Design and performance evaluation of a solar tracking panel of single axis in Colombia

This paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the pow...

Full description

Autores:
GONZALEZ ACEVEDO, HERNANDO
Muñoz Maldonado, Yecid Alfonso
Ospino C., Adalberto
Serrano Atencio, Julian Anthony
Jaimes Saavedra, Cristian
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8360
Acceso en línea:
https://hdl.handle.net/11323/8360
https://doi.org/10.11591/ijece.v11i4.pp2889-2898
https://repositorio.cuc.edu.co/
Palabra clave:
Energy efficiency
Photovoltaic panel
Power generation plant
Pv-Syst software
Solar tracker
Eficiencia energética
Panel fotovoltaico
Planta de generación de energía
Seguidor solar
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_4830f22fa08b55ec6a29afd2bf3e09ad
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8360
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Design and performance evaluation of a solar tracking panel of single axis in Colombia
dc.title.translated.spa.fl_str_mv Diseño y evaluación de desempeño de un panel de seguimiento solar de un solo eje en Colombia
title Design and performance evaluation of a solar tracking panel of single axis in Colombia
spellingShingle Design and performance evaluation of a solar tracking panel of single axis in Colombia
Energy efficiency
Photovoltaic panel
Power generation plant
Pv-Syst software
Solar tracker
Eficiencia energética
Panel fotovoltaico
Planta de generación de energía
Seguidor solar
title_short Design and performance evaluation of a solar tracking panel of single axis in Colombia
title_full Design and performance evaluation of a solar tracking panel of single axis in Colombia
title_fullStr Design and performance evaluation of a solar tracking panel of single axis in Colombia
title_full_unstemmed Design and performance evaluation of a solar tracking panel of single axis in Colombia
title_sort Design and performance evaluation of a solar tracking panel of single axis in Colombia
dc.creator.fl_str_mv GONZALEZ ACEVEDO, HERNANDO
Muñoz Maldonado, Yecid Alfonso
Ospino C., Adalberto
Serrano Atencio, Julian Anthony
Jaimes Saavedra, Cristian
dc.contributor.author.spa.fl_str_mv GONZALEZ ACEVEDO, HERNANDO
Muñoz Maldonado, Yecid Alfonso
Ospino C., Adalberto
Serrano Atencio, Julian Anthony
Jaimes Saavedra, Cristian
dc.subject.spa.fl_str_mv Energy efficiency
Photovoltaic panel
Power generation plant
Pv-Syst software
Solar tracker
Eficiencia energética
Panel fotovoltaico
Planta de generación de energía
Seguidor solar
topic Energy efficiency
Photovoltaic panel
Power generation plant
Pv-Syst software
Solar tracker
Eficiencia energética
Panel fotovoltaico
Planta de generación de energía
Seguidor solar
description This paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the power supplied by the tracker with the power supplied by static solar panel of the same characteristics. The performance is initially simulated using Pv-Syst software, and later validated with the data obtained by the interface. As a result, the use of the solar tracker increases the power delivered by a minimum of 19%, and it can go as high as 47.84%, with an average in increase in power of 19.5% in the monthly energy production. This experimental result was compared with the simulation by Pv-Syst software and shows a difference of only 2.5%, thus validating the reliability of the simulation. This behavior pattern coincides with previous studies carried out for equatorial latitudes.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-04T22:33:32Z
dc.date.available.none.fl_str_mv 2021-06-04T22:33:32Z
dc.date.issued.none.fl_str_mv 2021-01-13
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 20888708
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8360
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.11591/ijece.v11i4.pp2889-2898
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 20888708
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8360
https://doi.org/10.11591/ijece.v11i4.pp2889-2898
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] E. Noriega-Angarita et al., "Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks," International Journal of Engineering and Technology, vol. 8, no. 4, pp. 1817-1825, 2016.
[2] Y. Muñoz, J. Guerrero, and A. Ospino., “Evaluation of hybrid system of renawable electricity generation a remote area of Colombia using homer software,” Tecciencia, vol. 9, no. 17, pp. 45-54, 2014.
[3] A. Ospino-Castro et al., "Techno-economic evaluation of a grid-connected hybrid PV-wind power generation system in San Luis Potosi, Mexico," 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017, pp. 1-6.
[4] A. Ospino, “Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico,” INGE CUC, vol. 6, no. 1, pp. 95-102, 2010.
[5] Unidad Española Fotovoltaica, UNEF, "Informe anual sobre energía Fotovoltaica," España, 2016. [Online]. Available: https://unef.es/wp-content/uploads/dlm_uploads/2016/08/Informe-Anual-UNEf-2016_El-tiempo-de-laenergia-solar-fotovoltaica.pdf.
