Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?

Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, ph...

Full description

Autores:
Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Santos-Moriano, Paloma
Hormigo, Daniel
Fernández-Lucas, Jesús
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2996
Acceso en línea:
http://hdl.handle.net/11323/2996
https://repositorio.cuc.edu.co/
Palabra clave:
Marine enzymes
Chitin hydrolysis
Biotechnological applications
Enzymatic production
Enzyme immobilization
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id RCUC2_49d07a05ba1af54e859266a47226649b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2996
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
title Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
spellingShingle Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
Marine enzymes
Chitin hydrolysis
Biotechnological applications
Enzymatic production
Enzyme immobilization
title_short Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
title_full Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
title_fullStr Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
title_full_unstemmed Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
title_sort Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?
dc.creator.fl_str_mv Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Santos-Moriano, Paloma
Hormigo, Daniel
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Santos-Moriano, Paloma
Hormigo, Daniel
Fernández-Lucas, Jesús
dc.subject.eng.fl_str_mv Marine enzymes
Chitin hydrolysis
Biotechnological applications
Enzymatic production
Enzyme immobilization
topic Marine enzymes
Chitin hydrolysis
Biotechnological applications
Enzymatic production
Enzyme immobilization
description Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-10-01
dc.date.accessioned.none.fl_str_mv 2019-04-04T21:17:07Z
dc.date.available.none.fl_str_mv 2019-04-04T21:17:07Z
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1432-0614
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/2996
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1432-0614
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/2996
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://link.springer.com/article/10.1007%2Fs00253-018-9385-7
dc.relation.references.spa.fl_str_mv Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517. https://doi.org/10. 3390/md8051482 Abdel-Naby MA, El-Shayeb NMA, Sherief AA (1992) Purification and some properties of chitinase from Aspergillus carneus. Appl Biochem Biotechnol 37:141–154 Annamalai N, Giji S, Arumugam M, Balasubramanian T (2010) Purification and characterization of chitinase from Micrococcus sp. AG84 isolated from marine environment. Afr J Microbiol Res 4: 2822–2827 Annamalai N, Veeramuthu Rajeswari M, Vijayalakshmi S, Balasubramanian T (2011) Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity. Ann Microbiol 61:801–807. https://doi. org/10.1007/s13213-011-0198-5 Arai N, Shiomi K, Iwai Y, Omura S (2000a) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot (Tokyo) 53:609–614 Arai N, Shiomi K, Yamaguchi Y, Masuma R, Iwai Y, Turberg A, Kolbl H, Omura S (2000b) Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO-7314. Chem Pharm Bull (Tokyo) 48:1442– 1446 Aunpad R, Panbangred W (2003) Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1. J Biosci Bioeng 96:529–536. https://doi.org/10.1016/S1389-1723(04)70145-0 Bendt A, Huller H, Kammel U, Helmke E, Schweder T (2001) Cloning, expression, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain fi:7. Extremophiles 5:119–126 Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11: 131–152. https://doi.org/10.1016/j.bcab.2017.06.013 Cheba BA, Zaghloul TI, EL-Massry MH, EL-Mahdy AR (2017) Kinetics properties of marine chitinase from novel red sea strain of Bacillus. Procedia Eng 181:146–152. https://doi.org/10.1016/j.proeng.2017. 02.383 Chen AS, Taguchi T, Sakai K, Kikuchi K, Wang MW, Miwa I (2003) Antioxidant activities of chitobiose and chitotriose. Biol Pharm Bull 26:1326–1330 Chuang H-H, Lin F-P (2007) New role of C-terminal 30 amino acids on the insoluble chitin hydrolysis in actively engineered chitinase from Vibrio parahaemolyticus. Appl Microbiol Biotechnol 76:123–133. https://doi.org/10.1007/s00253-007-0990-0 Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277. https://doi.org/10.1016/ S0958-1669(98)80058-X Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. JSIR 36:20–31 El-Dein A, Hosny MS, El-Shayeb NA, Abood A, AM A-F (2010) A potent chitinolytic activity of marine Actinomycete sp. and enzymatic production of chitooligosaccharides. Aust J Basic Appl Sci 4: 615–623 Esaiassen M, Myrnes B, Olsen RL (1996) Isolation and substrate specificities of five chitinases from the hepatopancreas of northern shrimp, Pandalus borealis. Comp Biochem Physiol Part B Biochem Mol Biol 113:717–723. https://doi.org/10.1016/0305- 0491(95)02093-4 Farag AM, Abd-Elnabey HM, Ibrahim HAH, El-Shenawy M (2016) Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt J Aquat Res 42: 185–192. https://doi.org/10.1016/j.ejar.2016.04.004 Folmer F, Jaspars M, Dicato M, Diederich M (2009) Marine cytotoxins: callers for the various dances of death. Gastroenterology and Hepatology From Bed to Bench 2:34–50 Funke B, Spindler K-D (1989) Characterization of chitinase from the brine shrimp Artemia. Comp Biochem Physiol Part B Comp Biochem 94: 691–695. https://doi.org/10.1016/0305-0491(89)90151-X García-Fraga B, da Silva AF, López-Seijas J, Sieiro C (2015) A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity. Biochem Eng J 93:84–93. https://doi.org/10. 