Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.

Introducción: La agricultura colombiana aún presenta un bajo nivel de mecanización, lo cual es principalmente resultado de la falta de financiamiento, especialmente para la agricultura a pequeña escala. Esto ha llevado a la fabricación artesanal de maquinaria agrícola utilizando recursos locales cop...

Full description

Autores:
Cabello, Juan
Durando Álavrez, Demóstenes José
Lancheros Suarez, Valery José
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13752
Acceso en línea:
https://doi.org/10.17981/ingecuc.20.1.2024.06
Palabra clave:
Agricultural machines
redesign
rice thresher
small farm mechanization
Máquinas agrícolas
rediseño
trilladora de arroz
mecanización en pequeñas fincas
Rights
openAccess
License
Inge Cuc - 2024
id RCUC2_489b8a2ee9d87f47aee91412584f2c0c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13752
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
dc.title.translated.eng.fl_str_mv Un Redesign of an indigenous rice thresher for small farms in Córdoba, Colombia.
title Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
spellingShingle Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
Agricultural machines
redesign
rice thresher
small farm mechanization
Máquinas agrícolas
rediseño
trilladora de arroz
mecanización en pequeñas fincas
title_short Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
title_full Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
title_fullStr Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
title_full_unstemmed Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
title_sort Rediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.
dc.creator.fl_str_mv Cabello, Juan
Durando Álavrez, Demóstenes José
Lancheros Suarez, Valery José
dc.contributor.author.spa.fl_str_mv Cabello, Juan
Durando Álavrez, Demóstenes José
Lancheros Suarez, Valery José
dc.subject.eng.fl_str_mv Agricultural machines
redesign
rice thresher
small farm mechanization
topic Agricultural machines
redesign
rice thresher
small farm mechanization
Máquinas agrícolas
rediseño
trilladora de arroz
mecanización en pequeñas fincas
dc.subject.spa.fl_str_mv Máquinas agrícolas
rediseño
trilladora de arroz
mecanización en pequeñas fincas
description Introducción: La agricultura colombiana aún presenta un bajo nivel de mecanización, lo cual es principalmente resultado de la falta de financiamiento, especialmente para la agricultura a pequeña escala. Esto ha llevado a la fabricación artesanal de maquinaria agrícola utilizando recursos locales copiando otros diseños. Esta maquinaria generalmente tiene baja eficiencia y confiabilidad. En el artículo, se lleva a cabo el rediseño de un trillador de arroz indígena que estaba fuera de uso debido a su baja eficiencia y las significativas pérdidas de arroz durante su operación. Objetivo: La investigación tiene como objetivo rediseñar un trillador de arroz casero, mejorando significativamente su desempeño, con un bajo costo de fabricación mediante el aprovechamiento máximo de sus componentes y la reconstrucción utilizando recursos e infraestructura local. Metodología: Para el rediseño, se aplicó la metodología de cinco pasos propuesta por Mullineux. Se analizaron y rediseñaron todos los mecanismos de la máquina, y se reingenierizaron por completo. Resultados: Se introdujo un nuevo diseño de dientes de trilla llamados "dientes de trilla en peine", muy simples de producir, ensamblar y reemplazar. El trillador rediseñado se implementó y evaluó, logrando la misma productividad que el trillador original, reduciendo las pérdidas de arroz en dos tercios. Además, los resultados de la evaluación en campo fueron coherentes con los resultados de investigaciones anteriores. Conclusiones: Los resultados muestran que es beneficioso para la agricultura a pequeña escala en Colombia fabricar maquinaria agrícola adaptada a sus necesidades específicas, fabricada localmente con sus recursos, pero aplicando métodos de ingeniería adecuados para garantizar que el rendimiento de las máquinas sea satisfactorio