[6] Grupo NAP, "Energía Fotovoltaica," Colegio oficial de ingenieros de telecomunicaciones, Ibergraphi, Madrid, España, 2007.
[7] J. Eras et al., "A look to the electricity generation from non-conventional renewable energy sources in Colombia," International Journal of Energy Economics and Policy, vol. 9, pp. 15-25, 2019.
[8] Robles-Algarin et al., "Dual-axis solar tracker for using in photovoltaic systems," International Journal of Renewable Energy Research, vol. 7, no. 1, pp. 137-145, 2017.
[9] Robles Algarin et al., "Implementation of a cost-effective fuzzy MPPT controller on the Arduino board," International Journal on Smart Sensing and Intelligent Systems, vol. 11, no. 1, pp. 1-10, 2018.
[10] D. Guardado et al., "Implementación de seguidor solar en dos ejes para el sistema fotovoltáico de la escuela de ingeniería eléctrica de la UES," Tesis, Universidad de El Salvador, 2012.
[11] A. Rustu Eke, "Performance comparison of a double-axis sun tracking versus fixed PV system," Mugla Sıtkı Kocman University, Clean Energy Research and Development Centre, 2011.
[12] E. Turrillas, "Estudio comparativo de la eficiencia energética en seguidores solares," Tesis, Universidad Pública de Navarra, 2014.
[13] B. Cohaila, "Diseño de un sistema de seguimiento solar de un eje para el aprovechamiento de la energía solar en sistemas fotovoltaicos," Universidad Nacional Jorge Basadre Grohman, Perú, 2006.
[14] Mejia, Andrés Escobar, M. Holguín Londoño, and J. C. Osorio, "Diseño e implementación de un seguidor solar para la optimización de un sistema fotovoltaico," Scientia et Technica, vol. 1, no. 44, pp. 245-250, 2010.
[15] Y. Muñoz et al., "Sizing and study of the energy production of a grid-tied photovoltaic system using PVsyst software," Tecciencia, vol. 12, no. 22, pp. 27-32, 2017.
[16] K. Nallapaneni et al., "Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool," Energy Procedia, vol. 117, pp. 180-189, 2017.
[17] B. Belmahdi et al., "Solar Potential Assessment using PVsyst Software in the Northern Zone of Morocco," Procedia Manufacturing, vol. 46, pp. 738-745, 2020.
[18] J. Kreider, "Solar energy applications," Mechanical Engineers Handbook: Energy and Power, vol. 4, 2006.
[19] H. Ambarita, "Development of software for estimating clear sky solar radiation in Indonesia," Journal of Physics: Conference Series, vol. 801, 2017.
[20] J. Beltran, "Prototipo fotovoltaico con seguimiento del sol para procesos electroquímicos," Tesis de maestría en Ciencias, Centro Nacional de Investigación y Desarrollo Tecnológico. 2007.
[21] R. Nazmul, "Calculating Optimum Angle for Solar Panels of Dhaka, Bangladesh for Capturing Maximum Irradiation," 2017 IEEE International WIE Conference on Electrical and Computer Engineering, pp. 25-28, 2017.
[22] Decreto número 1400 de 1984, "Código de construcción Sismo-Resistente," [Online]. Available: http://www.icbf.gov.co/cargues/avance/docs/decreto_1400_1984.htm
[23] S. Abdallah and O. Badran, "Sun tracking system for productivity enhancement of solar still," Desalination, vol. 220, no. 1-3, pp. 669-676, 2008.
[24] Z. Li et al., "Optical performance of vertical single-axis tracked solar panels," Renew. Energy, vol. 36, no. 1, pp. 64-68, 2011.
[25] M. Koussa et al., "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Appl. Energy, vol. 88, no. 5, pp. 1756-1771, 2011.
[26] Ma, Yi, Guihua Li, and Runsheng Tang, "Optical performance of vertical axis three azimuth angles tracked solar panels," Appl. Energy, vol. 88, no. 5, pp. 1784-1791, 2011.
[27] G. Lazaroiu et al., "Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption," Energy Conversion and Management, vol. 92, pp. 143-148, 2015.
[28] A. Sagar et al., "A Novel Design of A Bi-level Automatic Solar Tracker Using Rotations Around Orthogonal Axes," IEEE Proceedings from ICCCNT, 2017.
[29] Reddy, J. Satheesh, A. Chakraborti, and B. Das., "Implementation and Practical Evaluation of an Automatic Solar Tracking System for Different Weather Conditions," IEEE 7th Power India International Conference (PIICON), 2016, pp. 1-6.