1016/j.bej.2014.09.014 Gohel V, Chaudhary T, Vyas P, Chhatpar HS (2005) Isolation and identification of marine chitinolytic bacteria and their potential in antifungal biocontrol. Indian J Exp Biol 42(7):715–720 Ghanem K, Al-Garni S, Al-Makishah N (2010) Statistical optimization of cultural conditions for chitinase production from fish scales waste by Aspergillus terreus. African J Biotechnol 9: Gutowska MA, Drazen JC, Robison BH (2004) Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comp Biochem Physiol Part A Mol Integr Physiol 139:351–358. https:// doi.org/10.1016/j.cbpb.2004.09.020 Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2014a) Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 158:325–334. https://doi.org/10.1016/j. foodchem.2014.02.115 Halder SK, Maity C, Jana A, Ghosh K, Das A, Paul T, Mohapatra PKD, Pati BR, Mondal KC (2014b) Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation. J Biosci Bioeng 117:170–177. https://doi.org/10.1016/j. jbiosc.2013.07.011 Hamed I, Ozogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50. https://doi.org/10. 1016/j.tifs.2015.11.007 Hamid R, Khan M, Ahmad M, Ahmad M, Abdin M, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29. https:// doi.org/10.4103/0975-7406.106559 Han Y, Yang B, Zhang F, Miao X, Li Z (2008) Characterization of antifungal chitinase from marine Streptomyces sp. da11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11:132. https://doi.org/10.1007/s10126-008-9126-5 Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543. https://doi.org/10.1007/s00253- 011-3723-3 Hayes M, Carney B, Slater J, Brück W (2008) Mining marine shellfish wastes for bioactive molecules: chitin and chitosan—part B: applications. Biotechnol J 3:878–889 Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(Pt 3):781–788 Hiraga K, Shou L, Kitazawa M, Takahashi S, Shimada M, Sato R, Oda K (1997) Isolation and characterization of chitinase from a flake-chitin degrading marine bacterium, Aeromonas hydrophila H-2330. Biosci Biotechnol Biochem 61:174–176. https://doi.org/10.1271/bbb.61. 174 Hirose T, Sunazuka T, Sugawara A, Endo A, Iguchi K, Yamamoto T, Ui H, Shiomi K, Watanabe T, Sharpless KB, Ōmura S ( 2009) Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. J Antibiot 62:277–282 Hirose T, Sunazuka T, Omura S (2010) Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proceedings of the Japan Academy, Ser B 86(2):85–102 Hoell IA, Vaaje-Kolstad G, Eijsink VGH (2010) Structure and function of enzymes acting on chitin and chitosan. Biotechnol Genet Eng Rev 27:331–366 Hosny AE MS, El-Shaye NA, Abood A, Abdel-Fattah AM (2010) A Potent Chitinolytic Activity of Marine Actinomycete sp. and Enzymatic Productionof Chitooligosaccharides. AJBAS 4(4):615– 623 Huang L, Shizume A, Nogawa M, Taguchi G, Shimosaka M (2012) Heterologous expression and functional characterization of a novel chitinase from the chitinolytic bacterium Chitiniphilus shinanonensis. Biosci Biotechnol Biochem 76:517–522. https:// doi.org/10.1271/bbb.110822 Izadpanah Qeshmi F, Homaei A, Fernandes P, Javadpour S (2018) Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 208:99–112. https://doi.org/10.1016/j.micres.2018. 01.011 Izumida H, Imamura N, Sano H (1996) A novel chitinase inhibitor from a marine bacterium, Pseudomonas sp. J Antibiot (Tokyo) 49:76–80 Jung W, Kuk JH, Kim KY, Kim TH (2005) Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J Microbiol Biotechnol 15(2):274–280 Kao P-M, Huang S-C, Chang Y-C, Liu Y-C (2007) Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1. Process Biochem 42:606–611. https://doi.org/10.1016/j.procbio.2006.11.009 Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M (1995) Styloguanidines, new chitinase inhibitors from the marine sponge Stylotella aurantium. Tetrahedron Lett 36:2133–2136. https://doi. org/10.1016/0040-4039(95)00194-H Kidibule PE, Santos-Moriano P, Jiménez-Ortega E, Ramírez-Escudero M, Limón MC, Remacha M, Plou FJ, Sanz-Aparicio J, FernándezLobato M (2018) Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Factories 17:47. https://doi.org/10.1186/s12934-018-0895-x Kittur FS, Kumar ABV, Gowda LR, Tharanathan RN (2003) Chitosanolysis by a pectinase isozyme of Aspergillus niger—a non-specific activity. Carbohydr Polym 53:191–196. https://doi. org/10.1016/S0144-8617(03)00042-0 Koga D (2005) Application of chitinase in agricultural. J Met Mater Miner 15:33–36 Kono M, Matsui T, Shimizu C, Koga D (1990) Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus. Agric Biol Chem 54:2145–2147. https://doi.org/10.1080/00021369. 1990.10870257 Krishnaveni B, Ragunathan R (2014) Chitinase production from marine wastes by Aspergillus terreus and its application in degradation studies. Int J Curr Microbiol Appl Sci 3:76–82 Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203. https://doi.org/10.1007/s10126- 005-0097-5 Li J, Du Y, Liang H (2007) Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polym Degrad Stab 92:515–524. https://doi.org/10.1016/j.polymdegradstab.2006. 