An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces

Air pollution monitoring is one of the most important features in contamination risk management. This is because many of the compounds contained within air pollution present a serious risk both for the preservation of open air cultural heritage and for human health. New particle formation is a major...

Full description

Autores:
Silva Oliveira, Luis Felipe
Pinto, Diana
Neckel, Alcindo
Silva Oliveira, Marcos Leandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7072
Acceso en línea:
https://hdl.handle.net/11323/7072
https://doi.org/10.1016/j.gsf.2020.07.003
https://repositorio.cuc.edu.co/
Palabra clave:
Atmospheric contamination
Historic construction
Carbonaceous particles
Source investigation
Vehicular traffic effects
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_487553e89a86e74ea6f845b4a146b324
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7072
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
title An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
spellingShingle An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
Atmospheric contamination
Historic construction
Carbonaceous particles
Source investigation
Vehicular traffic effects
title_short An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
title_full An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
title_fullStr An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
title_full_unstemmed An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
title_sort An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
dc.creator.fl_str_mv Silva Oliveira, Luis Felipe
Pinto, Diana
Neckel, Alcindo
Silva Oliveira, Marcos Leandro
dc.contributor.author.spa.fl_str_mv Silva Oliveira, Luis Felipe
Pinto, Diana
Neckel, Alcindo
Silva Oliveira, Marcos Leandro
dc.subject.spa.fl_str_mv Atmospheric contamination
Historic construction
Carbonaceous particles
Source investigation
Vehicular traffic effects
topic Atmospheric contamination
Historic construction
Carbonaceous particles
Source investigation
Vehicular traffic effects
description Air pollution monitoring is one of the most important features in contamination risk management. This is because many of the compounds contained within air pollution present a serious risk both for the preservation of open air cultural heritage and for human health. New particle formation is a major contributor to urban pollution, but how it occurs in cities is often puzzling. As more and more people enjoy an increased quality of life through outdoor activity, managing outdoor air quality is vital. This study presents the application of a low-cost system for monitoring the current level of road traffic passengers’ exposure to particulate air contamination. The global rise in tourism also leads to apprehension about its probable destructive influence on various aspects of global preservation. One of the major risks encountered by tourists, stemming from modes of transport, are nanoparticles (NPs) ( 100 nm) and ultra-fine particles (UFPs) (100–1000 nm) consisting of potentially hazardous elements (PHEs). This study examines Steen Castle, a medieval fortress located in Antwerp, Belgium. Significant NPs with PHEs, were found in the air sampled in this area. The self-made passive sampler (LSPS) described in this study, consisting of retainers specially designed for advanced microscopic analysis, is used for the first time as a simple way to characterize the surrounding atmospheric contamination caused by NPs and UFPs, without the need of other commonly employed more expensive particulate focused active samplers such as cascade impactors. This study aims to assess the result of the utilization of a low-cost, LSPS, to determine outdoor NPs and UFPs in a Belgian urban (Steen Castle) and rural area (Fort van Schoten). This work is the first to detail the usefulness of LSPS for the evaluation of Belgium’s outdoor air for NPs and UFPs, which contain PHEs.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-07T15:33:48Z
dc.date.available.none.fl_str_mv 2020-09-07T15:33:48Z
dc.date.issued.none.fl_str_mv 2020-08-05
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1674-9871
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7072
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.gsf.2020.07.003
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1674-9871
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7072
https://doi.org/10.1016/j.gsf.2020.07.003
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agudelo-Castan~eda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170.
Agudelo-Castan~eda, D., Teixeira, E., Schneider, I., Pereira, F., Oliveira, M., Taffarel, S., Sehn, J., Ramos, C., Silva, L.F., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.
Alsamhi, S.H., Ma, O., Ansari, M.S., Meng, Q., 2019. Greening internet of things for greener and smarter cities: a survey and future prospects: a survey and future prospects. Telecommun. Syst. 72 (4), 609–632.
Arjonilla, P., Ayora-Can~ada, M.J., Rubio Domene, R., de la Torre-Lopez, M.J., DomínguezVidal, A., 2019. Romantic restorations in the Alhambra monument: spectroscopic characterization of decorative plasterwork in the Royal Baths of Comares. J. Raman Spectrosc. 50, 184–192.
