Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse
The production of tomatoes in greenhouses, in addition to its relevance in nutrition and health, is an activity of the agroindustry with high economic importance in Spain, the first exporter in Europe of this vegetable. The technological updating with precision agriculture, implemented in order to e...
- Autores:
-
Cama-Pinto, Dora
Damas, Miguel
Holgado-Terriza, Juan Antonio
Gómez-Mula, Francisco
Cama-Pinto, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4940
- Acceso en línea:
- https://hdl.handle.net/11323/4940
https://repositorio.cuc.edu.co/
- Palabra clave:
- propagation model
wireless propagation model
precision agriculture
COST235
ITU-R
FITU-R
Weisbberger model
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_49fd3b024050182efa5a2470bf9d2756 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4940 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
title |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
spellingShingle |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse propagation model wireless propagation model precision agriculture COST235 ITU-R FITU-R Weisbberger model |
title_short |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
title_full |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
title_fullStr |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
title_full_unstemmed |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
title_sort |
Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse |
dc.creator.fl_str_mv |
Cama-Pinto, Dora Damas, Miguel Holgado-Terriza, Juan Antonio Gómez-Mula, Francisco Cama-Pinto, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Cama-Pinto, Dora Damas, Miguel Holgado-Terriza, Juan Antonio Gómez-Mula, Francisco Cama-Pinto, Alejandro |
dc.subject.spa.fl_str_mv |
propagation model wireless propagation model precision agriculture COST235 ITU-R FITU-R Weisbberger model |
topic |
propagation model wireless propagation model precision agriculture COST235 ITU-R FITU-R Weisbberger model |
description |
The production of tomatoes in greenhouses, in addition to its relevance in nutrition and health, is an activity of the agroindustry with high economic importance in Spain, the first exporter in Europe of this vegetable. The technological updating with precision agriculture, implemented in order to ensure adequate production, leads to a deployment planning of wireless sensors with limited coverage by the attenuation of radio waves in the presence of vegetation. The well-known propagation models FSPL (Free-Space Path Loss), two-ray, COST235, Weissberger, ITU-R (International Telecommunications Union—Radiocommunication Sector), FITU-R (Fitted ITU-R), offer values with an error percentage higher than 30% in the 2.4 GHz band in relation to those measured in field tests. As a substantial improvement, we have developed optimized propagation models, with an error estimate of less than 9% in the worst-case scenario for the later benefit of farmers, consumers and the economic chain in the production of tomatoes. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-07-11T15:40:35Z |
dc.date.available.none.fl_str_mv |
2019-07-11T15:40:35Z |
dc.date.issued.none.fl_str_mv |
2019-05-14 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1661-7827 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4940 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1661-7827 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4940 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.3390/ijerph16101744 |
dc.relation.references.spa.fl_str_mv |
1. Razafimandimby, C.; Loscrí, V.; Vegni, A.M.; Neri, A. Efficient Bayesian communication approach for smart agriculture applications. In Proceedings of the 2017 IEEE Vehicular Technology Conference, Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [CrossRef] 2. Caicedo-Ortiz, J.G.; De-la-Hoz-Franco, E.; Morales Ortega, R.; Piñeres-Espitia, G.; Combita-Niño, H.; Estévez, F.; Cama-Pinto, A. Monitoring system for agronomic variables based in WSN technology on cassava crops. Comput. Electron. Agric. 2018, 145, 275–281. [CrossRef] 3. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [CrossRef] 4. Sabri, N.; Mohammed, S.S.; Fouad, S.; Syed, A.A.; Al-Dhief, F.T.; Raheemah, A. Investigation of Empirical Wave Propagation Models in Precision Agriculture. MATEC Web Conf. 2018, 150, 06020. [CrossRef] 5. Correia, F.P.; De Alencar, M.S.; Lopes, W.T.A.; De Assis, M.S.; Leal, B.G. Propagation analysis for wireless sensor networks applied to viticulture. Int. J. Antennas Propag. 2017, 2017, 7903839. [CrossRef] 6. Yoshimura, R.; Hara, M.; Nishimura, T.; Yamada, C.; Shimasaki, H.; Kado, Y.; Ichida, M. Effect of vegetation on radio wave propagation in 920-MHz and 2.4-GHz bands. In Proceedings of the Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016. [CrossRef] 7. Correia, F.P.; Alencar, M.S.; Carvalho, F.B.S.; Lopes, W.T.A.; Leal, B.G. Propagation analysis in precision agriculture environment using XBee devices. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Rio de Janeiro, Brazil, 4–7 August 2013. [CrossRef] 8. Li, J.; Shen, C. Energy conservative Wireless Sensor Networks for black pepper monitoring in tropical area. In Proceedings of the IEEE Global High Tech Congress on Electronics (GHTCE), Shenzhen, China, 17–19 November 2013; pp. 159–164. [CrossRef] 9. Montoya, F.G.; Gomez, J.; Manzano-Agugliaro, F.; Cama, A.; García-Cruz, A.; De La Cruz, J.L. 6LoWSoft: A software suite for the design of outdoor environmental measurements. J. Food Agric. Environ. 2013, 11, 2584–2586. 10. Holvoet, K.; Sampers, I.; Seynnaeve, M.; Jacxsens, L.; Uyttendaele, M. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production. Int. J. Environ. Res. Public Health 2015, 12, 32–63. [CrossRef] [PubMed] 11. Sabri, N.; Aljunid, S.A.; Salim, M.S.; Kamaruddin, R.; Ahmad, R.B.; Malek, M.F. Path loss analysis of WSN wave propagation in vegetation. J. Phys. Conf. Ser. 2013, 423, 012063. [CrossRef] 12. Paul, B.S.; Rimer, S. A foliage scatter model to determine topology of wireless sensor network. In Proceedings of the International Conference on Radar, Communication and Computing (ICRCC), Tiruvannamalai, India, 21–22 December 2012; pp. 324–328. [CrossRef] 13. Liu, H.; Meng, Z.; Wang, M. A wireless sensor network for cropland environmental monitoring. In Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 25–26 April 2009; Volume 1, pp. 65–68. [CrossRef] 14. Piñeres-Espitia, G.; Cama-Pinto, A.; De La Rosa Morrón, D.; Estevez, F.; Cama-Pinto, D. Design of a low cost weather station for detecting environmental changes. Espacios 2017, 38, 13. 15. Sánchez, J.A.; Reca, J.; Martínez, J. Water productivity in a mediterranean semi-arid greenhouse district. Water Resour. Manag. 2015, 29, 5395–5411. [CrossRef] 16. De Pablo-Valenciano, J.; Giacinti-Battistuzzi, M.A.; Tassile, V.; García-Azcárate, T. Changes in the business model for Spanish fresh tomato trade. Span. J. Agric. Res. 2017, 15, e0101. [CrossRef] 17. Marín, P.; Valera, D.L.; Molina-Aiz, F.D.; López, A.; Belmonte, L.J.; Moreno, M.A. Influence of different heating systems on the development, production and quality of a tomato crop. ITEA Inf. Tec. Econ. Agrar. 2016, 112, 375–391. [CrossRef] 18. Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for Wireless Sensor Network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [CrossRef] 19. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [CrossRef] 20. Mancuso, M.; Bustaffa, F. A Wireless Sensors Network for monitoring environmental variables in a tomato greenhouse. In Proceedings of the IEEE International Workshop on Factory Communication Systems (WFCS), Torino, Italy, 28–30 June 2006; pp. 107–110. 21. Erazo-Rodas, M.; Sandoval-Moreno, M.; Muñoz-Romero, S.; Huerta, M.; Rivas-Lalaleo, D.; Naranjo, C.; Rojo-álvarez, J.L. Multiparametric monitoring in equatorian tomato greenhouses (I): Wireless sensor network benchmarking. Sensors 2018, 18, 2555. [CrossRef] [PubMed] 22. Zhou, H.; Qi, H.; Banhazi, T.M.; Low, T. An integrated WSN and mobile robot system for agriculture and environment applications. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2014; Volume 131, pp. 30–36. [CrossRef] 23. Foerster, A.; Udugama, A.; Görg, C.; Kuladinithi, K.; Timm-Giel, A.; Cama-Pinto, A. A novel data dissemination model for organic data flows. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2015; Volume 158, pp. 239–252. [CrossRef] 24. Chaiwatpongsakorn, C.; Lu, M.; Keener, T.C.; Khang, S.-J. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring. Int. J. Environ. Res. Public Health 2014, 11, 6246–6264. [CrossRef] 25. Queiroz, D.V.; Alencar, M.S.; Gomes, R.D.; Fonseca, I.E.; Benavente-Peces, C. Survey and systematic mapping of industrial Wireless Sensor Networks. J. Netw. Comput. Appl. 2017, 97, 96–125. [CrossRef] 26. Stewart, J.; Stewart, R.; Kennedy, S. Internet of Things—Propagation modelling for precision agriculture applications. In Proceedings of the Wireless Telecommunications Symposium, Chicago, IL, USA, 26–28 April 2017. [CrossRef] 27. Zhang, H.; Li, H. Node localization technology of wireless sensor network based on RSSI algorithm. Int. J. Online Eng. 2016, 12, 51–57. [CrossRef] 28. Guo, X.-M.; Yang, X.-T.; Chen, M.-X.; Li, M.; Wang, Y.-A. A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precis. Agric. 2015, 16, 180–200. [CrossRef] 29. Galvan-Tejada, G.M.; Duarte-Reynoso, E.Q.; Flores-Leal, R. Standard conditions of propagation for wireless sensor networks in an inhomogeneous vegetation environment. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Orlando, FL, USA, 7–13 July 2013; pp. 2014–2015. [CrossRef] 30. Galvan-Tejada, G.M.; Duarte-Reynoso, E.Q. A study based on the Lee propagation model for a wireless sensor network on a non-uniform vegetation environment. In Proceedings of the IEEE Latin-America Conference on Communications (LATINCOM), Cuenca, Ecuador, 7–9 November 2012. [CrossRef] 31. Li, T.; Zhang, M.; Ji, Y.H.; Sha, S.; Jiang, Y.Q.; Li, M.Z. Management of CO2 in a tomato greenhouse using WSN and BPNN techniques. Int. J. Agric. Boil. Eng. 2015, 8, 43–51. [CrossRef] 32. Liu, H.; Meng, Z.; Shang, Y. Sensor nodes placement for farmland environmental monitoring applications. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing WiCOM, Beijing, China, 24–26 September 2009. [CrossRef] 33. Gay-Fernandez, J.A.; Cuinas, I. Short-term modeling in vegetation media at wireless network frequency bands. IEEE Trans. Antennas Propag. 