04.028 Lin F-P, Chen H-C, Lin C-S (1999) Site-directed mutagenesis of Asp313, Glu315, and Asp391 residues in chitinase of Aeromonas caviae. IUBMB Life 48:199–204. https://doi.org/10.1080/ 152165499307224 Lin F-P, Chuang H-H, Liu Y-H, Hsieh C-Y, Lin P-W, Lin H-Y (2009a) Effects of C-terminal amino acids truncation on enzyme properties of Aeromonas caviae D1 chitinase. Arch Microbiol 191:265–273. https://doi.org/10.1007/s00203-008-0451-x Lin S-B, Lin Y-C, Chen H-H (2009b) Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity. Food Chem 116:47–53. https:// doi.org/10.1016/j.foodchem.2009.02.002 Loni PP, Patil JU, Phugare SS, Bajekal SS (2014) Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J Basic Microbiol 54:1080–1089. https://doi.org/10. 1002/jobm.201300533 Maly DJ, Choong IC, Ellman JA (2000) Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc Natl Acad Sci U S A 97:2419–2424 Mateos-Aparicio I, Mengibar M, Heras A (2016) Effect of chitooligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydr Polym 137:617–624. https://doi.org/ 10.1016/j.carbpol.2015.11.011 Matsumoto T, Inoue H, Sato Y, Kita Y, Nakano T, Noda N, Eguchi-Tsuda M, Moriwaki A, Kan OK, Matsumoto K (2009) Demethylallosamidin, a chitinase inhibitor, suppresses airway inflammation and hyperresponsiveness. Biochem Biophys Res Commun 390(1):103–108 Mavromatis K, Feller G, Kokkinidis M, Bouriotis V (2003) Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Eng 16:497–503 Meekrathok P, Suginta W (2016) Probing the catalytic mechanism of Vibrio harveyi GH20 β-N-acetylglucosaminidase by chemical rescue. PLoS One 11:e0149228. https://doi.org/10.1371/journal.pone. 0149228 O’Riordan A, McHale ML, Gallagher J, McHale AP (1989) Chitinase production following co-immobilization of Micromonospora chalcae with chitin in calcium alginate. Biotechnol Lett 11:735– 738. https://doi.org/10.1007/BF01044107 Ohishi K, Yamagishi M, Ohta T, Suzuki M, Izumida H, Sano H, Nishijima M, Miwa T (1996) Purification and properties of two chitinases from Vibrio alginolyticus H-8. J Ferment Bioeng 82: 598–600. https://doi.org/10.1016/S0922-338X(97)81260-3 Ohnuma T, Umemoto N, Nagata T, Shinya S, Numata T, Taira T, Fukamizo T (2014) Crystal structure of a Bloopless^ GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center. Biochim Biophys Acta-Proteins Proteomics 1844:793–802. https:// doi.org/10.1016/j.bbapap.2014.02.013 Okada Y, Yamaura K, Suzuki T, Itoh N, Osada M, Takahashi KG (2013) Molecular characterization and expression analysis of chitinase from the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 165:83–89. https://doi.org/10.1016/j.cbpb. 2013.03.008 Omura S, Arai N, Yamaguchi Y, Masuma R, Iwai Y, Namikoshi M, Turberg A, Kolbl H, Shiomi K (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. I. Taxonomy, fermentation, and biological activities. J Antibiot 53(6):603–608 Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H (2005) Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase a from a marine bacterium, Alteromonas sp. strain O-7. J Appl Microbiol 99:551–557. https://doi.org/10.1111/j. 1365-2672.2005.02630.x Pantaleone D, Yalpani M, Scollar M (1992) Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr Res 237:325–332. https://doi.org/10.1016/S0008-6215(92)84256-R Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164. https://doi.org/10. 3390/ijms11125152 Park S-H, Lee J-H (2000) Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J Microbiol 38(4): 224–229 Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483. https://doi.org/10. 1016/S0141-0229(00)00134-4 Paulsen SS, Andersen B, Gram L, Machado H (2016) Biological potential of chitinolytic marine bacteria. Mar Drugs 14:230 Peters G, Saborowski R, Mentlein R, Buchholz F (1998) Isoforms of an N-acetyl-β-d-glucosaminidase from the Antarctic krill, Euphausia superba: purification and antibody production. Comp Biochem Physiol Part B Biochem Mol Biol 120:743–751. https://doi.org/10. 1016/S0305-0491(98)10073-1 Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23: 149–173 Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292 Revathi M, Saravanan R, Shanmugam A (2012) Production and characterization of chitinase from Vibrio species, a head waste of shrimp Metapenaeus dobsonii (Miers, 1878) and chitin of Sepiella inermis Orbigny, 1848. Adv Biosci Biotechnol 3:392–397. https://doi.org/ 10.4236/abb.2012.34056 Rush CL, Schuttelkopf AW, Hurtado-Guerrero R, Blair DE, Ibrahim AFM, Desvergnes S, Eggleston IM, van Aalten DMF (2010) Natural product-guided discovery of a fungal chitinase inhibitor. Chem Biol 17:1275–1281. https://doi.org/10.1016/j.chembiol. 2010.07.018 Saborowski R, Buchholz F, Vetter R-AH, Wirth SJ, Wolf GA (1993) A soluble, dye-labelled chitin derivative adapted for the assay of krill chitinase. Comp Biochem Physiol Part B Comp Biochem 105:673– 678. https://doi.org/10.1016/0305-0491(93)90104-D Sakuda S, Isogai A, Matsumoto S, Suzuki A, Koseki K (1986) The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces Sp. Tetrahedron Lett 27:2475–2478. https://doi. org/10.1016/S0040-4039(00)84560-8 Salma U, Uddowla MH, Kim M, Kim JM, Kim BK, Baek H-J, Park H, Mykles DL, Kim H-W (2012) Five hepatopancreatic and one epidermal chitinases from a pandalid shrimp (Pandalopsis japonica): cloning and effects of eyestalk ablation on gene expression. Comp Biochem Physiol B Biochem Mol Biol 161:197–207. https://doi. org/10.1016/j.cbpb.2011.11.005 Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta FN, Ballesteros AO, Morales JC, Kidibule P, Fernandez-Lobato M, Plou FJ (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransformation 36:57– 67. https://doi.org/10.1080/10242422.2017.1295231 Santos-Moriano P, Woodley JM, Plou FJ (2016) Continuous production of chitooligosaccharides by an immobilized enzyme in a dualreactor system. J Mol Catal B Enzym 133:211–217. https://doi. org/10.1016/j.molcatb.2016.09.001 Seo DJ, Jang YH, Park RD, Jung WJ (2012) Immobilization of chitinases from Streptomyces griseus and Paenibacillus illinoisensis on chitosan beads. Carbohydr Polym 88:391–394. https://doi.org/10.1016/j. carbpol.2011.12.009 Sotelo-Mundo RR, Morán-Palacio EF, García-Orozco KD, FigueroaSoto C, Romo-Figueroa MG, Valenzuela-Soto EM, YepizPlascencia G (2009) Kinetic characterization, expression and molecular modeling of a chitinase from the pacific white shrimp Litopenaeus vannamei. J Food Biochem 33:246–259. https://doi. org/10.1111/j.1745-4514.2009.00215.x Sritho N, Suginta W (2012) Role of Tyr-435 of Vibrio harveyi chitinase a in chitin utilization. Appl Biochem Biotechnol 166:1192–1202. https://doi.org/10.1007/s12010-011-9504-8 Suginta W, Songsiriritthigul C, Kobdaj A, Opassiri R, Svasti J (2007) Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase a. Biochim Biophys Acta-Gen Subj 1770:1151–1160. https://doi.org/10.1016/j.bbagen.2007.03.012 Suginta W, Vongsuwan A, Songsiriritthigul C, Svasti J, Prinz H (2005) Enzymatic properties of wild-type and active site mutants of chitinase a from Vibrio carchariae, as revealed by HPLC-MS. FEBS J 272:3376–3386. https://doi.org/10.1111/j.1742-4658.2005. 04753.x Suresh PV, Chandrasekaran M (1999) Impact of process parameters on chitinase production by an alkalophilic marine Beauveria bassiana in solid state fermentation. Process Biochem 34:257–267. https:// doi.org/10.1016/S0032-9592(98)00092-2 Tabudravu JN, Eijsink VGH, Gooday GW, Jaspars M, Komander D, Legg M, Synstad B, van Aalten DMF (2002) Psammaplin a, a chitinase inhibitor isolated from the fijian marine sponge Aplysinella rhax. Bioorg Med Chem 10:1123–1128. https://doi. org/10.1016/S0968-0896(01)00372-8 Tews I, Terwisscha van Scheltinga AC, Perrakis A, Wilson KS, Dijkstra BW (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959. https://doi. org/10.1021/ja970674i Thadathil N, Velappan SP (2014) Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 150:392–399. https://doi.org/10.1016/j.foodchem.2013.10. 083 Tsujibo H, Orikoshi H, Imada C, Okami Y, Miyamoto K, Inamori Y (1993) Site-directed mutagenesis of chitinase from Alteromonas sp. strain O-7. Biosci Biotechnol Biochem 57:1396–1397. https:// doi.org/10.1271/bbb.57.1396 Tsujibo H, Yoshida Y, Miyamoto K, Imada C, Okami Y, Inamori Y (1992) Purification, properties, and partial amino acid sequence of chitinase from a marine Alteromonassp. strain O-7. Can J Microbiol 38:891–897 Vaidya R, Roy S, Macmil S, Gandhi S, Vyas P, Chhatpar HS (2003) Purification and characterization of chitinase from Alcaligenes xylosoxydans. Biotechnol Lett 25:715–717 Wang J, Zhang J, Song F, Gui T, Xiang J (2015) Purification and characterization of chitinases from ridgetail white prawn Exopalaemon carinicauda. Molecules 20:1955–1967. https://doi.org/10.3390/ molecules20021955 Wang X, Zhao Y, Tan H, Chi N, Zhang Q, Du Y, Yin H (2014) Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int J Biol Macromol 70:455–462. https://doi.org/10.1016/j.ijbiomac.2014.07.033 Watanabe T, Kono M, Aida K, Nagasawa H (1998) Purification and molecular cloning of a chitinase expressed in the hepatopancreas of the penaeid prawn Penaeus japonicus. Biochim Biophys ActaProtein Struct Mol Enzymol 1382:181–185. https://doi.org/10.1016/ S0167-4838(97)00184-2 Wu S-J, Pan S-K, Wang H-B, Wu J-H (2013) Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. Int J Biol Macromol 62:348–351. https://doi.org/10.1016/ j.ijbiomac.2013.09.042 Xia W-S, Lee D-X (2008) Purification and characterization of exo-β-dglucosaminidase from commercial lipase. Carbohydr Polym 74: 544–551. https://doi.org/10.1016/j.carbpol.2008.04.009 Xie X-L, Chen Q-X, Lin J-C, Wang Y (2004) Purification and some properties of β-N-acetyl-D-glucosaminidase from prawn (Penaeus vannamei). Mar Biol 146:143–148 Xu W, Huang HC, Lin CJ, Jiang ZF (2010) Chitooligosaccharides protect rat cortical neurons against copper induced damage by attenuating intracellular level of reactive oxygen species. Bioorg Med Chem Lett 20:3084–3088. https://doi.org/10.1016/j.bmcl.2010.03.105 Yang S, Fu X, Yan Q, Guo Y, Liu Z, Jiang Z (2016) Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem 192: 1041–1048. https://doi.org/10.1016/j.foodchem.2015.07.092 Yu P, Xu M (2012) Enhancing the enzymatic activity of the endochitinase by the directed evolution and its enzymatic property evaluation. Process Biochem 47:1089–1094. https://doi.org/10.1016/j.procbio. 2012.03.015 Zhou K, Zhou F, Huang J, Yang Q, Jiang S, Qiu L, Yang L, Zhu C, Jiang S (2017) Characterization and expression analysis of a chitinase gene (PmChi-4) from black tiger shrimp (Penaeus monodon) under pathogen infection and ambient ammonia nitrogen stress. Fish Shellfish Immunol 62:31–40. https://doi.org/10.1016/j.fsi.2017.01. 012 Zou E, Bonvillain R (2004) Chitinase activity in the epidermis of the fiddler crab, Uca pugilator, as an in vivo screen for moltinterfering xenobiotics. Comp Biochem Physiol Part C Toxicol Pharmacol 139:225–230. https://doi.org/10.1016/j.cca.2004.11.003
dc.rights.spa.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/2996/1/Marine%20chitinolytic%20enzymes%2c%20a%20biotechnological%20treasure%20hidden%20in%20the%20ocean.pdf
https://repositorio.cuc.edu.co/bitstream/11323/2996/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/2996/4/Marine%20chitinolytic%20enzymes%2c%20a%20biotechnological%20treasure%20hidden%20in%20the%20ocean.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/2996/5/Marine%20chitinolytic%20enzymes%2c%20a%20biotechnological%20treasure%20hidden%20in%20the%20ocean.pdf.txt
bitstream.checksum.fl_str_mv 38720a8e9187a2d4ba864ee86d2a073c
8a4605be74aa9ea9d79846c1fba20a33
04fabe7413c1f941ed50cd5f63101f5e
69459c77ea566186d789f0f0b0be4689
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400032813023232
spelling Beygmoradi, Azadeh88bf9331c43ef21c506c90f9cf82598bHomaei, Ahmade22462f0259b7325f7a2944a3905135eHemmati, Roohullahb0d8afb966a25fd7a62e2265ad817067Santos-Moriano, Paloma65735aa77a3afd439cd1ff7217b43818Hormigo, Daniele41112d7ee54b8a5c0ffbe9440e5ed9fFernández-Lucas, Jesús203a2ac57497988acae8aa40b528a49c2019-04-04T21:17:07Z2019-04-04T21:17:07Z2018-10-011432-0614http://hdl.handle.net/11323/2996Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.engUniversidad de la Costahttps://link.springer.com/article/10.1007%2Fs00253-018-9385-7Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517. https://doi.org/10. 3390/md8051482 Abdel-Naby MA, El-Shayeb NMA, Sherief AA (1992) Purification and some properties of chitinase from Aspergillus carneus. Appl Biochem Biotechnol 37:141–154 Annamalai N, Giji S, Arumugam M, Balasubramanian T (2010) Purification and characterization of chitinase from Micrococcus sp. AG84 isolated from marine environment. Afr J Microbiol Res 4: 2822–2827 Annamalai N, Veeramuthu Rajeswari M, Vijayalakshmi S, Balasubramanian T (2011) Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity. Ann Microbiol 61:801–807. https://doi. org/10.1007/s13213-011-0198-5 Arai N, Shiomi K, Iwai Y, Omura S (2000a) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot (Tokyo) 53:609–614 Arai N, Shiomi K, Yamaguchi Y, Masuma R, Iwai Y, Turberg A, Kolbl H, Omura S (2000b) Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO-7314. Chem Pharm Bull (Tokyo) 48:1442– 1446 Aunpad R, Panbangred W (2003) Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1. J Biosci Bioeng 96:529–536. https://doi.org/10.1016/S1389-1723(04)70145-0 Bendt A, Huller H, Kammel U, Helmke E, Schweder T (2001) Cloning, expression, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain fi:7. Extremophiles 5:119–126 Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11: 131–152. https://doi.org/10.1016/j.bcab.2017.06.013 Cheba BA, Zaghloul TI, EL-Massry MH, EL-Mahdy AR (2017) Kinetics properties of marine chitinase from novel red sea strain of Bacillus. Procedia Eng 181:146–152. https://doi.org/10.1016/j.proeng.2017. 02.383 Chen AS, Taguchi T, Sakai K, Kikuchi K, Wang MW, Miwa I (2003) Antioxidant activities of chitobiose and chitotriose. Biol Pharm Bull 26:1326–1330 Chuang H-H, Lin F-P (2007) New role of C-terminal 30 amino acids on the insoluble chitin hydrolysis in actively engineered chitinase from Vibrio parahaemolyticus. Appl Microbiol Biotechnol 76:123–133. https://doi.org/10.1007/s00253-007-0990-0 Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277. https://doi.org/10.1016/ S0958-1669(98)80058-X Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. JSIR 36:20–31 El-Dein A, Hosny MS, El-Shayeb NA, Abood A, AM A-F (2010) A potent chitinolytic activity of marine Actinomycete sp. and enzymatic production of chitooligosaccharides. Aust J Basic Appl Sci 4: 615–623 Esaiassen M, Myrnes B, Olsen RL (1996) Isolation and substrate specificities of five chitinases from the hepatopancreas of northern shrimp, Pandalus borealis. Comp Biochem Physiol Part B Biochem Mol Biol 113:717–723. https://doi.org/10.1016/0305- 0491(95)02093-4 Farag AM, Abd-Elnabey HM, Ibrahim HAH, El-Shenawy M (2016) Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt J Aquat Res 42: 185–192. https://doi.org/10.1016/j.ejar.2016.04.004 Folmer F, Jaspars M, Dicato M, Diederich M (2009) Marine cytotoxins: callers for the various dances of death. Gastroenterology and Hepatology From Bed to Bench 2:34–50 Funke B, Spindler K-D (1989) Characterization of chitinase from the brine shrimp Artemia. Comp Biochem Physiol Part B Comp Biochem 94: 691–695. https://doi.org/10.1016/0305-0491(89)90151-X García-Fraga B, da Silva AF, López-Seijas J, Sieiro C (2015) A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity. Biochem Eng J 93:84–93. https://doi.org/10. 1016/j.bej.2014.09.014 Gohel V, Chaudhary T, Vyas P, Chhatpar HS (2005) Isolation and identification of marine chitinolytic bacteria and their potential in antifungal biocontrol. Indian J Exp Biol 42(7):715–720 Ghanem K, Al-Garni S, Al-Makishah N (2010) Statistical optimization of cultural conditions for chitinase production from fish scales waste by Aspergillus terreus. African J Biotechnol 9: Gutowska MA, Drazen JC, Robison BH (2004) Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comp Biochem Physiol Part A Mol Integr Physiol 139:351–358. https:// doi.org/10.1016/j.cbpb.2004.09.020 Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2014a) Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 158:325–334. https://doi.org/10.1016/j. foodchem.2014.02.115 Halder SK, Maity C, Jana A, Ghosh K, Das A, Paul T, Mohapatra PKD, Pati BR, Mondal KC (2014b) Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation. J Biosci Bioeng 117:170–177. https://doi.org/10.1016/j. jbiosc.2013.07.011 Hamed I, Ozogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50. https://doi.org/10. 1016/j.tifs.2015.11.007 Hamid R, Khan M, Ahmad M, Ahmad M, Abdin M, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29. https:// doi.org/10.4103/0975-7406.106559 Han Y, Yang B, Zhang F, Miao X, Li Z (2008) Characterization of antifungal chitinase from marine Streptomyces sp. da11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11:132. https://doi.org/10.1007/s10126-008-9126-5 Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543. https://doi.org/10.1007/s00253- 011-3723-3 Hayes M, Carney B, Slater J, Brück W (2008) Mining marine shellfish wastes for bioactive molecules: chitin and chitosan—part B: applications. Biotechnol J 3:878–889 Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(Pt 3):781–788 Hiraga K, Shou L, Kitazawa M, Takahashi S, Shimada M, Sato R, Oda K (1997) Isolation and characterization of chitinase from a flake-chitin degrading marine bacterium, Aeromonas hydrophila H-2330. Biosci Biotechnol Biochem 61:174–176. https://doi.org/10.1271/bbb.61. 174 Hirose T, Sunazuka T, Sugawara A, Endo A, Iguchi K, Yamamoto T, Ui H, Shiomi K, Watanabe T, Sharpless KB, Ōmura S ( 2009) Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. J Antibiot 62:277–282 Hirose T, Sunazuka T, Omura S (2010) Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proceedings of the Japan Academy, Ser B 86(2):85–102 Hoell IA, Vaaje-Kolstad G, Eijsink VGH (2010) Structure and function of enzymes acting on chitin and chitosan. Biotechnol Genet Eng Rev 27:331–366 Hosny AE MS, El-Shaye NA, Abood A, Abdel-Fattah AM (2010) A Potent Chitinolytic Activity of Marine Actinomycete sp. and Enzymatic Productionof Chitooligosaccharides. AJBAS 4(4):615– 623 Huang L, Shizume A, Nogawa M, Taguchi G, Shimosaka M (2012) Heterologous expression and functional characterization of a novel chitinase from the chitinolytic bacterium Chitiniphilus shinanonensis. Biosci Biotechnol Biochem 76:517–522. https:// doi.org/10.1271/bbb.110822 Izadpanah Qeshmi F, Homaei A, Fernandes P, Javadpour S (2018) Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 208:99–112. https://doi.org/10.1016/j.micres.2018. 01.011 Izumida H, Imamura N, Sano H (1996) A novel chitinase inhibitor from a marine bacterium, Pseudomonas sp. J Antibiot (Tokyo) 49:76–80 Jung W, Kuk JH, Kim KY, Kim TH (2005) Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J Microbiol Biotechnol 15(2):274–280 Kao P-M, Huang S-C, Chang Y-C, Liu Y-C (2007) Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1. Process Biochem 42:606–611. https://doi.org/10.1016/j.procbio.2006.11.009 Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M (1995) Styloguanidines, new chitinase inhibitors from the marine sponge Stylotella aurantium. Tetrahedron Lett 36:2133–2136. https://doi. org/10.1016/0040-4039(95)00194-H Kidibule PE, Santos-Moriano P, Jiménez-Ortega E, Ramírez-Escudero M, Limón MC, Remacha M, Plou FJ, Sanz-Aparicio J, FernándezLobato M (2018) Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Factories 17:47. https://doi.org/10.1186/s12934-018-0895-x Kittur FS, Kumar ABV, Gowda LR, Tharanathan RN (2003) Chitosanolysis by a pectinase isozyme of Aspergillus niger—a non-specific activity. Carbohydr Polym 53:191–196. https://doi. org/10.1016/S0144-8617(03)00042-0 Koga D (2005) Application of chitinase in agricultural. J Met Mater Miner 15:33–36 Kono M, Matsui T, Shimizu C, Koga D (1990) Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus. Agric Biol Chem 54:2145–2147. https://doi.org/10.1080/00021369. 1990.10870257 Krishnaveni B, Ragunathan R (2014) Chitinase production from marine wastes by Aspergillus terreus and its application in degradation studies. Int J Curr Microbiol Appl Sci 3:76–82 Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203. https://doi.org/10.1007/s10126- 005-0097-5 Li J, Du Y, Liang H (2007) Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polym Degrad Stab 92:515–524. https://doi.org/10.1016/j.polymdegradstab.2006. 04.028 Lin F-P, Chen H-C, Lin C-S (1999) Site-directed mutagenesis of Asp313, Glu315, and Asp391 residues in chitinase of Aeromonas caviae. IUBMB Life 48:199–204. https://doi.org/10.1080/ 152165499307224 Lin F-P, Chuang H-H, Liu Y-H, Hsieh C-Y, Lin P-W, Lin H-Y (2009a) Effects of C-terminal amino acids truncation on enzyme properties of Aeromonas caviae D1 chitinase. Arch Microbiol 191:265–273. https://doi.org/10.1007/s00203-008-0451-x Lin S-B, Lin Y-C, Chen H-H (2009b) Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity. Food Chem 116:47–53. https:// doi.org/10.1016/j.foodchem.2009.02.002 Loni PP, Patil JU, Phugare SS, Bajekal SS (2014) Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J Basic Microbiol 54:1080–1089. https://doi.org/10. 1002/jobm.201300533 Maly DJ, Choong IC, Ellman JA (2000) Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc Natl Acad Sci U S A 97:2419–2424 Mateos-Aparicio I, Mengibar M, Heras A (2016) Effect of chitooligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydr Polym 137:617–624. https://doi.org/ 10.1016/j.carbpol.2015.11.011 Matsumoto T, Inoue H, Sato Y, Kita Y, Nakano T, Noda N, Eguchi-Tsuda M, Moriwaki A, Kan OK, Matsumoto K (2009) Demethylallosamidin, a chitinase inhibitor, suppresses airway inflammation and hyperresponsiveness. Biochem Biophys Res Commun 390(1):103–108 Mavromatis K, Feller G, Kokkinidis M, Bouriotis V (2003) Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Eng 16:497–503 Meekrathok P, Suginta W (2016) Probing the catalytic mechanism of Vibrio harveyi GH20 β-N-acetylglucosaminidase by chemical rescue. PLoS One 11:e0149228. https://doi.org/10.1371/journal.pone. 0149228 O’Riordan A, McHale ML, Gallagher J, McHale AP (1989) Chitinase production following co-immobilization of Micromonospora chalcae with chitin in calcium alginate. Biotechnol Lett 11:735– 738. https://doi.org/10.1007/BF01044107 Ohishi K, Yamagishi M, Ohta T, Suzuki M, Izumida H, Sano H, Nishijima M, Miwa T (1996) Purification and properties of two chitinases from Vibrio alginolyticus H-8. J Ferment Bioeng 82: 598–600. https://doi.org/10.1016/S0922-338X(97)81260-3 Ohnuma T, Umemoto N, Nagata T, Shinya S, Numata T, Taira T, Fukamizo T (2014) Crystal structure of a Bloopless^ GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center. Biochim Biophys Acta-Proteins Proteomics 1844:793–802. https:// doi.org/10.1016/j.bbapap.2014.02.013 Okada Y, Yamaura K, Suzuki T, Itoh N, Osada M, Takahashi KG (2013) Molecular characterization and expression analysis of chitinase from the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 165:83–89. https://doi.org/10.1016/j.cbpb. 2013.03.008 Omura S, Arai N, Yamaguchi Y, Masuma R, Iwai Y, Namikoshi M, Turberg A, Kolbl H, Shiomi K (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. I. Taxonomy, fermentation, and biological activities. J Antibiot 53(6):603–608 Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H (2005) Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase a from a marine bacterium, Alteromonas sp. strain O-7. J Appl Microbiol 99:551–557. https://doi.org/10.1111/j. 1365-2672.2005.02630.x Pantaleone D, Yalpani M, Scollar M (1992) Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr Res 237:325–332. https://doi.org/10.1016/S0008-6215(92)84256-R Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164. https://doi.org/10. 3390/ijms11125152 Park S-H, Lee J-H (2000) Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J Microbiol 38(4): 224–229 Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483. https://doi.org/10. 1016/S0141-0229(00)00134-4 Paulsen SS, Andersen B, Gram L, Machado H (2016) Biological potential of chitinolytic marine bacteria. Mar Drugs 14:230 Peters G, Saborowski R, Mentlein R, Buchholz F (1998) Isoforms of an N-acetyl-β-d-glucosaminidase from the Antarctic krill, Euphausia superba: purification and antibody production. Comp Biochem Physiol Part B Biochem Mol Biol 120:743–751. https://doi.org/10. 1016/S0305-0491(98)10073-1 Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23: 149–173 Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292 Revathi M, Saravanan R, Shanmugam A (2012) Production and characterization of chitinase from Vibrio species, a head waste of shrimp Metapenaeus dobsonii (Miers, 1878) and chitin of Sepiella inermis Orbigny, 1848. Adv Biosci Biotechnol 3:392–397. https://doi.org/ 10.4236/abb.2012.34056 Rush CL, Schuttelkopf AW, Hurtado-Guerrero R, Blair DE, Ibrahim AFM, Desvergnes S, Eggleston IM, van Aalten DMF (2010) Natural product-guided discovery of a fungal chitinase inhibitor. Chem Biol 17:1275–1281. https://doi.org/10.1016/j.chembiol. 2010.07.018 Saborowski R, Buchholz F, Vetter R-AH, Wirth SJ, Wolf GA (1993) A soluble, dye-labelled chitin derivative adapted for the assay of krill chitinase. Comp Biochem Physiol Part B Comp Biochem 105:673– 678. https://doi.org/10.1016/0305-0491(93)90104-D Sakuda S, Isogai A, Matsumoto S, Suzuki A, Koseki K (1986) The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces Sp. Tetrahedron Lett 27:2475–2478. https://doi. org/10.1016/S0040-4039(00)84560-8 Salma U, Uddowla MH, Kim M, Kim JM, Kim BK, Baek H-J, Park H, Mykles DL, Kim H-W (2012) Five hepatopancreatic and one epidermal chitinases from a pandalid shrimp (Pandalopsis japonica): cloning and effects of eyestalk ablation on gene expression. Comp Biochem Physiol B Biochem Mol Biol 161:197–207. https://doi. org/10.1016/j.cbpb.2011.11.005 Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta FN, Ballesteros AO, Morales JC, Kidibule P, Fernandez-Lobato M, Plou FJ (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransformation 36:57– 67. https://doi.org/10.1080/10242422.2017.1295231 Santos-Moriano P, Woodley JM, Plou FJ (2016) Continuous production of chitooligosaccharides by an immobilized enzyme in a dualreactor system. J Mol Catal B Enzym 133:211–217. https://doi. org/10.1016/j.molcatb.2016.09.001 Seo DJ, Jang YH, Park RD, Jung WJ (2012) Immobilization of chitinases from Streptomyces griseus and Paenibacillus illinoisensis on chitosan beads. Carbohydr Polym 88:391–394. https://doi.org/10.1016/j. carbpol.2011.12.009 Sotelo-Mundo RR, Morán-Palacio EF, García-Orozco KD, FigueroaSoto C, Romo-Figueroa MG, Valenzuela-Soto EM, YepizPlascencia G (2009) Kinetic characterization, expression and molecular modeling of a chitinase from the pacific white shrimp Litopenaeus vannamei. J Food Biochem 33:246–259. https://doi. org/10.1111/j.1745-4514.2009.00215.x Sritho N, Suginta W (2012) Role of Tyr-435 of Vibrio harveyi chitinase a in chitin utilization. Appl Biochem Biotechnol 166:1192–1202. https://doi.org/10.1007/s12010-011-9504-8 Suginta W, Songsiriritthigul C, Kobdaj A, Opassiri R, Svasti J (2007) Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase a. Biochim Biophys Acta-Gen Subj 1770:1151–1160. https://doi.org/10.1016/j.bbagen.2007.03.012 Suginta W, Vongsuwan A, Songsiriritthigul C, Svasti J, Prinz H (2005) Enzymatic properties of wild-type and active site mutants of chitinase a from Vibrio carchariae, as revealed by HPLC-MS. FEBS J 272:3376–3386. https://doi.org/10.1111/j.1742-4658.2005. 