Arjonilla, P., Domínguez-Vidal, A., Correa-Gomez, E., Ayora-Can~ada, M.J., Colombini, M.P., 2018. Characterization of organic materials in the decoration of ornamental structures in the Alhambra monumental ensemble using gaschromatography/mass spectrometry (GC/MS). Microchem. J. 140, 14–23.
Azam, M., Alam, M.M., Hafeez, M.H., 2018. Effect of tourism on environmental pollution: further evidence from Malaysia, Singapore and Thailand. J. Clean. Prod. 190, 330–338.
Bardelli, F., Cattaruzza, E., Gonella, F., Rampazzo, G., Valotto, G., 2011. Characterization of road dust collected in Traforo del San Bernardo highway tunnel: Fe and Mn speciation. Atmos. Environ. 45 (35), 6459–6468.
Brtnický, M., Pecina, V., Vasinova, G.M., Klimanek, M., Kynický, J., 2020. The impact of tourism on extremely visited volcanic island: link between environmental pollution and transportation modes. Chemosphere 249, 126118.
Ciarkowska, K., 2018. Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland). Environ. Sci. Pollut. Control Ser. 25 (14), 13709–13718.
Cobo-Golpe, M., Ramil, M., Cela, R., Rodríguez, I., 2020. Portable dehumidifiers condensed water: a novel matrix for the screening of semi-volatile compounds in indoor air. Chemosphere 251, 1–12.
Davenport, J., Davenport, J.L., 2006. The impact of tourism and personal leisure transport on coastal environments: a review. Estuar. Coast Shelf Sci. 67 (2), 280–292.
Dotto, G.L., Cadaval, T.R.S., Pinto, L.A.A., 2012. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem. 47 (9), 1335–1343. https://doi.org/10.1016/ J.PROCBIO.2012.04.029.
Dotto, G.L., Cunha, J.M., Calgaro, C.O., Bertuol, D.A., 2015a. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard Mater. 295, 29–36. https://doi.org/10.1016/ J.JHAZMAT.2015.04.009.
Dotto, G.L., Sharma, S.K., Pinto, L.A.A., 2015b. Biosorption of organic dyes: research opportunities and challenges. Green Chem. In: Sharma, S.K. (Ed.), Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Scrivener Publishing, pp. 295–329. https://doi.org/10.1002/9781118721001.ch8.
Dotto, G.L., de Souza, V.C., de Moura, J.M., de Moura, C.M., de Almeida Pinto, L.A., 2011. Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films. Dry. Technol. 29 (15), 1784–1791. https://doi.org/10.1080/ 07373937.2011.602812.
Dotto, G.L., Rodrigues, F.K., Tanabe, E.H., Frohlich, R., Bertuol, D.A., Martins, T.R.,€ Foletto, E.L., 2016. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 4 (3), 3230–3239. https://doi.org/10.1016/J.JECE.2016.07.004.
European Environment Agency (EEA), 2018. Air Quality in Europe — 2018 Report. EEA Report no 12/2018. Publications Office of the European Union, Luxembourg. https:// doi.org/10.2800/777411.
Gasparotto, G., Tavares, L.S., Silva, T.C., Maia, L.J.Q., Carvalho, J.F., 2018. Structural and spectroscopic properties of Eu3þ doped Y4Al2O9 compounds through a soft chemical process. J. Lumin. 204, 513–519.
Hovington, P., Timoshevskii, V., Burgess, S., Demers, H., Statham, P., Gauvin, R., Zaghib, K., 2016. Can we detect Li K X-ray in lithium compounds using energy dispersive spectroscopy? Scanning 38 (6), 571–578.
Kulmala, M., Kerminen, V.-M., Pet€aj€a, T., Ding, A.J., Wang, L., 2017. Faraday Discuss 200, 271–288.
Li, H., Sodoudi, S., Liu, J., Tao, W., 2020. Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmos. Res. 241 (1), 104957.
Madureira-carvalho, A., Ribeiro, H., Newman, G., Brewer, M.J., Guedes, A., Abreu, I., Noronha, F., Dawson, L., 2018. Geochemical analysis of sediment samples for forensic purposes: characterisation of two river beaches from the Douro River, Portugal. Aust. J. Forensic Sci. 52 (2), 222–234.