2014, 62, 3330–3337. [CrossRef] 34. Li, Z.; Wang, N.; Hong, T. RF propagation patterns at 915 MHZ and 2.4 GHZ bands for in-field wireless sensor networks. Trans. ASABE 2013, 56, 787–796. 35. Haber, R.; Peter, A.; Otero, C.E.; Kostanic, I.; Ejnioui, A. A support vector machine for terrain classification in on-demand deployments of wireless sensor networks. In Proceedings of the 7th Annual IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 841–846. [CrossRef] 36. De Sales Bezerra, T.; De Sousa, J.A.R.; Da Silva Eleuterio, S.A.; Rocha, J.S. Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment. In Proceedings of the 6th Argentine Conference on Embedded Systems (CASE), Buenos Aires, Argentina, 12–14 August 2015; pp. 19–24. [CrossRef] 37. Rao, Y.; Jiang, Z.-H.; Lazarovitch, N. Investigating signal propagation and strength distribution characteristics of wireless sensor networks in date palm orchards. Comput. Electron. Agric. 2016, 124, 107–120. [CrossRef] 38. Zhang, X.; Wu, Y.; Wei, X. Localization algorithms in wireless sensor networks using nonmetric multidimensional scaling with RSSI for precision agriculture. In Proceedings of the 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 26–28 February 2010; Volume 5, pp. 556–559. [CrossRef] 39. Anastassiu, H.T.; Vougioukas, S.; Fronimos, T.; Regen, C.; Petrou, L.; Zude, M.; Käthner, J. A computational model for path loss in wireless sensor networks in orchard environments. Sensors 2014, 14, 5118–5135. [CrossRef] 40. Zuniga, M.; Krishnamachari, B. Analyzing the transitional region in low power wireless links. In Proceedings of the First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON, Santa Clara, CA, USA, 4–7 October 2004; pp. 517–526. 41. Ngandu, G.; Nomatungulula, C.; Rimer, S.; Paul, B.S.; Ouahada, K.; Twala, B. Evaluating effect of foliage on link reliability of wireless signal. In Proceedings of the IEEE International Conference on Industrial Technology, Cape Town, South Africa, 25–28 February 2013; pp. 1528–1533. [CrossRef] 42. Cama-Pinto, A.; Piñeres-Espitia, G.; Caicedo-Ortiz, J.; Ramírez-Cerpa, E.; Betancur-Agudelo, L.; Gómez-Mula, F. Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. Int. J. Distrib. Sens. Netw. 2017, 13. [CrossRef] 43. Wang, J.; Peng, Y.; Li, P. Propagation characteristics of radio wave in plastic greenhouse. In IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2016; Volume 478, pp. 208–215. [CrossRef] 44. Huang, C.-N.; Chan, C.-T. A ZigBee-based location-aware fall detection system for improving elderly telecare. Int. J. Environ. Res. Public Health 2014, 11, 4233–4248. [CrossRef] [PubMed] 45. Rogers, N.C.; Seville, A.; Richter, J.; Ndzi, D.; Savage, N.; Caldeirinha, R.F.S.; Shukla, A.K.; Al-Nuaimi, M.O.; Craig, K.; Vilar, E.; et al. A Generic Model of 1–60 GHz Radio Propagation through Vegetation—Final Report; UK Radiocommunications Agency: Worcestershire, UK, 2002; p. 134. 46. Friis, H.T. A Note on a Simple Transmission Formula. Proc. IRE 1946, 34, 254–256. [CrossRef] 47. Afsharinejad, A.; Davy, A.; Jennings, B.; Rasmann, S.; Brennan, C. A path-loss model incorporating shadowing for THz band propagation in vegetation. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [CrossRef] 48. Zhang, W.; He, Y.; Liu, F.; Miao, C.; Sun, S.; Liu, C.; Jin, J. Research on WSN channel fading model and experimental analysis in orchard environment. In IFIP Advances in Information and Communication Technology; 369 AICT (PART 2); Springer: Berlin/Heidelberg, Germany, 2012; pp. 326–333. [CrossRef] 49. Mahesh, G.; Balachander, D.; Rao, T.R. RF propagation measurements in agricultural fields for Wireless Sensor Communications. In Proceedings of the IEEE International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 20–21 March 2013; pp. 808–812. [CrossRef] 50. Rama Rao, T.; Balachander, D.; Tiwari, N. UHF short-range pathloss measurements in forest & plantation environments for wireless sensor networks. In Proceedings of the IEEE International Conference on Communication Systems (ICCS), Singapore, 21–23 November 2012; pp. 194–198. [CrossRef] 51. Agrawal, S.K.; Garg, P. Calculation of channel capacity and rician factor in the presence of vegetation in higher altitude platforms communication systems. In Proceedings of the 15th International Conference on Advanced Computing and Communications (ADCOM), Guwahati, India, 18–21 December 2007; pp. 243–248. 52. Galvan-Tejada, G.M.; Duarte-Reynoso, E.Q. Some guidelines to simulate wireless sensor networks in a propagation environment with non-uniform vegetation. Int. J. Sens. Netw. 2015, 17, 40–51. [CrossRef] 53. Wong, T.W. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J. Control. Release 2014, 193, 257–269. [CrossRef] 54. Gay-Fernandez, J.A.; Cuinas, I. Peer to peer propagation in vegetation media for wireless sensor networks. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Chicago, IL, USA, 8–14 July 2012. [CrossRef] 55. Tewari, R.K.; Swarup, S.; Roy, M.N. Radio Wave Propagation Through Rain Forests of India. IEEE Trans. Antennas Propag. 