff69c-4d0d-473b-a32f-e4e69f98553e/downloade8f0b7a47aa5df43e34afc5299003d44MD5511323/8005oai:repositorio.cuc.edu.co:11323/80052024-09-17 10:17:43.375http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==