Massas, I., Ioannou, D., Kalivas, D., Gasparatos, D., 2016. Distribution of heavy metals concentrations in soils around the international Athens airport (Greece). An assessment on preliminary data. Bull. Geol. Soc. Greece 50 (4), 2231–2240. McDonald, J.D., Eide, I., Seagrave, J., Zielinska, B., Whitney, K., Lawson, D.R., Mauderly, J.L., 2004. Relationship between composition and toxicity of motor vehicle emission samples. Environ. Health Perspect. 112, 1527–1538.
McMurry, P.H., Fink, M., Sakurai, H., Stolzenburg, M.R., Mauldin III, R.L., Smith, J., Eisele, F., Moore, K., Sjostedt, S., Tanner, D., Huey, L.G., Nowak, J.B., Edgerton, E., Voisin, D., 2005. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. J. Geophys. Res. D 110. D22S02 (2005).
Moura, J.M., Farias, B.S., Rodrigues, D.A.S., Moura, C.M., Dotto, G.L., Pinto, L.A.A., 2015. Preparation of chitosan with different characteristics and its application for biofilms production. J. Polym. Environ. 23, 470–477. https://doi.org/10.1007/S10924-0150730-Y.
Niu, X., Chuang, H., Wang, X., Ho, S.S.H., 2020. Cytotoxicity of PM2.5 vehicular emissions in the Shing Mun tunnel, Hong Kong. Environ. Pollut. 263, 114386.
Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., 2019. Historic building materials from Alhambra: nanoparticles and global climate change effects. J. Clean. Prod. 232, 751–758.
Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248 (119250).
Ozga, I., Ghedini, N., Bonazza, A., Morselli, L., Sabbioni, C., 2009. The importance of atmospheric particle monitoring in the protection of cultural heritage. In: AIR POLLUTION 2009, Tallinn, Estonia, pp. 259–269. https://doi.org/10.2495/ AIR090241. Tallinn, Estonia.
Peres, E.C., Slaviero, J.C., Cunha, A.M., Dotto, G.L., 2018. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. https://doi.org/10.1016/J.JECE.2017.12.062.
Pinheiro, F.V., 2017. Redesigning historic cities facing rapid tourism growth. Worldw. Hospit. Tourism Themes 9 (3), 274–288.
Pranjic, A.M., Ranogajec, J., Ŀkrlep, L., Ŀkapin, A.S., Vucetic, S., Rebec, K.M., Turk, J., 2018. Life cycle assessment of novel consolidants and a photocatalytic suspension for the conservation of the immovable cultural heritage. J. Clean. Prod. 181, 293–308.
Pulido-fernandez, J.I., Cardenas-garcía, P.J., Espinosa-pulido, J.A., 2019. Does environmental sustainability contribute to tourism growth? An analysis at the country level. J. Clean. Prod. 213, 309–319.
Ramos, C.G., Querol, X., Dalmora, A.C., De Jesus, P.K.C., Schneider, I.A.H., Oliveira, L.F.S., Kautzmann, R.M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 142, 2700–2706.
Rivas, I., Beddows, D.C.S., Amato, F., Querol, X., Kelly, F.J., 2020. Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ. Int. 135, 1–19.
Rodriguez-Iruretagoiena, A., De Vallejuelo, S.F.O., Gredilla, A., Ramos, C.G., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F., 2015. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 508, 374–382.
Rodrigues, D.A.S., Moura, J.M., Dotto, G.L., Pinto, L.A.A., 2018. Preparation, characterization and dye adsorption/reuse of chitosan-vanadate films. J. Polym. Environ. 26, 2917–2924. https://doi.org/10.1007/S10924-017-1171-6.
Rojas, J.C., Sanchez, N.E., Schneider, I., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419.
Salvi, S.S., Nordenhall, C., Blomberg, A., Rudell, B., Pourazar, J., Kelly, F.J., Wilson, S., Sandstrom, T., Holgate, S.T., Frew, A.J., 2000. Acute exposure to diesel exhaust increases IL-8 and GRO-α production in healthy human airways. Am. J. Respir. Crit. Care Med. 161, 550–557.
Sajjadi, S., Mohammadzadeh, A., Hai, N.T., Hosseini-Bandegharaei, A., 2018. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J. Environ. Manag. 233, 1001–1009. https://doi.org/10.1016/J.JENVMAN.2018.06.077.
Souza, P.R., Dotto, G.L., Salau, N.P.G., 2017. Detailed numerical solution of pore volume and surface diffusion model in adsorption systems. Chem. Eng. Res. Des. https:// doi.org/10.1016/J.CHERD.2017.04.021.
Schneider, I.L., Teixeira, E.C., Agudelo-castan~eda, D., Silva e Silva, G., Balzaretti, N., Braga, M., Oliveira, L.F., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160.
Silva, L.F., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. Thue, P.S., dos Reis, G.S., Lima, E.C., Pavan, F.A., 2017. Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption. Res. Chem. Intermed. 43, 1063–1087. https://doi.org/10.1007/S11164-016-2683-8.
Umpierres, C.S., Thue, P.S., Lima, E.C., Dotto, G.L., 2018. Microwave-activated carbons from tucumA (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environ. Technol. 39 (9), 1173–1187. https://doi.org/ 10.1080/09593330.2017.1323957.
Umpierres, C.S., Prola, L.D.T., Adebayo, M.A., Benvenutti, E., 2017. Mesoporous Nb2O5/ SiO2 material obtained by sol-gel method and applied as adsorbent of crystal violet dye. Environ. Technol. 38 (5), 566–578. https://doi.org/10.1080/ 09593330.2016.1202329.
Valotto, G., Zannoni, D., Rampazzo, G., Visin, F., Formenton, G., Gasparello, A., 2018. Characterization and preliminary risk assessment of road dust collected in Venice airport (Italy). J. Geochem. Explor. 190, 142–153.
Vieira, M.L.G., Esquerdo, V.M., Nobre, L.R., Pinto, L.A.A., 2014. Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J. Ind. Eng. Chem. https://doi.org/10.1016/J.JIEC.2013.12.024.
Wang, M., Kong, W., Marten, R., He, X.C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H.E., Amanatidis, S., Amotim, A., Baalbaki, R., Baccarini, A., Bell, D.M., Bertozzi, B., Br€akling, S., Brilke, S., Murillo, L.C., Bell, D.M., Bertozzi, B., Br€akling, S., Brilke, S., Murillo, L.C., Chiu, R., Chu, B., De Menezes, L.P., Duplissy, J., Finkenzeller, H., Carracedo, L.G., Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampim€aki, M., Lee, C.P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R.L., Mentler, B., Müller, T., Onnela, A., Partoll, E., Pet€aj€a, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Ro€rup, B., Scholz, W., Shen, J., Simon, M., Sipil€a, M., Steiner, G., Stolzenburg, D., Tham, Y.J., Tome, A., Wagner, A.C., Wang, D.S., Wang, Y., Weber, S.K., Winkler, P.M., Wlasits, Peter J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D.R., Kirkby, J., Seinfeld, J.H., El-Haddad, I., Flagan, R.C., Donahue, N.M., 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581, 184–189.
Zanoletti, M., Godard, F., Perrier, M., 2020. Effect of support on the apparent activity of palladium oxide in catalytic methane combustion. Can. J. Chem. Eng. 1, 1–24.
Zdravkov, B., Cermak, J., Ŀefara, M., Jankŏ, J., 2007. Pore classification in the characterization of porous materials: a perspective. Open Chem. 5 (4), 1158-1158.
Zhang, Y., Khan, S.A.R., Kumar, A., Golpîra, H., Sharif, A., 2019. Is tourism really affected by logistical operations and environmental degradation? An empirical study from the perspective of Thailand. J. Clean. Prod. 227, 158–166.
Zhu, G., Chen, T., Hu, Y., Ma, L., Chen, R., Lv, H., Wang, Y., Liang, J., Li, X., Yan, C., Zhu, C., Liu, H., Tie, Z., Jin, Z., Liu, J., 2017. Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 33, 229–237.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Geoscience Frontiers
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S167498712030164X
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/44e9193c-2449-4a64-9322-b2fd1620174d/download
https://repositorio.cuc.edu.co/bitstreams/a05f4402-a08f-4dd6-8423-510862b861e2/download
https://repositorio.cuc.edu.co/bitstreams/8db371bd-0ead-4c4c-a4a6-c39742f27695/download
https://repositorio.cuc.edu.co/bitstreams/11677b24-e766-4e5c-84fe-2df8f4feecd7/download
https://repositorio.cuc.edu.co/bitstreams/248ef305-821d-448e-a72f-eb91064a97d7/download
https://repositorio.cuc.edu.co/bitstreams/b3f58aec-5ed0-4d1a-84a6-0b6680164695/download
bitstream.checksum.fl_str_mv 292ccfd30b73c06547e3708161116dd1
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
193a08e67eaeb6ae5a627b9d264d1923
193a08e67eaeb6ae5a627b9d264d1923
a522e70db74c446c8bdf343fc5a6c6e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166889427173376
spelling Silva Oliveira, Luis FelipePinto, DianaNeckel, AlcindoSilva Oliveira, Marcos Leandro2020-09-07T15:33:48Z2020-09-07T15:33:48Z2020-08-051674-9871https://hdl.handle.net/11323/7072https://doi.org/10.1016/j.gsf.2020.07.003Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution monitoring is one of the most important features in contamination risk management. This is because many of the compounds contained within air pollution present a serious risk both for the preservation of open air cultural heritage and for human health. New particle formation is a major contributor to urban pollution, but how it occurs in cities is often puzzling. As more and more people enjoy an increased quality of life through outdoor activity, managing outdoor air quality is vital. This study presents the application of a low-cost system for monitoring the current level of road traffic passengers’ exposure to particulate air contamination. The global rise in tourism also leads to apprehension about its probable destructive influence on various aspects of global preservation. One of the major risks encountered by tourists, stemming from modes of transport, are nanoparticles (NPs) ( 100 nm) and ultra-fine particles (UFPs) (100–1000 nm) consisting of potentially hazardous elements (PHEs). This study examines Steen Castle, a medieval fortress located in Antwerp, Belgium. Significant NPs with PHEs, were found in the air sampled in this area. The self-made passive sampler (LSPS) described in this study, consisting of retainers specially designed for advanced microscopic analysis, is used for the first time as a simple way to characterize the surrounding atmospheric contamination caused by NPs and UFPs, without the need of other commonly employed more expensive particulate focused active samplers such as cascade impactors. This study aims to assess the result of the utilization of a low-cost, LSPS, to determine outdoor NPs and UFPs in a Belgian urban (Steen Castle) and rural area (Fort van Schoten). This work is the first to detail the usefulness of LSPS for the evaluation of Belgium’s outdoor air for NPs and UFPs, which contain PHEs.Silva Oliveira, Luis FelipePinto, DianaNeckel, AlcindoSilva Oliveira, Marcos LeandroengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S167498712030164XAtmospheric contaminationHistoric constructionCarbonaceous particlesSource investigationVehicular traffic effectsAn analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfacesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAgudelo-Castan~eda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170.Agudelo-Castan~eda, D., Teixeira, E., Schneider, I., Pereira, F., Oliveira, M., Taffarel, S., Sehn, J., Ramos, C., Silva, L.F., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.Alsamhi, S.H., Ma, O., Ansari, M.S., Meng, Q., 2019. Greening internet of things for greener and smarter cities: a survey and future prospects: a survey and future prospects. Telecommun. Syst. 72 (4), 609–632.Arjonilla, P., Ayora-Can~ada, M.J., Rubio Domene, R., de la Torre-Lopez, M.J., DomínguezVidal, A., 2019. Romantic restorations in the Alhambra monument: spectroscopic characterization of decorative plasterwork in the Royal Baths of Comares. J. Raman Spectrosc. 50, 184–192.Arjonilla, P., Domínguez-Vidal, A., Correa-Gomez, E., Ayora-Can~ada, M.J., Colombini, M.P., 2018. Characterization of organic materials in the decoration of ornamental structures in the Alhambra monumental ensemble using gaschromatography/mass spectrometry (GC/MS). Microchem. J. 140, 14–23.Azam, M., Alam, M.M., Hafeez, M.H., 2018. Effect of tourism on environmental pollution: further evidence from Malaysia, Singapore and Thailand. J. Clean. Prod. 190, 330–338.Bardelli, F., Cattaruzza, E., Gonella, F., Rampazzo, G., Valotto, G., 2011. Characterization of road dust collected in Traforo del San Bernardo highway tunnel: Fe and Mn speciation. Atmos. Environ. 45 (35), 6459–6468.Brtnický, M., Pecina, V., Vasinova, G.M., Klimanek, M., Kynický, J., 2020. The impact of tourism on extremely visited volcanic island: link between environmental pollution and transportation modes. Chemosphere 249, 126118.Ciarkowska, K., 2018. Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland). Environ. Sci. Pollut. Control Ser. 25 (14), 13709–13718.Cobo-Golpe, M., Ramil, M., Cela, R., Rodríguez, I., 2020. Portable dehumidifiers condensed water: a novel matrix for the screening of semi-volatile compounds in indoor air. Chemosphere 251, 1–12.Davenport, J., Davenport, J.L., 2006. The impact of tourism and personal leisure transport on coastal environments: a review. Estuar. Coast Shelf Sci. 67 (2), 280–292.Dotto, G.L., Cadaval, T.R.S., Pinto, L.A.A., 2012. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem. 47 (9), 1335–1343. https://doi.org/10.1016/ J.PROCBIO.2012.04.029.Dotto, G.L., Cunha, J.M., Calgaro, C.O., Bertuol, D.A., 2015a. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard Mater. 295, 29–36. https://doi.org/10.1016/ J.JHAZMAT.2015.04.009.Dotto, G.L., Sharma, S.K., Pinto, L.A.A., 2015b. Biosorption of organic dyes: research opportunities and challenges. Green Chem. In: Sharma, S.K. (Ed.), Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Scrivener Publishing, pp. 295–329. https://doi.org/10.1002/9781118721001.ch8.Dotto, G.L., de Souza, V.C., de Moura, J.M., de Moura, C.M., de Almeida Pinto, L.A., 2011. Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films. Dry. Technol. 29 (15), 1784–1791. https://doi.org/10.1080/ 07373937.2011.602812.Dotto, G.L., Rodrigues, F.K., Tanabe, E.H., Frohlich, R., Bertuol, D.A., Martins, T.R.,€ Foletto, E.L., 2016. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 4 (3), 3230–3239. https://doi.org/10.1016/J.JECE.2016.07.004.European Environment Agency (EEA), 2018. Air Quality in Europe — 2018 Report. EEA Report no 12/2018. Publications Office of the European Union, Luxembourg. https:// doi.org/10.2800/777411.Gasparotto, G., Tavares, L.S., Silva, T.C., Maia, L.J.Q., Carvalho, J.F., 2018. Structural and spectroscopic properties of Eu3þ doped Y4Al2O9 compounds through a soft chemical process. J. Lumin. 204, 513–519.Hovington, P., Timoshevskii, V., Burgess, S., Demers, H., Statham, P., Gauvin, R., Zaghib, K., 2016. Can we detect Li K X-ray in lithium compounds using energy dispersive spectroscopy? Scanning 38 (6), 571–578.Kulmala, M., Kerminen, V.-M., Pet€aj€a, T., Ding, A.J., Wang, L., 2017. Faraday Discuss 200, 271–288.Li, H., Sodoudi, S., Liu, J., Tao, W., 2020. Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmos. Res. 241 (1), 104957.Madureira-carvalho, A., Ribeiro, H., Newman, G., Brewer, M.J., Guedes, A., Abreu, I., Noronha, F., Dawson, L., 2018. Geochemical analysis of sediment samples for forensic purposes: characterisation of two river beaches from the Douro River, Portugal. Aust. J. Forensic Sci. 52 (2), 222–234.Massas, I., Ioannou, D., Kalivas, D., Gasparatos, D., 2016. Distribution of heavy metals concentrations in soils around the international Athens airport (Greece). An assessment on preliminary data. Bull. Geol. Soc. Greece 50 (4), 2231–2240. McDonald, J.D., Eide, I., Seagrave, J., Zielinska, B., Whitney, K., Lawson, D.R., Mauderly, J.L., 2004. Relationship between composition and toxicity of motor vehicle emission samples. Environ. Health Perspect. 112, 1527–1538.McMurry, P.H., Fink, M., Sakurai, H., Stolzenburg, M.R., Mauldin III, R.L., Smith, J., Eisele, F., Moore, K., Sjostedt, S., Tanner, D., Huey, L.G., Nowak, J.B., Edgerton, E., Voisin, D., 2005. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. J. Geophys. Res. D 110. D22S02 (2005).Moura, J.M., Farias, B.S., Rodrigues, D.A.S., Moura, C.M., Dotto, G.L., Pinto, L.A.A., 2015. Preparation of chitosan with different characteristics and its application for biofilms production. J. Polym. Environ. 23, 470–477. https://doi.org/10.1007/S10924-0150730-Y.Niu, X., Chuang, H., Wang, X., Ho, S.S.H., 2020. Cytotoxicity of PM2.5 vehicular emissions in the Shing Mun tunnel, Hong Kong. Environ. Pollut. 263, 114386.Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., 2019. Historic building materials from Alhambra: nanoparticles and global climate change effects. J. Clean. Prod. 232, 751–758.Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248 (119250).Ozga, I., Ghedini, N., Bonazza, A., Morselli, L., Sabbioni, C., 2009. The importance of atmospheric particle monitoring in the protection of cultural heritage. In: AIR POLLUTION 2009, Tallinn, Estonia, pp. 259–269. https://doi.org/10.2495/ AIR090241. Tallinn, Estonia.Peres, E.C., Slaviero, J.C., Cunha, A.M., Dotto, G.L., 2018. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. https://doi.org/10.1016/J.JECE.2017.12.062.Pinheiro, F.V., 2017. Redesigning historic cities facing rapid tourism growth. Worldw. Hospit. Tourism Themes 9 (3), 274–288.Pranjic, A.M., Ranogajec, J., Ŀkrlep, L., Ŀkapin, A.S., Vucetic, S., Rebec, K.M., Turk, J., 2018. Life cycle assessment of novel consolidants and a photocatalytic suspension for the conservation of the immovable cultural heritage. J. Clean. Prod. 181, 293–308.Pulido-fernandez, J.I., Cardenas-garcía, P.J., Espinosa-pulido, J.A., 2019. Does environmental sustainability contribute to tourism growth? An analysis at the country level. J. Clean. Prod. 213, 309–319.Ramos, C.G., Querol, X., Dalmora, A.C., De Jesus, P.K.C., Schneider, I.A.H., Oliveira, L.F.S., Kautzmann, R.M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 142, 2700–2706.Rivas, I., Beddows, D.C.S., Amato, F., Querol, X., Kelly, F.J., 2020. Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ. Int. 135, 1–19.Rodriguez-Iruretagoiena, A., De Vallejuelo, S.F.O., Gredilla, A., Ramos, C.G., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F., 2015. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 508, 374–382.Rodrigues, D.A.S., Moura, J.M., Dotto, G.L., Pinto, L.A.A., 2018. Preparation, characterization and dye adsorption/reuse of chitosan-vanadate films. J. Polym. Environ. 26, 2917–2924. https://doi.org/10.1007/S10924-017-1171-6.Rojas, J.C., Sanchez, N.E., Schneider, I., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419.Salvi, S.S., Nordenhall, C., Blomberg, A., Rudell, B., Pourazar, J., Kelly, F.J., Wilson, S., Sandstrom, T., Holgate, S.T., Frew, A.J., 2000. Acute exposure to diesel exhaust increases IL-8 and GRO-α production in healthy human airways. Am. J. Respir. Crit. Care Med. 161, 550–557.Sajjadi, S., Mohammadzadeh, A., Hai, N.T., Hosseini-Bandegharaei, A., 2018. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J. Environ. Manag. 233, 1001–1009. https://doi.org/10.1016/J.JENVMAN.2018.06.077.Souza, P.R., Dotto, G.L., Salau, N.P.G., 2017. Detailed numerical solution of pore volume and surface diffusion model in adsorption systems. Chem. Eng. Res. Des. https:// doi.org/10.1016/J.CHERD.2017.04.021.Schneider, I.L., Teixeira, E.C., Agudelo-castan~eda, D., Silva e Silva, G., Balzaretti, N., Braga, M., Oliveira, L.F., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160.Silva, L.F., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. Thue, P.S., dos Reis, G.S., Lima, E.C., Pavan, F.A., 2017. Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption. Res. Chem. Intermed. 