1990, 38, 433–449. [CrossRef] 56. Savage, N.; Ndzi, D.; Seville, A.; Vilar, E.; Austin, J. Radio wave propagation through vegetation: Factors influencing signal attenuation. Radio Sci. 2003, 38. [CrossRef] 57. Mestre, P.; Ribeiro, J.; Serodio, C.; Monteiro, J. Propagation of IEEE802.15.4 in vegetation. In Proceedings of the World Congress on Engineering (WCE), London, UK, 6–8 July 2011; Volume 2, pp. 1786–1791. 58. Anderson, C.R.; Volos, H.I.; Buehrer, R.M. Characterization of low-antenna ultrawideband propagation in a forest environment. IEEE Trans. Veh. Technol. 2013, 62, 2878–2895. [CrossRef] 59. Shaik, M.; Kabanni, A.; Nazeema, N. Millimeter wave propagation measurments in forest for 5G Wireless sensor communications. In Proceedings of theMediterranean Microwave Symposium, Abu Dhabi, UAE, 14–16 November 2017. [CrossRef] 60. Ndzi, D.L.; Harun, A.; Ramli, F.M.; Kamarudin, M.L.; Zakaria, A.; Shakaff, A.Y.M.; Jaafar, M.N.; Zhou, S.; Farook, R.S. Wireless sensor network coverage measurement and planning in mixed crop farming. Comput. Electron. Agric. 2014, 105, 83–94. [CrossRef] 61. Khairunnniza-Bejo, S.; Ramli, N.; Muharam, F.M. Wireless sensor network (WSN) applications in plantation canopy areas: A review. Asian J. Sci. Res. 2018, 11, 151–161. [CrossRef] 62. Zakaria, Y.; Ivanek, L. Propagation measurements and estimation of channel propagation models in urban environment. KSII Trans. Internet Inf. Syst. 2017, 11, 2453–2467. [CrossRef] 63. Oroza, C.A.; Zhang, Z.; Watteyne, T.; Glaser, S.D. A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 576–584. [CrossRef] 64. Rahim, H.M.; Leow, C.Y.; Rahman, T.A. Millimeter wave propagation through foliage: Comparison of models. In Proceedings of the IEEE 12th Malaysia International Conference on Communications (MICC), Kuching, Malaysia, 23–25 November 2015; pp. 236–240. [CrossRef] 65. Cuiñas, I.; Gay-Fernández, J.A. A proposal on spatial diversity in emergency communications within forest environments. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP), The Hague, The Netherlands, 6–11 April 2014; pp. 1295–1298. [CrossRef] 66. Balachander, D.; Rao, T.R.; Mahesh, G. RF propagation investigations in agricultural fields and gardens for wireless sensor communications. In Proceedings of the IEEE Conference on Information and Communication Technologies (ICT), Thuckalay, India, 11–12 April 2013; pp. 755–759. [CrossRef] 67. Rahman, N.Z.A.; Tan, K.G.; Omer, A.; Rahman, T.A.; Reza, A.W. Radio propagation studies at 5.8 GHZ for point-to-multipoint applications incorporating vegetation effect. Wirel. Pers. Commun. 2013, 72, 709–728. [CrossRef] 68. Mani, F.; Oestges, C. A ray based method to evaluate scattering by vegetation elements. IEEE Trans. Antennas Propag. 2012, 60, 4006–4009. [CrossRef] 69. Chee, K.L.; Torrico, S.A.; Kurner, T. Foliage attenuation over mixed terrains in rural areas for broadband wireless access at 3.5 GHz. IEEE Trans. Antennas Propag. 2011, 59, 2698–2706. [CrossRef] 70. Meng, Y.S.; Lee, Y.H. Investigations of foliage effect on modern wireless communication systems: A review. Prog. Electromagn. Res. 2010, 105, 313–332. [CrossRef] 71. Mestre, P.; Serôdio, C.; Morais, R.; Azevedo, J.; Melo-Pinto, P. Vegetation growth detection using wireless sensor networks. In Proceedings of the WCE 2010—World Congress on Engineering, London, UK, 30 June–2 July 2010; Volume 1, pp. 802–807. 72. Sabri, N.; Aljunid, S.A.; Ahmad, R.B.; Malek, M.F.A.; Kamaruddin, R.; Salim, M.S. Wireless sensor network wave propagation in vegetation: Review and simulation. In Proceedings of the LAPC—Loughborough Antennas and Propagation Conference, Loughborough, UK, 12–13 November 2012. [CrossRef] 73. Rahman, N.Z.A.; Tan, K.G.; Rahman, T.A.; Idris, I.F.M.; Hamzah, N.A.A. Modeling of Dynamic Effect of Vegetation for Fixed Wireless Access System. Wirel. Pers. Commun. 2017, 96, 1329–1354. [CrossRef] 74. Zolertia. Z1 Datasheet. 2017. Available online: http://github.com/Zolertia/Resources/wiki/RE-Mote (accessed on 21 March 2019). 75. Cama-Pinto, A.; Piñeres-Espitia, G.; Comas-González, Z.; Vélez-Zapata, J.; Gómez-Mula, F. Design of a monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its metropolitan area. Ingeniare 2017, 25, 585–598. 76. Cama-Pinto, A.; Piñeres-Espitia, G.; Zamora-Musa, R.; Acosta-Coll, M.; Caicedo-Ortiz, J.; Sepúlveda-Ojeda, J. Design of a wireless sensor network for monitoring of flash floods in the city of Barranquilla Colombia. Ingeniare 2016, 24, 581–599. 77. Zennaro, M.; Bagula, A.; Gascon, D.; Noveleta, A.B. Long distance wireless sensor networks: Simulation vs. reality. In Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, NSDR ’10, San Francisco, CA, USA, 15 June 2010. [CrossRef] 78. Montoya, F.G.; Gómez, J.; Cama, A.; Zapata-Sierra, A.; Martínez, F.; De La Cruz, J.L.; Manzano-Agugliaro, F.A. Monitoring system for intensive agriculture based on mesh networks and the android system. Comput. Electron. Agric. 2013, 99, 14–20. [CrossRef] 79. Cama-Pinto, A.; Gil-Montoya, F.; Gómez-López, J.; García-Cruz, A.; Manzano-Agugliaro, F. Wireless surveillance sytem for greenhouse crops. DYNA 2014, 81, 164–170. [CrossRef] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Journal of Environmental Research and Public Health |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/77799800-975f-4644-a420-0dc8442b4839/download https://repositorio.cuc.edu.co/bitstreams/cb3a32b5-1466-4e0f-b7b9-be6a6c1e74fe/download https://repositorio.cuc.edu.co/bitstreams/a40f92df-5e3c-4d5f-9799-cbe32ba3bf36/download https://repositorio.cuc.edu.co/bitstreams/37869761-821d-41fb-a0b7-2f77a14f8127/download https://repositorio.cuc.edu.co/bitstreams/695cf003-eb5b-4391-a188-60904e29d56b/download |