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-22 13:20:08
dc.date.available.none.fl_str_mv 2024-05-22 13:20:08
dc.date.issued.none.fl_str_mv 2024-05-22
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.20.1.2024.06
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.20.1.2024.06
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.20.1.2024.06
2382-4700
url https://doi.org/10.17981/ingecuc.20.1.2024.06
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Inge CuC
dc.relation.references.eng.fl_str_mv W. Liao, F. Zeng, and M. Chanieabate, “Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery,” Sustain., vol. 14, no. 13, pp. 1–21, 2022, doi: 10.3390/su14137964. [2] J. Van Loon, L. Woltering, T. J. Krupnik, F. Baudron, M. Boa, and B. Govaerts, “Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America,” Agric. Syst., vol. 180, no. February, p. 102792, 2020, doi: 10.1016/j.agsy.2020.102792. [3] L. Woltering, K. Fehlenberg, B. Gerard, J. Ubels, and L. Cooley, “Scaling – from ‘reaching many’ to sustainable systems change at scale: A critical shift in mindset,” Agric. Syst., vol. 176, no. June, 2019, doi: 10.1016/j.agsy.2019.102652. [4] J. Ramirez, M. Salazar, A. Jarvis, and C. E. Navarro, “A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050,” Clim. Change, vol. 115, no. 3–4, pp. 611–628, 2012, doi: 10.1007/s10584-012-0500-y. [5] DANE, “Encuesta nacional agropecuaria (ENA),” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena#:~:text=Información 2019&text=El total del uso del,hectáreas (2%2C6%25).%0Ahttps://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuest. [6] D. Prieto, “La tecnificación como herramienta para incrementar la productividad agropecuaria en Colombia,” Fundación Universidad De América, 2019. [7] S. Banerjee and R. M. Punekar, “A sustainability-oriented design approach for agricultural machinery and its associated service ecosystem development,” J. Clean. Prod., vol. 264, p. 121642, 2020, doi: 10.1016/j.jclepro.2020.121642. [8] V. Kaster and L. Nabaes, “The function structure as a tool for analysing an existing concept of a centrifugal fertilizer spreader,” Prod. Manag. Dev., vol. 5, no. 2, pp. 77–91, 2007, [Online]. Available: https://app.periodikos.com.br/article/586fc51af7636eea018b45cf/pdf/pmd-5-2-77.pdf. [9] H. Golpira and R. R. Sola-Guirado, “Data-Driven Simulator: Redesign of Chickpea Harvester Reels,” Agric., vol. 12, no. 2, 2022, doi: 10.3390/agriculture12020264. [10] L. Vigoroso, F. Caffaro, M. Micheletti Cremasco, G. Bagagiolo, and E. Cavallo, “Comprehension of Safety Pictograms Affixed to Agricultural Machinery among Pakistani Migrant Farmworkers in Italy,” J. Agromedicine, vol. 25, no. 3, pp. 265–278, 2020, doi: 10.1080/1059924X.2019.1673269. [11] S. A. Barrios Latorre, V. Sadovska, and I. R. Chongtham, “Perspectives on agroecological transition: the case of Guachetá municipality, Colombia,” Agroecol. Sustain. Food Syst., vol. 47, no. 3, pp. 382–412, 2023, doi: 10.1080/21683565.2022.2163449. [12] Y. E. Anacona Mopan, O. Rubiano-Ovalle, H. Paz, A. F. Solis Pino, M. Chong, and A. Luna, “Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach,” Systems, vol. 