43, 1063–1087. https://doi.org/10.1007/S11164-016-2683-8.Umpierres, C.S., Thue, P.S., Lima, E.C., Dotto, G.L., 2018. Microwave-activated carbons from tucumA (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environ. Technol. 39 (9), 1173–1187. https://doi.org/ 10.1080/09593330.2017.1323957.Umpierres, C.S., Prola, L.D.T., Adebayo, M.A., Benvenutti, E., 2017. Mesoporous Nb2O5/ SiO2 material obtained by sol-gel method and applied as adsorbent of crystal violet dye. Environ. Technol. 38 (5), 566–578. https://doi.org/10.1080/ 09593330.2016.1202329.Valotto, G., Zannoni, D., Rampazzo, G., Visin, F., Formenton, G., Gasparello, A., 2018. Characterization and preliminary risk assessment of road dust collected in Venice airport (Italy). J. Geochem. Explor. 190, 142–153.Vieira, M.L.G., Esquerdo, V.M., Nobre, L.R., Pinto, L.A.A., 2014. Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J. Ind. Eng. Chem. https://doi.org/10.1016/J.JIEC.2013.12.024.Wang, M., Kong, W., Marten, R., He, X.C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H.E., Amanatidis, S., Amotim, A., Baalbaki, R., Baccarini, A., Bell, D.M., Bertozzi, B., Br€akling, S., Brilke, S., Murillo, L.C., Bell, D.M., Bertozzi, B., Br€akling, S., Brilke, S., Murillo, L.C., Chiu, R., Chu, B., De Menezes, L.P., Duplissy, J., Finkenzeller, H., Carracedo, L.G., Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampim€aki, M., Lee, C.P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R.L., Mentler, B., Müller, T., Onnela, A., Partoll, E., Pet€aj€a, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Ro€rup, B., Scholz, W., Shen, J., Simon, M., Sipil€a, M., Steiner, G., Stolzenburg, D., Tham, Y.J., Tome, A., Wagner, A.C., Wang, D.S., Wang, Y., Weber, S.K., Winkler, P.M., Wlasits, Peter J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D.R., Kirkby, J., Seinfeld, J.H., El-Haddad, I., Flagan, R.C., Donahue, N.M., 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581, 184–189.Zanoletti, M., Godard, F., Perrier, M., 2020. Effect of support on the apparent activity of palladium oxide in catalytic methane combustion. Can. J. Chem. Eng. 1, 1–24.Zdravkov, B., Cermak, J., Ŀefara, M., Jankŏ, J., 2007. Pore classification in the characterization of porous materials: a perspective. Open Chem. 5 (4), 1158-1158.Zhang, Y., Khan, S.A.R., Kumar, A., Golpîra, H., Sharif, A., 2019. Is tourism really affected by logistical operations and environmental degradation? An empirical study from the perspective of Thailand. J. Clean. Prod. 227, 158–166.Zhu, G., Chen, T., Hu, Y., Ma, L., Chen, R., Lv, H., Wang, Y., Liang, J., Li, X., Yan, C., Zhu, C., Liu, H., Tie, Z., Jin, Z., Liu, J., 2017. Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 33, 229–237.PublicationORIGINALAn analysis of vehicular exhaust derived nanoparticles and historical.pdfAn analysis of vehicular exhaust derived nanoparticles and historical.pdfapplication/pdf2592820https://repositorio.cuc.edu.co/bitstreams/44e9193c-2449-4a64-9322-b2fd1620174d/download292ccfd30b73c06547e3708161116dd1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a05f4402-a08f-4dd6-8423-510862b861e2/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8db371bd-0ead-4c4c-a4a6-c39742f27695/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAn analysis of vehicular exhaust derived nanoparticles and historical.pdf.jpgAn analysis of vehicular exhaust derived nanoparticles and historical.pdf.jpgimage/jpeg66330https://repositorio.cuc.edu.co/bitstreams/11677b24-e766-4e5c-84fe-2df8f4feecd7/download193a08e67eaeb6ae5a627b9d264d1923MD54THUMBNAILAn analysis of vehicular exhaust derived nanoparticles and historical.pdf.jpgAn analysis of vehicular exhaust derived nanoparticles and historical.pdf.jpgimage/jpeg66330https://repositorio.cuc.edu.co/bitstreams/248ef305-821d-448e-a72f-eb91064a97d7/download193a08e67eaeb6ae5a627b9d264d1923MD54TEXTAn analysis of vehicular exhaust derived nanoparticles and historical.pdf.txtAn analysis of vehicular exhaust derived nanoparticles and historical.pdf.txttext/plain50879https://repositorio.cuc.edu.co/bitstreams/b3f58aec-5ed0-4d1a-84a6-0b6680164695/downloada522e70db74c446c8bdf343fc5a6c6e4MD5511323/7072oai:repositorio.cuc.edu.co:11323/70722024-09-17 14:22:34.452http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==