bitstream.checksum.fl_str_mv |
12a67a3671b0a029a846a6a755bf50cc 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 2dd9f2129ed404056f944c70b9ce5b9c 6e9555f1931b17f1309ffcac3a93daee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760769039073280 |
spelling |
Cama-Pinto, DoraDamas, MiguelHolgado-Terriza, Juan AntonioGómez-Mula, FranciscoCama-Pinto, Alejandro2019-07-11T15:40:35Z2019-07-11T15:40:35Z2019-05-141661-7827https://hdl.handle.net/11323/4940Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The production of tomatoes in greenhouses, in addition to its relevance in nutrition and health, is an activity of the agroindustry with high economic importance in Spain, the first exporter in Europe of this vegetable. The technological updating with precision agriculture, implemented in order to ensure adequate production, leads to a deployment planning of wireless sensors with limited coverage by the attenuation of radio waves in the presence of vegetation. The well-known propagation models FSPL (Free-Space Path Loss), two-ray, COST235, Weissberger, ITU-R (International Telecommunications Union—Radiocommunication Sector), FITU-R (Fitted ITU-R), offer values with an error percentage higher than 30% in the 2.4 GHz band in relation to those measured in field tests. As a substantial improvement, we have developed optimized propagation models, with an error estimate of less than 9% in the worst-case scenario for the later benefit of farmers, consumers and the economic chain in the production of tomatoes.Cama-Pinto, Dora-0000-0003-0726-196X-600Damas, Miguel-0000-0003-2599-8076-600Holgado-Terriza, Juan Antonio-0000-0002-8031-1276-600Gómez-Mula, FranciscoCama-Pinto, Alejandro-0000-0002-1364-7394-600engInternational Journal of Environmental Research and Public Healthhttps://doi.org/10.3390/ijerph161017441. Razafimandimby, C.; Loscrí, V.; Vegni, A.M.; Neri, A. Efficient Bayesian communication approach for smart agriculture applications. In Proceedings of the 2017 IEEE Vehicular Technology Conference, Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [CrossRef] 2. Caicedo-Ortiz, J.G.; De-la-Hoz-Franco, E.; Morales Ortega, R.; Piñeres-Espitia, G.; Combita-Niño, H.; Estévez, F.; Cama-Pinto, A. Monitoring system for agronomic variables based in WSN technology on cassava crops. Comput. Electron. Agric. 2018, 145, 275–281. [CrossRef] 3. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [CrossRef] 4. Sabri, N.; Mohammed, S.S.; Fouad, S.; Syed, A.A.; Al-Dhief, F.T.; Raheemah, A. Investigation of Empirical Wave Propagation Models in Precision Agriculture. MATEC Web Conf. 2018, 150, 06020. [CrossRef] 5. Correia, F.P.; De Alencar, M.S.; Lopes, W.T.A.; De Assis, M.S.; Leal, B.G. Propagation analysis for wireless sensor networks applied to viticulture. Int. J. Antennas Propag. 2017, 2017, 7903839. [CrossRef] 6. Yoshimura, R.; Hara, M.; Nishimura, T.; Yamada, C.; Shimasaki, H.; Kado, Y.; Ichida, M. Effect of vegetation on radio wave propagation in 920-MHz and 2.4-GHz bands. In Proceedings of the Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016. [CrossRef] 7. Correia, F.P.; Alencar, M.S.; Carvalho, F.B.S.; Lopes, W.T.A.; Leal, B.G. Propagation analysis in precision agriculture environment using XBee devices. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Rio de Janeiro, Brazil, 4–7 August 2013. [CrossRef] 8. Li, J.; Shen, C. Energy conservative Wireless Sensor Networks for black pepper monitoring in tropical area. In Proceedings of the IEEE Global High Tech Congress on Electronics (GHTCE), Shenzhen, China, 17–19 November 2013; pp. 159–164. [CrossRef] 9. Montoya, F.G.; Gomez, J.; Manzano-Agugliaro, F.; Cama, A.; García-Cruz, A.; De La Cruz, J.L. 6LoWSoft: A software suite for the design of outdoor environmental measurements. J. Food Agric. Environ. 2013, 11, 2584–2586. 10. Holvoet, K.; Sampers, I.; Seynnaeve, M.; Jacxsens, L.; Uyttendaele, M. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production. Int. J. Environ. Res. Public Health 2015, 12, 32–63. [CrossRef] [PubMed] 11. Sabri, N.; Aljunid, S.A.; Salim, M.S.; Kamaruddin, R.; Ahmad, R.B.; Malek, M.F. Path loss analysis of WSN wave propagation in vegetation. J. Phys. Conf. Ser. 2013, 423, 012063. [CrossRef] 12. Paul, B.S.; Rimer, S. A foliage scatter model to determine topology of wireless sensor network. In Proceedings of the International Conference on Radar, Communication and Computing (ICRCC), Tiruvannamalai, India, 21–22 December 2012; pp. 324–328. [CrossRef] 13. Liu, H.; Meng, Z.; Wang, M. A wireless sensor network for cropland environmental monitoring. In Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 25–26 April 2009; Volume 1, pp. 65–68. [CrossRef] 14. Piñeres-Espitia, G.; Cama-Pinto, A.; De La Rosa Morrón, D.; Estevez, F.; Cama-Pinto, D. Design of a low cost weather station for detecting environmental changes. Espacios 2017, 38, 13. 