11, no. 1, pp. 1–19, 2023, doi: 10.3390/systems11010029. [13] R. Parra, S. Flórez, and G. Daniel, “La competitividad de la cadena del arroz en Colombia. Un compromiso con el bienestar del agricultor,” Bogota, 2022. [14] R. Tatis Diaz et al., “Socioeconomic determinants that influence the agricultural practices of small farm families in northern Colombia,” J. Saudi Soc. Agric. Sci., vol. 21, no. 7, pp. 440–451, 2022, doi: 10.1016/j.jssas.2021.12.001. [15] D. E. Jimenez, A. Saldarriaga-Isaza, and M. Cicowiez, “Distributional and economy-wide effects of post-conflict agricultural policy in Colombia,” Eur. Rev. Agric. Econ., vol. 49, no. 3, pp. 644–667, 2022, doi: 10.1093/erae/jbab020. [16] A. Camargo, “Imagined transitions: agrarian capitalism and climate change adaptation in Colombia,” J. Peasant Stud., vol. 49, no. 4, pp. 713–733, 2022, doi: 10.1080/03066150.2022.2059350. [17] T. Daum, “Mechanization and sustainable agri-food system transformation in the Global South. A review,” Agron. Sustain. Dev., vol. 43, no. 1, 2023, doi: 10.1007/s13593-023-00868-x. [18] A. K. M. A. Al-Amin, J. Lowenberg‑DeBoer, K. Franklin, and K. Behrendt, “Economics of field size and shape for autonomous crop machines,” Precis. Agric., no. 0123456789, 2023, doi: 10.1007/s11119-023-10016-w. [19] J. Enrique et al., “Revista de la Universidad del Zulia,” Rev. la Univ. del Zulia, vol. 14, no. 40, 2023, doi: 10.46925//rdluz.40. [20] K. Kumar, “Energy expenditure analysis of redesigned mechanical assists for medium girder bridge,” MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY, 2010. [21] Y. Umeda, S. Kondoh, Y. Shimomura, and T. Tomiyama, “Development of design methodology for upgradable products based on function-behavior-state modeling,” Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, vol. 19, no. 3, pp. 161–182, 2005, doi: 10.1017/S0890060405050122. [22] G. Mullineux, B. Hicks, and T. Medland, “Constraint-Aided Product Design,” Acta Polytech., vol. 45, no. 3, pp. 31–36, 2005. [23] Y. Guoyan, W. Xiaozhen, and L. Pengs, “A constraint based evolutionary decision support system for product design,” 2009 Chinese Control Decis. Conf. CCDC 2009, pp. 2585–2590, 2009, doi: 10.1109/CCDC.2009.5191831. [24] L. Ding, J. Matthews, C. McMahon, and G. Mullineux, “An extended product model for constraint-based redesign applications,” Proc. ICED 2007, 16th Int. Conf. Eng. Des., vol. DS 42, no. August, pp. 1–11, 2007. [25] O. M. Abbass, O. M. E. Elshami, and H. I. Mohamed, “Modification and Performance od Multi Crop Thresher,” J. Sc. Tech, vol. 6, no. 2, pp. 1–19, 2005. [26] O. Y. Azouma, M. Porosi, and K. Yamaguchi, “Design of throw-in type rice thresher for small scale farmers,” Indian J. Sci. Technol., vol. 2, no. 9, pp. 9–14, 2009, doi: 10.17485/ijst/2009/v2i9/2951592. [27] J. Vergara and R. Guerra, “REDISEÑO DE UNA MÁQUINA TRILLADORA DE ARROZ PARA PEQUEÑOS PRODUCTORES,” University of Cordoba, 2018. [28] E. O. Díaz, E. G. Cisneros, G. Pérez, D. Cruz, and M. Rodríguez, “Study of current condition of thresher machines used in the small rice production in Cuba,” vol. 18, no. 4, pp. 28–32, 2009. [29] E. Olivares, E. Cisneros, Rodríguez, and A. Martínez, “Design of a device to determine the force of detachment of the grain from the panicle in the rice crop,” Rev. Ciencias Tenicas Agropecu., vol. 21, no. 2, pp. 17–23, 2012. [30] S. Gunduz and S. Akman, “Determination of lead in rice grains by solid sampling HR-CS GFAAS,” Food Chem., vol. 141, no. 3, pp. 2634–2638, 2013, doi: 10.1016/j.foodchem.2013.05.020. [3[31] G. K. Ahorbo, “Design Of A Throw-In Axial Flow Rice Thresher Fitted With Peg And Screw Threshing Mechanism,” Int. J. Sci. Technol. Res., vol. 5, no. 07, p. 7, 2016, [Online]. Available: www.ijstr.org. [32] Z. Tang, Y. Li, L. Xu, and F. Kumi, “Modeling and design of a combined transverse and axial flow threshing unit for rice harvesters,” Spanish J. Agric. Res., vol. 12, no. 4, pp. 973–983, 2014, doi: 10.5424/sjar/2014124-6077. [33] J. Fu, Z. Chen, L. J. Han, and L. Q. Ren, “Review of grain threshing theory and technology,” Int. J. Agric. Biol. Eng., vol. 11, no. 3, pp. 12–20, 2018, doi: 10.25165/j.ijabe.20181103.3432. [34] N. Rotich, R. Tuunila, and M. Louhi-Kultanen, “Empirical study on the effects of screen inclination and feed loading on size classification of solids by gravity,” Miner. Eng., vol. 70, pp. 162–169, 2015, doi: 10.1016/j.mineng.2014.09.012. [35] E. J. Farrell and D. J. Sherman, “A new relationship between grain size and fall (settling) velocity in air,” Prog. Phys. Geogr., vol. 39, no. 3, pp. 361–387, 2015, doi: 10.1177/0309133314562442. [36] Q. Da et al., “Research on Performance Evaluation Method of Rice Thresher Based on Neural Network,” Actuators, vol. 11, no. 9, pp. 1–15, 2022, doi: 10.3390/act11090257. [37] A. E.-R. E. Suliman, A.-A. Taieb, and M. M. Atallah, “Development of Threshing System in Combine Harvester for Improving of Its Performance Efficiency in Rice Threshing,” Misr J. Agric. Eng., vol. 29, no. 1, pp. 143–178, 2012, doi: 10.21608/mjae.2012.102573.
dc.relation.citationendpage.none.fl_str_mv 115
dc.relation.citationstartpage.none.fl_str_mv 102
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/5263/5355
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2024 : (Enero - Junio)
dc.rights.eng.fl_str_mv Inge Cuc - 2024
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Inge Cuc - 2024
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.eng.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/5263
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dee00d7f-2b5e-42da-bb65-959221eaaa9f/download
bitstream.checksum.fl_str_mv 8f2f85bfedefb5968428f8129d47e9dd
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166797252100096
spelling Cabello, JuanDurando Álavrez, Demóstenes JoséLancheros Suarez, Valery José2024-05-22 13:20:082024-05-22 13:20:082024-05-220122-6517https://doi.org/10.17981/ingecuc.20.1.2024.0610.17981/ingecuc.20.1.2024.062382-4700Introducción: La agricultura colombiana aún presenta un bajo nivel de mecanización, lo cual es principalmente resultado de la falta de financiamiento, especialmente para la agricultura a pequeña escala. Esto ha llevado a la fabricación artesanal de maquinaria agrícola utilizando recursos locales copiando otros diseños. Esta maquinaria generalmente tiene baja eficiencia y confiabilidad. En el artículo, se lleva a cabo el rediseño de un trillador de arroz indígena que estaba fuera de uso debido a su baja eficiencia y las significativas pérdidas de arroz durante su operación. Objetivo: La investigación tiene como objetivo rediseñar un trillador de arroz casero, mejorando significativamente su desempeño, con un bajo costo de fabricación mediante el aprovechamiento máximo de sus componentes y la reconstrucción utilizando recursos e infraestructura local. Metodología: Para el rediseño, se aplicó la metodología de cinco pasos propuesta por Mullineux. Se analizaron y rediseñaron todos los mecanismos de la máquina, y se reingenierizaron por completo. Resultados: Se introdujo un nuevo diseño de dientes de trilla llamados "dientes de trilla en peine", muy simples de producir, ensamblar y reemplazar. El trillador rediseñado se implementó y evaluó, logrando la misma productividad que el trillador original, reduciendo las pérdidas de arroz en dos tercios. Además, los resultados de la evaluación en campo fueron coherentes con los resultados de investigaciones anteriores. Conclusiones: Los resultados muestran que es beneficioso para la agricultura a pequeña escala en Colombia fabricar maquinaria agrícola adaptada a sus necesidades específicas, fabricada localmente con sus recursos, pero aplicando métodos de ingeniería adecuados para garantizar que el rendimiento de las máquinas sea satisfactorioIntroduction: Colombian agriculture still has a low level of mechanization, which is primarily a result of the lack of financing, especially for small-scale farming. This has led to the artisanal manufacturing of agricultural machinery using local resources by copying other designs. This machinery generally has low efficiency and reliability. In the paper, the redesign of an indigenous rice thresher which was out of use due to its low efficiency and the significant rice losses during its operation is carried out. Goal: The research is aimed at redesigning a homemade rice thresher, significantly improving its performance, with a low manufacturing cost through the maximum utilization of its components and reconstruction using local resources and infrastructure. Methodology: For the redesign, the five-step methodology proposed by Mullineux was applied. All the machine's mechanisms were analyzed and redesigned, and completely re-engineered. Results: A new design for threshing teeth called "comb threshing teeth" was introduced, very simple to produce, assemble and replace. The redesigned thresher was implemented and evaluated, achieving the same productivity as the original thresher, reducing rice losses by two-thirds. Also, the field assessment results were coherent with the results of the former research works. Conclussions: The results  show that it is beneficial for small-scale agriculture in Colombia to manufacture agricultural machinery adapted to its specific needs, manufactured locally with its resources, but applying appropriate engineering methods to ensure that the performance of the machines is satisfactory.application/pdfengUniversidad de la CostaInge Cuc - 2024http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/5263Agricultural machinesredesignrice threshersmall farm mechanizationMáquinas agrícolasrediseñotrilladora de arrozmecanización en pequeñas fincasRediseño de una trilladora para la agricultura a pequeña escala en Córdoba, Colombia.Un Redesign of an indigenous rice thresher for small farms in Córdoba, Colombia.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CuCW. Liao, F. Zeng, and M. Chanieabate, “Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery,” Sustain., vol. 14, no. 13, pp. 1–21, 2022, doi: 10.3390/su14137964. [2] J. Van Loon, L. Woltering, T. J. Krupnik, F. Baudron, M. Boa, and B. Govaerts, “Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America,” Agric. Syst., vol. 180, no. February, p. 102792, 2020, doi: 10.1016/j.agsy.2020.102792. [3] L. Woltering, K. Fehlenberg, B. Gerard, J. Ubels, and L. Cooley, “Scaling – from ‘reaching many’ to sustainable systems change at scale: A critical shift in mindset,” Agric. Syst., vol. 176, no. June, 2019, doi: 10.1016/j.agsy.2019.102652. [4] J. Ramirez, M. Salazar, A. Jarvis, and C. E. Navarro, “A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050,” Clim. Change, vol. 115, no. 3–4, pp. 611–628, 2012, doi: 10.1007/s10584-012-0500-y. [5] DANE, “Encuesta nacional agropecuaria (ENA),” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena#:~:text=Información 2019&text=El total del uso del,hectáreas (2%2C6%25).