[30] R. Dhanabal et al., "Comparison of Efficiencies of Solar Tracker systems with static panel SingleAxis Tracking System and Dual-Axis Tracking System with Fixed Mount," International journal of engineering and technology, vol. 5, no. 2, pp. 1925-1933, 2013.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv International Journal of Electrical and Computer Engineering (IJECE)
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijece.iaescore.com/index.php/IJECE/article/view/24581
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b73fd51e-28a5-4783-88a1-910ddf53a71b/download
https://repositorio.cuc.edu.co/bitstreams/af349d9d-7e4e-44c5-96d6-f9dfe150c05d/download
https://repositorio.cuc.edu.co/bitstreams/17c7021e-db18-4aa3-9f08-7b048a52f6f1/download
https://repositorio.cuc.edu.co/bitstreams/3aea7cf3-b746-43a4-8764-5e3c203b3eac/download
https://repositorio.cuc.edu.co/bitstreams/897ca2da-bdda-4e5d-91fd-238bc5b4d16d/download
bitstream.checksum.fl_str_mv f3e9c0c6aa7771f2b7f4ac3a4af78616
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
f8e8b938dfb33ab248a68e8ca8e83fdb
b491839cf891a8e45c9aa17e4935dad3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760677531942912
spelling GONZALEZ ACEVEDO, HERNANDOMuñoz Maldonado, Yecid AlfonsoOspino C., AdalbertoSerrano Atencio, Julian AnthonyJaimes Saavedra, Cristian2021-06-04T22:33:32Z2021-06-04T22:33:32Z2021-01-1320888708https://hdl.handle.net/11323/8360https://doi.org/10.11591/ijece.v11i4.pp2889-2898Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the power supplied by the tracker with the power supplied by static solar panel of the same characteristics. The performance is initially simulated using Pv-Syst software, and later validated with the data obtained by the interface. As a result, the use of the solar tracker increases the power delivered by a minimum of 19%, and it can go as high as 47.84%, with an average in increase in power of 19.5% in the monthly energy production. This experimental result was compared with the simulation by Pv-Syst software and shows a difference of only 2.5%, thus validating the reliability of the simulation. This behavior pattern coincides with previous studies carried out for equatorial latitudes.Este artículo presenta el diseño mecánico de un seguimiento solar de un solo eje. sistema, así como el diseño electrónico de un sistema que grabar en tiempo real la potencia eléctrica entregada por el seguidor solar y evaluar su actuación. La interfaz fue desarrollada en Labview y compara el energía suministrada por el seguidor con la energía suministrada por el panel solar estático de las mismas características. El rendimiento se simula inicialmente con Pv-Syst software, y posteriormente validado con los datos obtenidos por la interfaz. Como un Como resultado, el uso del seguidor solar aumenta la potencia entregada por un mínimo del 19%, y puede llegar hasta el 47,84%, con un promedio en aumento de potencia del 19,5% en la producción de energía mensual. Esto El resultado experimental se comparó con la simulación del software Pv-Syst. y muestra una diferencia de solo 2.5%, validando así la confiabilidad del simulación. Este patrón de comportamiento coincide con estudios previos realizados para latitudes ecuatoriales.GONZALEZ ACEVEDO, HERNANDO-will be generated-orcid-0000-0001-6242-3939-600Muñoz Maldonado, Yecid Alfonso-will be generated-orcid-0000-0002-5213-1884-600Ospino C., Adalberto-will be generated-orcid-0000-0003-1466-0424-600Serrano Atencio, Julian AnthonyJaimes Saavedra, Cristianapplication/pdfengInternational Journal of Electrical and Computer Engineering (IJECE)CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy efficiencyPhotovoltaic panelPower generation plantPv-Syst softwareSolar trackerEficiencia energéticaPanel fotovoltaicoPlanta de generación de energíaSeguidor solarDesign and performance evaluation of a solar tracking panel of single axis in ColombiaDiseño y evaluación de desempeño de un panel de seguimiento solar de un solo eje en ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttp://ijece.iaescore.com/index.php/IJECE/article/view/24581[1] E. Noriega-Angarita et al., "Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks," International Journal of Engineering and Technology, vol. 8, no. 4, pp. 1817-1825, 2016.[2] Y. Muñoz, J. Guerrero, and A. Ospino., “Evaluation of hybrid system of renawable electricity generation a remote area of Colombia using homer software,” Tecciencia, vol. 9, no. 17, pp. 45-54, 2014.[3] A. Ospino-Castro et al., "Techno-economic evaluation of a grid-connected hybrid PV-wind power generation system in San Luis Potosi, Mexico," 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017, pp. 1-6.