15. Sánchez, J.A.; Reca, J.; Martínez, J. Water productivity in a mediterranean semi-arid greenhouse district. Water Resour. Manag. 2015, 29, 5395–5411. [CrossRef] 16. De Pablo-Valenciano, J.; Giacinti-Battistuzzi, M.A.; Tassile, V.; García-Azcárate, T. Changes in the business model for Spanish fresh tomato trade. Span. J. Agric. Res. 2017, 15, e0101. [CrossRef] 17. Marín, P.; Valera, D.L.; Molina-Aiz, F.D.; López, A.; Belmonte, L.J.; Moreno, M.A. Influence of different heating systems on the development, production and quality of a tomato crop. ITEA Inf. Tec. Econ. Agrar. 2016, 112, 375–391. [CrossRef] 18. Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for Wireless Sensor Network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [CrossRef] 19. Raheemah, A.; Sabri, N.; Salim, M.S.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [CrossRef] 20. Mancuso, M.; Bustaffa, F. A Wireless Sensors Network for monitoring environmental variables in a tomato greenhouse. In Proceedings of the IEEE International Workshop on Factory Communication Systems (WFCS), Torino, Italy, 28–30 June 2006; pp. 107–110. 21. Erazo-Rodas, M.; Sandoval-Moreno, M.; Muñoz-Romero, S.; Huerta, M.; Rivas-Lalaleo, D.; Naranjo, C.; Rojo-álvarez, J.L. Multiparametric monitoring in equatorian tomato greenhouses (I): Wireless sensor network benchmarking. Sensors 2018, 18, 2555. [CrossRef] [PubMed] 22. Zhou, H.; Qi, H.; Banhazi, T.M.; Low, T. An integrated WSN and mobile robot system for agriculture and environment applications. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2014; Volume 131, pp. 30–36. [CrossRef] 23. Foerster, A.; Udugama, A.; Görg, C.; Kuladinithi, K.; Timm-Giel, A.; Cama-Pinto, A. A novel data dissemination model for organic data flows. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2015; Volume 158, pp. 239–252. [CrossRef] 24. Chaiwatpongsakorn, C.; Lu, M.; Keener, T.C.; Khang, S.-J. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring. Int. J. Environ. Res. Public Health 2014, 11, 6246–6264. [CrossRef] 25. Queiroz, D.V.; Alencar, M.S.; Gomes, R.D.; Fonseca, I.E.; Benavente-Peces, C. Survey and systematic mapping of industrial Wireless Sensor Networks. J. Netw. Comput. Appl. 2017, 97, 96–125. [CrossRef] 26. Stewart, J.; Stewart, R.; Kennedy, S. Internet of Things—Propagation modelling for precision agriculture applications. In Proceedings of the Wireless Telecommunications Symposium, Chicago, IL, USA, 26–28 April 2017. [CrossRef] 27. Zhang, H.; Li, H. Node localization technology of wireless sensor network based on RSSI algorithm. Int. J. Online Eng. 2016, 12, 51–57. [CrossRef] 28. Guo, X.-M.; Yang, X.-T.; Chen, M.-X.; Li, M.; Wang, Y.-A. A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precis. Agric. 2015, 16, 180–200. [CrossRef] 29. Galvan-Tejada, G.M.; Duarte-Reynoso, E.Q.; Flores-Leal, R. Standard conditions of propagation for wireless sensor networks in an inhomogeneous vegetation environment. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Orlando, FL, USA, 7–13 July 2013; pp. 2014–2015. [CrossRef] 30. Galvan-Tejada, G.M.; Duarte-Reynoso, E.Q. A study based on the Lee propagation model for a wireless sensor network on a non-uniform vegetation environment. In Proceedings of the IEEE Latin-America Conference on Communications (LATINCOM), Cuenca, Ecuador, 7–9 November 2012. [CrossRef] 31. Li, T.; Zhang, M.; Ji, Y.H.; Sha, S.; Jiang, Y.Q.; Li, M.Z. Management of CO2 in a tomato greenhouse using WSN and BPNN techniques. Int. J. Agric. Boil. Eng. 2015, 8, 43–51. [CrossRef] 32. Liu, H.; Meng, Z.; Shang, Y. Sensor nodes placement for farmland environmental monitoring applications. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing WiCOM, Beijing, China, 24–26 September 2009. [CrossRef] 33. Gay-Fernandez, J.A.; Cuinas, I. Short-term modeling in vegetation media at wireless network frequency bands. IEEE Trans. Antennas Propag. 2014, 62, 3330–3337. [CrossRef] 34. Li, Z.; Wang, N.; Hong, T. RF propagation patterns at 915 MHZ and 2.4 GHZ bands for in-field wireless sensor networks. Trans. ASABE 2013, 56, 787–796. 35. Haber, R.; Peter, A.; Otero, C.E.; Kostanic, I.; Ejnioui, A. A support vector machine for terrain classification in on-demand deployments of wireless sensor networks. In Proceedings of the 7th Annual IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 841–846. [CrossRef] 36. De Sales Bezerra, T.; De Sousa, J.A.R.; Da Silva Eleuterio, S.A.; Rocha, J.S. Accuracy of propagation models to power prediction in WSN ZigBee applied in outdoor environment. In Proceedings of the 6th Argentine Conference on Embedded Systems (CASE), Buenos Aires, Argentina, 12–14 August 2015; pp. 19–24. [CrossRef] 37. Rao, Y.; Jiang, Z.-H.; Lazarovitch, N. Investigating signal propagation and strength distribution characteristics of wireless sensor networks in date palm orchards. Comput. Electron. Agric. 2016, 124, 107–120. [CrossRef] 38. Zhang, X.; Wu, Y.; Wei, X. Localization algorithms in wireless sensor networks using nonmetric multidimensional scaling with RSSI for precision agriculture. In Proceedings of the 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 26–28 February 2010; Volume 5, pp. 556–559. [CrossRef] 39. Anastassiu, H.T.; Vougioukas, S.; Fronimos, T.; Regen, C.; Petrou, L.; Zude, M.; Käthner, J. A computational model for path loss in wireless sensor networks in orchard environments. Sensors 2014, 14, 5118–5135. [CrossRef] 40. Zuniga, M.; Krishnamachari, B. Analyzing the transitional region in low power wireless links. In Proceedings of the First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON, Santa Clara, CA, USA, 4–7 October 2004; pp. 517–526. 