Criticality and the fractal structure of −5/3 turbulent cascades
Here we show a procedure to generate an analytical structure producing a cascade that scales as the energy spectrum in isotropic homogeneous turbulence. We obtain a function that unveils a non-self-similar fractal at the origin of the cascade. It reveals that the backbone underlying cascades is form...
- Autores:
-
Cabrera, Juan Luis
Gutiérrez, Esther
Rodríguez Márquez, Miguel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8361
- Acceso en línea:
- https://hdl.handle.net/11323/8361
https://doi.org/10.1016/j.chaos.2021.110876
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cascade
Criticality
Fractals
Navier-stokes equation
Nonlinear
Stochastic
Turbulence
Maps
Complex
Cascada
Criticidad
Fractales
Ecuación de navier-stokes
No lineal
Estocástico
Turbulencia
Mapas
Complejo
- Rights
- embargoedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
Summary: | Here we show a procedure to generate an analytical structure producing a cascade that scales as the energy spectrum in isotropic homogeneous turbulence. We obtain a function that unveils a non-self-similar fractal at the origin of the cascade. It reveals that the backbone underlying cascades is formed by deterministic nested polynomials with parameters tuned in a Hopf bifurcation critical point. The cascade scaling is exactly obtainable (not by numerical simulations) from deterministic low dimensional nonlinear dynamics. Consequently, it should not be exclusive for fluids but also present in other complex phenomena. The scaling is obtainable both in deterministic and stochastic situations. |
---|