04753.x Suresh PV, Chandrasekaran M (1999) Impact of process parameters on chitinase production by an alkalophilic marine Beauveria bassiana in solid state fermentation. Process Biochem 34:257–267. https:// doi.org/10.1016/S0032-9592(98)00092-2 Tabudravu JN, Eijsink VGH, Gooday GW, Jaspars M, Komander D, Legg M, Synstad B, van Aalten DMF (2002) Psammaplin a, a chitinase inhibitor isolated from the fijian marine sponge Aplysinella rhax. Bioorg Med Chem 10:1123–1128. https://doi. org/10.1016/S0968-0896(01)00372-8 Tews I, Terwisscha van Scheltinga AC, Perrakis A, Wilson KS, Dijkstra BW (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959. https://doi. org/10.1021/ja970674i Thadathil N, Velappan SP (2014) Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 150:392–399. https://doi.org/10.1016/j.foodchem.2013.10. 083 Tsujibo H, Orikoshi H, Imada C, Okami Y, Miyamoto K, Inamori Y (1993) Site-directed mutagenesis of chitinase from Alteromonas sp. strain O-7. Biosci Biotechnol Biochem 57:1396–1397. https:// doi.org/10.1271/bbb.57.1396 Tsujibo H, Yoshida Y, Miyamoto K, Imada C, Okami Y, Inamori Y (1992) Purification, properties, and partial amino acid sequence of chitinase from a marine Alteromonassp. strain O-7. Can J Microbiol 38:891–897 Vaidya R, Roy S, Macmil S, Gandhi S, Vyas P, Chhatpar HS (2003) Purification and characterization of chitinase from Alcaligenes xylosoxydans. Biotechnol Lett 25:715–717 Wang J, Zhang J, Song F, Gui T, Xiang J (2015) Purification and characterization of chitinases from ridgetail white prawn Exopalaemon carinicauda. Molecules 20:1955–1967. https://doi.org/10.3390/ molecules20021955 Wang X, Zhao Y, Tan H, Chi N, Zhang Q, Du Y, Yin H (2014) Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int J Biol Macromol 70:455–462. https://doi.org/10.1016/j.ijbiomac.2014.07.033 Watanabe T, Kono M, Aida K, Nagasawa H (1998) Purification and molecular cloning of a chitinase expressed in the hepatopancreas of the penaeid prawn Penaeus japonicus. Biochim Biophys ActaProtein Struct Mol Enzymol 1382:181–185. https://doi.org/10.1016/ S0167-4838(97)00184-2 Wu S-J, Pan S-K, Wang H-B, Wu J-H (2013) Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. Int J Biol Macromol 62:348–351. https://doi.org/10.1016/ j.ijbiomac.2013.09.042 Xia W-S, Lee D-X (2008) Purification and characterization of exo-β-dglucosaminidase from commercial lipase. Carbohydr Polym 74: 544–551. https://doi.org/10.1016/j.carbpol.2008.04.009 Xie X-L, Chen Q-X, Lin J-C, Wang Y (2004) Purification and some properties of β-N-acetyl-D-glucosaminidase from prawn (Penaeus vannamei). Mar Biol 146:143–148 Xu W, Huang HC, Lin CJ, Jiang ZF (2010) Chitooligosaccharides protect rat cortical neurons against copper induced damage by attenuating intracellular level of reactive oxygen species. Bioorg Med Chem Lett 20:3084–3088. https://doi.org/10.1016/j.bmcl.2010.03.105 Yang S, Fu X, Yan Q, Guo Y, Liu Z, Jiang Z (2016) Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem 192: 1041–1048. https://doi.org/10.1016/j.foodchem.2015.07.092 Yu P, Xu M (2012) Enhancing the enzymatic activity of the endochitinase by the directed evolution and its enzymatic property evaluation. Process Biochem 47:1089–1094. https://doi.org/10.1016/j.procbio. 2012.03.015 Zhou K, Zhou F, Huang J, Yang Q, Jiang S, Qiu L, Yang L, Zhu C, Jiang S (2017) Characterization and expression analysis of a chitinase gene (PmChi-4) from black tiger shrimp (Penaeus monodon) under pathogen infection and ambient ammonia nitrogen stress. Fish Shellfish Immunol 62:31–40. https://doi.org/10.1016/j.fsi.2017.01. 012 Zou E, Bonvillain R (2004) Chitinase activity in the epidermis of the fiddler crab, Uca pugilator, as an in vivo screen for moltinterfering xenobiotics. Comp Biochem Physiol Part C Toxicol Pharmacol 139:225–230. https://doi.org/10.1016/j.cca.2004.11.003Atribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Marine enzymesChitin hydrolysisBiotechnological applicationsEnzymatic productionEnzyme immobilizationMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean?Pre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionORIGINALMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean.pdfMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean.pdfapplication/pdf175230https://repositorio.cuc.edu.co/bitstream/11323/2996/1/Marine%20chitinolytic%20enzymes%2c%20a%20biotechnological%20treasure%20hidden%20in%20the%20ocean.pdf38720a8e9187a2d4ba864ee86d2a073cMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/2996/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean.pdf.jpgMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean.pdf.jpgimage/jpeg34615https://repositorio.cuc.edu.co/bitstream/11323/2996/4/Marine%20chitinolytic%20enzymes%2c%20a%20biotechnological%20treasure%20hidden%20in%20the%20ocean.pdf.jpg04fabe7413c1f941ed50cd5f63101f5eMD54open accessTEXTMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean.pdf.txtMarine chitinolytic enzymes, a biotechnological treasure hidden in the ocean.pdf.txttext/plain1159https://repositorio.cuc.edu.co/bitstream/11323/2996/5/Marine%20chitinolytic%20enzymes%2c%20a%20biotechnological%20treasure%20hidden%20in%20the%20ocean.pdf.txt69459c77ea566186d789f0f0b0be4689MD55open access11323/2996oai:repositorio.cuc.edu.co:11323/29962023-12-14 11:45:20.012open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=