41. Ngandu, G.; Nomatungulula, C.; Rimer, S.; Paul, B.S.; Ouahada, K.; Twala, B. Evaluating effect of foliage on link reliability of wireless signal. In Proceedings of the IEEE International Conference on Industrial Technology, Cape Town, South Africa, 25–28 February 2013; pp. 1528–1533. [CrossRef] 42. Cama-Pinto, A.; Piñeres-Espitia, G.; Caicedo-Ortiz, J.; Ramírez-Cerpa, E.; Betancur-Agudelo, L.; Gómez-Mula, F. Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. Int. J. Distrib. Sens. Netw. 2017, 13. [CrossRef] 43. Wang, J.; Peng, Y.; Li, P. Propagation characteristics of radio wave in plastic greenhouse. In IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2016; Volume 478, pp. 208–215. [CrossRef] 44. Huang, C.-N.; Chan, C.-T. A ZigBee-based location-aware fall detection system for improving elderly telecare. Int. J. Environ. Res. Public Health 2014, 11, 4233–4248. [CrossRef] [PubMed] 45. Rogers, N.C.; Seville, A.; Richter, J.; Ndzi, D.; Savage, N.; Caldeirinha, R.F.S.; Shukla, A.K.; Al-Nuaimi, M.O.; Craig, K.; Vilar, E.; et al. A Generic Model of 1–60 GHz Radio Propagation through Vegetation—Final Report; UK Radiocommunications Agency: Worcestershire, UK, 2002; p. 134. 46. Friis, H.T. A Note on a Simple Transmission Formula. Proc. IRE 1946, 34, 254–256. [CrossRef] 47. Afsharinejad, A.; Davy, A.; Jennings, B.; Rasmann, S.; Brennan, C. A path-loss model incorporating shadowing for THz band propagation in vegetation. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [CrossRef] 48. Zhang, W.; He, Y.; Liu, F.; Miao, C.; Sun, S.; Liu, C.; Jin, J. Research on WSN channel fading model and experimental analysis in orchard environment. In IFIP Advances in Information and Communication Technology; 369 AICT (PART 2); Springer: Berlin/Heidelberg, Germany, 2012; pp. 326–333. [CrossRef] 49. Mahesh, G.; Balachander, D.; Rao, T.R. RF propagation measurements in agricultural fields for Wireless Sensor Communications. In Proceedings of the IEEE International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 20–21 March 2013; pp. 808–812. [CrossRef] 50. Rama Rao, T.; Balachander, D.; Tiwari, N. UHF short-range pathloss measurements in forest & plantation environments for wireless sensor networks. In Proceedings of the IEEE International Conference on Communication Systems (ICCS), Singapore, 21–23 November 2012; pp. 194–198. [CrossRef] 51. Agrawal, S.K.; Garg, P. Calculation of channel capacity and rician factor in the presence of vegetation in higher altitude platforms communication systems. In Proceedings of the 15th International Conference on Advanced Computing and Communications (ADCOM), Guwahati, India, 18–21 December 2007; pp. 243–248. 52. Galvan-Tejada, G.M.; Duarte-Reynoso, E.Q. Some guidelines to simulate wireless sensor networks in a propagation environment with non-uniform vegetation. Int. J. Sens. Netw. 2015, 17, 40–51. [CrossRef] 53. Wong, T.W. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J. Control. Release 2014, 193, 257–269. [CrossRef] 54. Gay-Fernandez, J.A.; Cuinas, I. Peer to peer propagation in vegetation media for wireless sensor networks. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Chicago, IL, USA, 8–14 July 2012. [CrossRef] 55. Tewari, R.K.; Swarup, S.; Roy, M.N. Radio Wave Propagation Through Rain Forests of India. IEEE Trans. Antennas Propag. 1990, 38, 433–449. [CrossRef] 56. Savage, N.; Ndzi, D.; Seville, A.; Vilar, E.; Austin, J. Radio wave propagation through vegetation: Factors influencing signal attenuation. Radio Sci. 2003, 38. [CrossRef] 57. Mestre, P.; Ribeiro, J.; Serodio, C.; Monteiro, J. Propagation of IEEE802.15.4 in vegetation. In Proceedings of the World Congress on Engineering (WCE), London, UK, 6–8 July 2011; Volume 2, pp. 1786–1791. 58. Anderson, C.R.; Volos, H.I.; Buehrer, R.M. Characterization of low-antenna ultrawideband propagation in a forest environment. IEEE Trans. Veh. Technol. 2013, 62, 2878–2895. [CrossRef] 59. Shaik, M.; Kabanni, A.; Nazeema, N. Millimeter wave propagation measurments in forest for 5G Wireless sensor communications. In Proceedings of theMediterranean Microwave Symposium, Abu Dhabi, UAE, 14–16 November 2017. [CrossRef] 60. Ndzi, D.L.; Harun, A.; Ramli, F.M.; Kamarudin, M.L.; Zakaria, A.; Shakaff, A.Y.M.; Jaafar, M.N.; Zhou, S.; Farook, R.S. Wireless sensor network coverage measurement and planning in mixed crop farming. Comput. Electron. Agric. 2014, 105, 83–94. [CrossRef] 61. Khairunnniza-Bejo, S.; Ramli, N.; Muharam, F.M. Wireless sensor network (WSN) applications in plantation canopy areas: A review. Asian J. Sci. Res. 2018, 11, 151–161. [CrossRef] 62. Zakaria, Y.; Ivanek, L. Propagation measurements and estimation of channel propagation models in urban environment. KSII Trans. Internet Inf. Syst. 2017, 11, 2453–2467. [CrossRef] 63. Oroza, C.A.; Zhang, Z.; Watteyne, T.; Glaser, S.D. A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 576–584. [CrossRef] 64. Rahim, H.M.; Leow, C.Y.; Rahman, T.A. Millimeter wave propagation through foliage: Comparison of models. In Proceedings of the IEEE 12th Malaysia International Conference on Communications (MICC), Kuching, Malaysia, 23–25 November 2015; pp. 236–240. [CrossRef] 65. Cuiñas, I.; Gay-Fernández, J.A. A proposal on spatial diversity in emergency communications within forest environments. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP), The Hague, The Netherlands, 6–11 April 2014; pp. 1295–1298. [CrossRef] 66. Balachander, D.; Rao, T.R.; Mahesh, G. RF propagation investigations in agricultural fields and gardens for wireless sensor communications. In Proceedings of the IEEE Conference on Information and Communication Technologies (ICT), Thuckalay, India, 11–12 April 2013; pp. 755–759. [CrossRef] 67. Rahman, N.Z.A.; Tan, K.G.; Omer, A.; Rahman, T.A.; Reza, A.W. Radio propagation studies at 5.8 GHZ for point-to-multipoint applications incorporating vegetation effect. Wirel. Pers. Commun. 2013, 72, 709–728. [CrossRef] 68. Mani, F.; Oestges, C. A ray based method to evaluate scattering by vegetation elements. IEEE Trans. Antennas Propag. 2012, 60, 4006–4009. [CrossRef] 69. Chee, K.L.; Torrico, S.A.; Kurner, T. Foliage attenuation over mixed terrains in rural areas for broadband wireless access at 3.5 GHz. IEEE Trans. Antennas Propag. 2011, 59, 2698–2706. [CrossRef] 70. Meng, Y.S.; Lee, Y.H. Investigations of foliage effect on modern wireless communication systems: A review. Prog. Electromagn. Res. 2010, 105, 313–332. [CrossRef] 71. Mestre, P.; Serôdio, C.; Morais, R.; Azevedo, J.; Melo-Pinto, P. Vegetation growth detection using wireless sensor networks. In Proceedings of the WCE 2010—World Congress on Engineering, London, UK, 30 June–2 July 2010; Volume 1, pp. 802–807. 72. Sabri, N.; Aljunid, S.A.; Ahmad, R.B.; Malek, M.F.A.; Kamaruddin, R.; Salim, M.S. Wireless sensor network wave propagation in vegetation: Review and simulation. In Proceedings of the LAPC—Loughborough Antennas and Propagation Conference, Loughborough, UK, 12–13 November 2012. [CrossRef] 73. Rahman, N.Z.A.; Tan, K.G.; Rahman, T.A.; Idris, I.F.M.; Hamzah, N.A.A. Modeling of Dynamic Effect of Vegetation for Fixed Wireless Access System. Wirel. Pers. Commun. 2017, 96, 1329–1354. [CrossRef] 74. Zolertia. Z1 Datasheet. 2017. Available online: http://github.com/Zolertia/Resources/wiki/RE-Mote (accessed on 21 March 2019). 75. Cama-Pinto, A.; Piñeres-Espitia, G.; Comas-González, Z.; Vélez-Zapata, J.; Gómez-Mula, F. Design of a monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its metropolitan area. Ingeniare 2017, 25, 585–598. 76. Cama-Pinto, A.; Piñeres-Espitia, G.; Zamora-Musa, R.; Acosta-Coll, M.; Caicedo-Ortiz, J.; Sepúlveda-Ojeda, J. Design of a wireless sensor network for monitoring of flash floods in the city of Barranquilla Colombia. Ingeniare 2016, 24, 581–599. 77. Zennaro, M.; Bagula, A.; Gascon, D.; Noveleta, A.B. Long distance wireless sensor networks: Simulation vs. reality. In Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, NSDR ’10, San Francisco, CA, USA, 15 June 2010. [CrossRef] 78. Montoya, F.G.; Gómez, J.; Cama, A.; Zapata-Sierra, A.; Martínez, F.; De La Cruz, J.L.; Manzano-Agugliaro, F.A. Monitoring system for intensive agriculture based on mesh networks and the android system. Comput. Electron. Agric. 2013, 99, 14–20. [CrossRef] 79. Cama-Pinto, A.; Gil-Montoya, F.; Gómez-López, J.; García-Cruz, A.; Manzano-Agugliaro, F. Wireless surveillance sytem for greenhouse crops. DYNA 2014, 81, 164–170. [CrossRef]CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2propagation modelwireless propagation modelprecision agricultureCOST235ITU-RFITU-RWeisbberger modelPath Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato GreenhouseArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALPath loss determination using linear and cubic regression inside a classic tomato greenhouse.pdfPath loss determination using linear and cubic regression inside a classic tomato greenhouse.pdfapplication/pdf4622392https://repositorio.cuc.edu.co/bitstreams/77799800-975f-4644-a420-0dc8442b4839/download12a67a3671b0a029a846a6a755bf50ccMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/cb3a32b5-1466-4e0f-b7b9-be6a6c1e74fe/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a40f92df-5e3c-4d5f-9799-cbe32ba3bf36/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILPath loss determination using linear and cubic regression inside a classic tomato greenhouse.pdf.jpgPath loss determination using linear and cubic regression inside a classic tomato greenhouse.pdf.jpgimage/jpeg69274https://repositorio.cuc.edu.co/bitstreams/37869761-821d-41fb-a0b7-2f77a14f8127/download2dd9f2129ed404056f944c70b9ce5b9cMD55TEXTPath loss determination using linear and cubic regression inside a classic tomato greenhouse.pdf.txtPath loss determination using linear and cubic regression inside a classic tomato greenhouse.pdf.txttext/plain63002https://repositorio.cuc.edu.co/bitstreams/695cf003-eb5b-4391-a188-60904e29d56b/download6e9555f1931b17f1309ffcac3a93daeeMD5611323/4940oai:repositorio.cuc.edu.co:11323/49402024-09-17 11:03:46.524http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |