An intelligent approach for the design and development of a personalized system of knowledge representation

This article proposes a generic presentation system for hypermedia systems of adaptive teaching that is highly independent from the representation of domain knowledge and the application state maintenance. Generality is achieved by providing an application framework for the definition of ontologies...

Full description

Autores:
Amelec, Viloria
Pineda Lezama, Omar Bonerge
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4829
Acceso en línea:
https://hdl.handle.net/11323/4829
https://repositorio.cuc.edu.co/
Palabra clave:
Adaptive hypermedia
Ontologies
Knowledge representation
User modeling
Interface design tools
Teaching on the web
Algorithm for advanced cluster vector page ranking
Hipermedia adaptativa
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id RCUC2_491f8d6d13fbbd1eac5ba04ea1679366
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4829
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv An intelligent approach for the design and development of a personalized system of knowledge representation
dc.title.translated.spa.fl_str_mv Un enfoque inteligente para el diseño y desarrollo de un sistema personalizado de representación del conocimiento.
title An intelligent approach for the design and development of a personalized system of knowledge representation
spellingShingle An intelligent approach for the design and development of a personalized system of knowledge representation
Adaptive hypermedia
Ontologies
Knowledge representation
User modeling
Interface design tools
Teaching on the web
Algorithm for advanced cluster vector page ranking
Hipermedia adaptativa
title_short An intelligent approach for the design and development of a personalized system of knowledge representation
title_full An intelligent approach for the design and development of a personalized system of knowledge representation
title_fullStr An intelligent approach for the design and development of a personalized system of knowledge representation
title_full_unstemmed An intelligent approach for the design and development of a personalized system of knowledge representation
title_sort An intelligent approach for the design and development of a personalized system of knowledge representation
dc.creator.fl_str_mv Amelec, Viloria
Pineda Lezama, Omar Bonerge
dc.contributor.author.spa.fl_str_mv Amelec, Viloria
Pineda Lezama, Omar Bonerge
dc.subject.spa.fl_str_mv Adaptive hypermedia
Ontologies
Knowledge representation
User modeling
Interface design tools
Teaching on the web
Algorithm for advanced cluster vector page ranking
Hipermedia adaptativa
topic Adaptive hypermedia
Ontologies
Knowledge representation
User modeling
Interface design tools
Teaching on the web
Algorithm for advanced cluster vector page ranking
Hipermedia adaptativa
description This article proposes a generic presentation system for hypermedia systems of adaptive teaching that is highly independent from the representation of domain knowledge and the application state maintenance. Generality is achieved by providing an application framework for the definition of ontologies that best fit a domain or a specific author. The presentation of the pages to be generated is described in terms of classes and relationships of the ontology. For this purpose, a web page ranking algorithm based on automatic learning is used, specifically, the algorithm for Advanced Cluster Vector Page Ranking (ACVPR). This algorithm provides the user a powerful meta-search tool that presents a ranking order of the web page to quickly meet custom needs, especially when the search is erroneous or incomplete.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-10T13:05:08Z
dc.date.available.none.fl_str_mv 2019-06-10T13:05:08Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 00002010
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4829
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 00002010
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4829
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1016/j.procs.2019.04.176
dc.relation.references.spa.fl_str_mv [1] Alam, M. and Sadaf, K., 2015. Labeling of Web Search Result Clusters using Heuristic Search and Frequent Itemset. Procedia Computer Science, Elsevier,216-222. [2] Chen, C. P., & Zhang, C. Y., 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, Elsevier, 275, 314-347 [3] Zhu, H., Ou, C. X., Van den Heuvel, W. J. A. M., & Liu, H.,2017. Privacy calculus and its utility for personalization services in e- commerce: An analysis of consumer decision-making. Information & Management, Elsevier, 54(4), 427-437. [4] Ferretti, S., Mirri, S., Prandi, C., & Salomoni, P., 2016. Automatic web content personalization through reinforcement learning. Journal of Systems and Software, Elsevier, 121, 157-169. [5] Malhotra, D., & Rishi, O. P.,, 2018. An intelligent approach to design of E-Commerce metasearch and ranking system using next- generation big data analytics. Journal of King Saud University-Computer and Information Sciences, Elsevier [6] Malthankar, S. V., & Kolte, S., 2016. Client Side Privacy Protection Using Personalized Web Search. Procedia Computer Science, Elsevier, 79, 1029-1035. [7] Zhang, G., Li, C. and Xing, C., 2012. A Semantic++ Social Search Engine Framework in the Cloud. In Semantics, Knowledge and Grids (SKG), 2012 Eighth International Conference, IEEE, 270-278 [8] Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., & Li, H., 2010. Context-aware ranking in web search. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, ACM, 451-458. [9] Malhotra, D. and Rishi, O.P., 2016. IMSS-E: An Intelligent Approach to Design of Adaptive Meta Search System for E-Commerce Website Ranking. Proceedings of the International Conference on Advances in Information Communication Technology & Computing, ACM, doi>10.1145/2979779.2979782. [10] Malhotra, D. and Rishi, O.P., 2017. IMSS: A Novel Approach to Design of Adaptive Search System Using Second Generation Big data Analytics. Proceedings of International Conference on Communication and Networks, Springer, 189-196. [11] Malhotra, D., Malhotra, M. and Rishi, O.P., 2017.An Innovative Approach of Web Page Ranking Using Hadoop- and Map Reduce- Based Cloud Framework. Proceedings of Advances in Intelligent Systems and Computing, Vol.654, CSI, Springer, 421-427. [12] Zhou, D., Zhao, W., Wu, X., Lawless, S., & Liu, J., 2018. An iterative method for personalized results adaptation in cross-language search. Information Sciences, Elsevier, 430, 200-215. [13] Liu, Y., Bi, J.W. and Fan, Z.P., 2017. Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory. Information Fusion, 36, 149-161. [14] Yang, Y. F., Hwang, S. L., & Schenkman, B.,2012. An improved Web search engine for visually impaired users. Universal Access in the Information Society, 11(2), 113-124. [15] Torres-Samuel M., Vásquez C.L., Viloria A., Varela N., Hernández-Fernandez L., Portillo-Medina R. Analysis of Patterns in the University World Rankings Webometrics, Shanghai, QS and SIR-SCimago: Case Latin America. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. 2018 [16] Ahmad, M. W., Doja, M. N., & Ahmad, T., 2017. Enumerative feature subset based ranking system for learning to rank in presence of implicit user feedback. Journal of King Saud University-Computer and Information Sciences. Elsevier [17] Kamatkar S.J., Tayade A., Viloria A., Hernández-Chacín A. (2018) Application of Classification Technique of Data Mining for Employee Management System. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [18] Bouadjenek, M. R., Hacid, H., Bouzeghoub, M., & Vakali, A., 2016. Persador: personalized social document representation for improving web search. Information Sciences, Elsevier, 369, 614-633. [19] Aoki, Y., Koshijima, R. and Toyama, M., 2015. Automatic Determination of Hyperlink Destination in Web Index. In Proceedings of the 19th International Database Engineering & Applications Symposium, ACM, 206-207. [20] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [21] Adamopoulos, P., 2014. On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems. Proceedings of the 7th ACM international conference on Web search and data mining, ACM, 655- 660. [22] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/83a1beca-e984-4223-a635-4826fa159a82/download
https://repositorio.cuc.edu.co/bitstreams/38ef963a-698e-42a7-87ec-550d501d9ecb/download
https://repositorio.cuc.edu.co/bitstreams/ba92d6aa-9080-4d21-9188-172b69cdb459/download
https://repositorio.cuc.edu.co/bitstreams/62882481-f979-4cf0-bef2-42a73b218ddd/download
https://repositorio.cuc.edu.co/bitstreams/6bd40f47-63c6-41bd-90bb-60677df1c978/download
bitstream.checksum.fl_str_mv 1a4b84d4e85fffc1b141941bfaf74dbd
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
bdb7e370b88328af7a7f9e30448ac502
e452e3a184a5a6a0e52371d6f036784b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760694369976320
spelling Amelec, ViloriaPineda Lezama, Omar Bonerge2019-06-10T13:05:08Z2019-06-10T13:05:08Z201900002010https://hdl.handle.net/11323/4829Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article proposes a generic presentation system for hypermedia systems of adaptive teaching that is highly independent from the representation of domain knowledge and the application state maintenance. Generality is achieved by providing an application framework for the definition of ontologies that best fit a domain or a specific author. The presentation of the pages to be generated is described in terms of classes and relationships of the ontology. For this purpose, a web page ranking algorithm based on automatic learning is used, specifically, the algorithm for Advanced Cluster Vector Page Ranking (ACVPR). This algorithm provides the user a powerful meta-search tool that presents a ranking order of the web page to quickly meet custom needs, especially when the search is erroneous or incomplete.Amelec, Viloria-orcid-0000-0003-2673-6350-0Pineda Lezama, Omar Bonerge-365a03a0-145e-4df5-9abe-f5ccf9d96612-0engProcedia Computer Science10.1016/j.procs.2019.04.176[1] Alam, M. and Sadaf, K., 2015. Labeling of Web Search Result Clusters using Heuristic Search and Frequent Itemset. Procedia Computer Science, Elsevier,216-222. [2] Chen, C. P., & Zhang, C. Y., 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, Elsevier, 275, 314-347 [3] Zhu, H., Ou, C. X., Van den Heuvel, W. J. A. M., & Liu, H.,2017. Privacy calculus and its utility for personalization services in e- commerce: An analysis of consumer decision-making. Information & Management, Elsevier, 54(4), 427-437. [4] Ferretti, S., Mirri, S., Prandi, C., & Salomoni, P., 2016. Automatic web content personalization through reinforcement learning. Journal of Systems and Software, Elsevier, 121, 157-169. [5] Malhotra, D., & Rishi, O. P.,, 2018. An intelligent approach to design of E-Commerce metasearch and ranking system using next- generation big data analytics. Journal of King Saud University-Computer and Information Sciences, Elsevier [6] Malthankar, S. V., & Kolte, S., 2016. Client Side Privacy Protection Using Personalized Web Search. Procedia Computer Science, Elsevier, 79, 1029-1035. [7] Zhang, G., Li, C. and Xing, C., 2012. A Semantic++ Social Search Engine Framework in the Cloud. In Semantics, Knowledge and Grids (SKG), 2012 Eighth International Conference, IEEE, 270-278 [8] Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., & Li, H., 2010. Context-aware ranking in web search. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, ACM, 451-458. [9] Malhotra, D. and Rishi, O.P., 2016. IMSS-E: An Intelligent Approach to Design of Adaptive Meta Search System for E-Commerce Website Ranking. Proceedings of the International Conference on Advances in Information Communication Technology & Computing, ACM, doi>10.1145/2979779.2979782. [10] Malhotra, D. and Rishi, O.P., 2017. IMSS: A Novel Approach to Design of Adaptive Search System Using Second Generation Big data Analytics. Proceedings of International Conference on Communication and Networks, Springer, 189-196. [11] Malhotra, D., Malhotra, M. and Rishi, O.P., 2017.An Innovative Approach of Web Page Ranking Using Hadoop- and Map Reduce- Based Cloud Framework. Proceedings of Advances in Intelligent Systems and Computing, Vol.654, CSI, Springer, 421-427. [12] Zhou, D., Zhao, W., Wu, X., Lawless, S., & Liu, J., 2018. An iterative method for personalized results adaptation in cross-language search. Information Sciences, Elsevier, 430, 200-215. [13] Liu, Y., Bi, J.W. and Fan, Z.P., 2017. Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory. Information Fusion, 36, 149-161. [14] Yang, Y. F., Hwang, S. L., & Schenkman, B.,2012. An improved Web search engine for visually impaired users. Universal Access in the Information Society, 11(2), 113-124. [15] Torres-Samuel M., Vásquez C.L., Viloria A., Varela N., Hernández-Fernandez L., Portillo-Medina R. Analysis of Patterns in the University World Rankings Webometrics, Shanghai, QS and SIR-SCimago: Case Latin America. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. 2018 [16] Ahmad, M. W., Doja, M. N., & Ahmad, T., 2017. Enumerative feature subset based ranking system for learning to rank in presence of implicit user feedback. Journal of King Saud University-Computer and Information Sciences. Elsevier [17] Kamatkar S.J., Tayade A., Viloria A., Hernández-Chacín A. (2018) Application of Classification Technique of Data Mining for Employee Management System. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [18] Bouadjenek, M. R., Hacid, H., Bouzeghoub, M., & Vakali, A., 2016. Persador: personalized social document representation for improving web search. Information Sciences, Elsevier, 369, 614-633. [19] Aoki, Y., Koshijima, R. and Toyama, M., 2015. Automatic Determination of Hyperlink Destination in Web Index. In Proceedings of the 19th International Database Engineering & Applications Symposium, ACM, 206-207. [20] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [21] Adamopoulos, P., 2014. On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems. Proceedings of the 7th ACM international conference on Web search and data mining, ACM, 655- 660. [22] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Chamhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Adaptive hypermediaOntologiesKnowledge representationUser modelingInterface design toolsTeaching on the webAlgorithm for advanced cluster vector page rankingHipermedia adaptativaAn intelligent approach for the design and development of a personalized system of knowledge representationUn enfoque inteligente para el diseño y desarrollo de un sistema personalizado de representación del conocimiento.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALAn intelligent approach for the design and development of a personalized system of knowledge representation.pdfAn intelligent approach for the design and development of a personalized system of knowledge representation.pdfapplication/pdf980942https://repositorio.cuc.edu.co/bitstreams/83a1beca-e984-4223-a635-4826fa159a82/download1a4b84d4e85fffc1b141941bfaf74dbdMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/38ef963a-698e-42a7-87ec-550d501d9ecb/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ba92d6aa-9080-4d21-9188-172b69cdb459/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAn intelligent approach for the design and development of a personalized system of knowledge representation.pdf.jpgAn intelligent approach for the design and development of a personalized system of knowledge representation.pdf.jpgimage/jpeg46977https://repositorio.cuc.edu.co/bitstreams/62882481-f979-4cf0-bef2-42a73b218ddd/downloadbdb7e370b88328af7a7f9e30448ac502MD55TEXTAn intelligent approach for the design and development of a personalized system of knowledge representation.pdf.txtAn intelligent approach for the design and development of a personalized system of knowledge representation.pdf.txttext/plain21594https://repositorio.cuc.edu.co/bitstreams/6bd40f47-63c6-41bd-90bb-60677df1c978/downloade452e3a184a5a6a0e52371d6f036784bMD5611323/4829oai:repositorio.cuc.edu.co:11323/48292024-09-17 10:14:59.985http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=