%0Ahttps://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuest. [6] D. Prieto, “La tecnificación como herramienta para incrementar la productividad agropecuaria en Colombia,” Fundación Universidad De América, 2019. [7] S. Banerjee and R. M. Punekar, “A sustainability-oriented design approach for agricultural machinery and its associated service ecosystem development,” J. Clean. Prod., vol. 264, p. 121642, 2020, doi: 10.1016/j.jclepro.2020.121642. [8] V. Kaster and L. Nabaes, “The function structure as a tool for analysing an existing concept of a centrifugal fertilizer spreader,” Prod. Manag. Dev., vol. 5, no. 2, pp. 77–91, 2007, [Online]. Available: https://app.periodikos.com.br/article/586fc51af7636eea018b45cf/pdf/pmd-5-2-77.pdf. [9] H. Golpira and R. R. Sola-Guirado, “Data-Driven Simulator: Redesign of Chickpea Harvester Reels,” Agric., vol. 12, no. 2, 2022, doi: 10.3390/agriculture12020264. [10] L. Vigoroso, F. Caffaro, M. Micheletti Cremasco, G. Bagagiolo, and E. Cavallo, “Comprehension of Safety Pictograms Affixed to Agricultural Machinery among Pakistani Migrant Farmworkers in Italy,” J. Agromedicine, vol. 25, no. 3, pp. 265–278, 2020, doi: 10.1080/1059924X.2019.1673269. [11] S. A. Barrios Latorre, V. Sadovska, and I. R. Chongtham, “Perspectives on agroecological transition: the case of Guachetá municipality, Colombia,” Agroecol. Sustain. Food Syst., vol. 47, no. 3, pp. 382–412, 2023, doi: 10.1080/21683565.2022.2163449. [12] Y. E. Anacona Mopan, O. Rubiano-Ovalle, H. Paz, A. F. Solis Pino, M. Chong, and A. Luna, “Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach,” Systems, vol. 11, no. 1, pp. 1–19, 2023, doi: 10.3390/systems11010029. [13] R. Parra, S. Flórez, and G. Daniel, “La competitividad de la cadena del arroz en Colombia. Un compromiso con el bienestar del agricultor,” Bogota, 2022. [14] R. Tatis Diaz et al., “Socioeconomic determinants that influence the agricultural practices of small farm families in northern Colombia,” J. Saudi Soc. Agric. Sci., vol. 21, no. 7, pp. 440–451, 2022, doi: 10.1016/j.jssas.2021.12.001. [15] D. E. Jimenez, A. Saldarriaga-Isaza, and M. Cicowiez, “Distributional and economy-wide effects of post-conflict agricultural policy in Colombia,” Eur. Rev. Agric. Econ., vol. 49, no. 3, pp. 644–667, 2022, doi: 10.1093/erae/jbab020. [16] A. Camargo, “Imagined transitions: agrarian capitalism and climate change adaptation in Colombia,” J. Peasant Stud., vol. 49, no. 4, pp. 713–733, 2022, doi: 10.1080/03066150.2022.2059350. [17] T. Daum, “Mechanization and sustainable agri-food system transformation in the Global South. A review,” Agron. Sustain. Dev., vol. 43, no. 1, 2023, doi: 10.1007/s13593-023-00868-x. [18] A. K. M. A. Al-Amin, J. Lowenberg‑DeBoer, K. Franklin, and K. Behrendt, “Economics of field size and shape for autonomous crop machines,” Precis. Agric., no. 0123456789, 2023, doi: 10.1007/s11119-023-10016-w. [19] J. Enrique et al., “Revista de la Universidad del Zulia,” Rev. la Univ. del Zulia, vol. 14, no. 40, 2023, doi: 10.46925//rdluz.40. [20] K. Kumar, “Energy expenditure analysis of redesigned mechanical assists for medium girder bridge,” MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY, 2010. [21] Y. Umeda, S. Kondoh, Y. Shimomura, and T. Tomiyama, “Development of design methodology for upgradable products based on function-behavior-state modeling,” Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, vol. 19, no. 3, pp. 161–182, 2005, doi: 10.1017/S0890060405050122. [22] G. Mullineux, B. Hicks, and T. Medland, “Constraint-Aided Product Design,” Acta Polytech., vol. 45, no. 3, pp. 31–36, 2005. [23] Y. Guoyan, W. Xiaozhen, and L. Pengs, “A constraint based evolutionary decision support system for product design,” 2009 Chinese Control Decis. Conf. CCDC 2009, pp. 2585–2590, 2009, doi: 10.1109/CCDC.2009.5191831. [24] L. Ding, J. Matthews, C. McMahon, and G. Mullineux, “An extended product model for constraint-based redesign applications,” Proc. ICED 2007, 16th Int. Conf. Eng. Des., vol. DS 42, no. August, pp. 1–11, 2007. [25] O. M. Abbass, O. M. E. Elshami, and H. I. Mohamed, “Modification and Performance od Multi Crop Thresher,” J. Sc. Tech, vol. 6, no. 2, pp. 1–19, 2005. [26] O. Y. Azouma, M. Porosi, and K. Yamaguchi, “Design of throw-in type rice thresher for small scale farmers,” Indian J. Sci. Technol., vol. 2, no. 9, pp. 9–14, 2009, doi: 10.17485/ijst/2009/v2i9/2951592. [27] J. Vergara and R. Guerra, “REDISEÑO DE UNA MÁQUINA TRILLADORA DE ARROZ PARA PEQUEÑOS PRODUCTORES,” University of Cordoba, 2018. [28] E. O. Díaz, E. G. Cisneros, G. Pérez, D. Cruz, and M. Rodríguez, “Study of current condition of thresher machines used in the small rice production in Cuba,” vol. 18, no. 4, pp. 28–32, 2009. [29] E. Olivares, E. Cisneros, Rodríguez, and A. Martínez, “Design of a device to determine the force of detachment of the grain from the panicle in the rice crop,” Rev. Ciencias Tenicas Agropecu., vol. 21, no. 2, pp. 17–23, 2012. [30] S. Gunduz and S. Akman, “Determination of lead in rice grains by solid sampling HR-CS GFAAS,” Food Chem., vol. 141, no. 3, pp. 2634–2638, 2013, doi: 10.1016/j.foodchem.2013.05.020. [3[31] G. K. Ahorbo, “Design Of A Throw-In Axial Flow Rice Thresher Fitted With Peg And Screw Threshing Mechanism,” Int. J. Sci. Technol. Res., vol. 5, no. 07, p. 7, 2016, [Online]. Available: www.ijstr.org. [32] Z. Tang, Y. Li, L. Xu, and F. Kumi, “Modeling and design of a combined transverse and axial flow threshing unit for rice harvesters,” Spanish J. Agric. Res., vol. 12, no. 4, pp. 973–983, 2014, doi: 10.5424/sjar/2014124-6077. [33] J. Fu, Z. Chen, L. J. Han, and L. Q. Ren, “Review of grain threshing theory and technology,” Int. J. Agric. Biol. Eng., vol. 11, no. 3, pp. 12–20, 2018, doi: 10.25165/j.ijabe.20181103.3432. [34] N. Rotich, R. Tuunila, and M. Louhi-Kultanen, “Empirical study on the effects of screen inclination and feed loading on size classification of solids by gravity,” Miner. Eng., vol. 70, pp. 162–169, 2015, doi: 10.1016/j.mineng.2014.09.012. [35] E. J. Farrell and D. J. Sherman, “A new relationship between grain size and fall (settling) velocity in air,” Prog. Phys. Geogr., vol. 39, no. 3, pp. 361–387, 2015, doi: 10.1177/0309133314562442. [36] Q. Da et al., “Research on Performance Evaluation Method of Rice Thresher Based on Neural Network,” Actuators, vol. 11, no. 9, pp. 1–15, 2022, doi: 10.3390/act11090257. [37] A. E.-R. E. Suliman, A.-A. Taieb, and M. M. Atallah, “Development of Threshing System in Combine Harvester for Improving of Its Performance Efficiency in Rice Threshing,” Misr J. Agric. Eng., vol. 29, no. 1, pp. 143–178, 2012, doi: 10.21608/mjae.2012.102573.115102120https://revistascientificas.cuc.edu.co/ingecuc/article/download/5263/5355Núm. 1 , Año 2024 : (Enero - Junio)OREORE.xmltext/xml2649https://repositorio.cuc.edu.co/bitstreams/dee00d7f-2b5e-42da-bb65-959221eaaa9f/download8f2f85bfedefb5968428f8129d47e9ddMD5111323/13752oai:repositorio.cuc.edu.co:11323/137522025-01-21 03:30:33.008http://creativecommons.org/licenses/by-nc-nd/4.0Inge Cuc - 2024metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co