[4] A. Ospino, “Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico,” INGE CUC, vol. 6, no. 1, pp. 95-102, 2010.[5] Unidad Española Fotovoltaica, UNEF, "Informe anual sobre energía Fotovoltaica," España, 2016. [Online]. Available: https://unef.es/wp-content/uploads/dlm_uploads/2016/08/Informe-Anual-UNEf-2016_El-tiempo-de-laenergia-solar-fotovoltaica.pdf.[6] Grupo NAP, "Energía Fotovoltaica," Colegio oficial de ingenieros de telecomunicaciones, Ibergraphi, Madrid, España, 2007.[7] J. Eras et al., "A look to the electricity generation from non-conventional renewable energy sources in Colombia," International Journal of Energy Economics and Policy, vol. 9, pp. 15-25, 2019.[8] Robles-Algarin et al., "Dual-axis solar tracker for using in photovoltaic systems," International Journal of Renewable Energy Research, vol. 7, no. 1, pp. 137-145, 2017.[9] Robles Algarin et al., "Implementation of a cost-effective fuzzy MPPT controller on the Arduino board," International Journal on Smart Sensing and Intelligent Systems, vol. 11, no. 1, pp. 1-10, 2018.[10] D. Guardado et al., "Implementación de seguidor solar en dos ejes para el sistema fotovoltáico de la escuela de ingeniería eléctrica de la UES," Tesis, Universidad de El Salvador, 2012.[11] A. Rustu Eke, "Performance comparison of a double-axis sun tracking versus fixed PV system," Mugla Sıtkı Kocman University, Clean Energy Research and Development Centre, 2011.[12] E. Turrillas, "Estudio comparativo de la eficiencia energética en seguidores solares," Tesis, Universidad Pública de Navarra, 2014.[13] B. Cohaila, "Diseño de un sistema de seguimiento solar de un eje para el aprovechamiento de la energía solar en sistemas fotovoltaicos," Universidad Nacional Jorge Basadre Grohman, Perú, 2006.[14] Mejia, Andrés Escobar, M. Holguín Londoño, and J. C. Osorio, "Diseño e implementación de un seguidor solar para la optimización de un sistema fotovoltaico," Scientia et Technica, vol. 1, no. 44, pp. 245-250, 2010.[15] Y. Muñoz et al., "Sizing and study of the energy production of a grid-tied photovoltaic system using PVsyst software," Tecciencia, vol. 12, no. 22, pp. 27-32, 2017.[16] K. Nallapaneni et al., "Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool," Energy Procedia, vol. 117, pp. 180-189, 2017.[17] B. Belmahdi et al., "Solar Potential Assessment using PVsyst Software in the Northern Zone of Morocco," Procedia Manufacturing, vol. 46, pp. 738-745, 2020.[18] J. Kreider, "Solar energy applications," Mechanical Engineers Handbook: Energy and Power, vol. 4, 2006.[19] H. Ambarita, "Development of software for estimating clear sky solar radiation in Indonesia," Journal of Physics: Conference Series, vol. 801, 2017.[20] J. Beltran, "Prototipo fotovoltaico con seguimiento del sol para procesos electroquímicos," Tesis de maestría en Ciencias, Centro Nacional de Investigación y Desarrollo Tecnológico. 2007.[21] R. Nazmul, "Calculating Optimum Angle for Solar Panels of Dhaka, Bangladesh for Capturing Maximum Irradiation," 2017 IEEE International WIE Conference on Electrical and Computer Engineering, pp. 25-28, 2017.[22] Decreto número 1400 de 1984, "Código de construcción Sismo-Resistente," [Online]. Available: http://www.icbf.gov.co/cargues/avance/docs/decreto_1400_1984.htm[23] S. Abdallah and O. Badran, "Sun tracking system for productivity enhancement of solar still," Desalination, vol. 220, no. 1-3, pp. 669-676, 2008.[24] Z. Li et al., "Optical performance of vertical single-axis tracked solar panels," Renew. Energy, vol. 36, no. 1, pp. 64-68, 2011.[25] M. Koussa et al., "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Appl. Energy, vol. 88, no. 5, pp. 1756-1771, 2011.[26] Ma, Yi, Guihua Li, and Runsheng Tang, "Optical performance of vertical axis three azimuth angles tracked solar panels," Appl. Energy, vol. 88, no. 5, pp. 1784-1791, 2011.[27] G. Lazaroiu et al., "Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption," Energy Conversion and Management, vol. 92, pp. 143-148, 2015.[28] A. Sagar et al., "A Novel Design of A Bi-level Automatic Solar Tracker Using Rotations Around Orthogonal Axes," IEEE Proceedings from ICCCNT, 2017.[29] Reddy, J. Satheesh, A. Chakraborti, and B. Das., "Implementation and Practical Evaluation of an Automatic Solar Tracking System for Different Weather Conditions," IEEE 7th Power India International Conference (PIICON), 2016, pp. 1-6.[30] R. Dhanabal et al., "Comparison of Efficiencies of Solar Tracker systems with static panel SingleAxis Tracking System and Dual-Axis Tracking System with Fixed Mount," International journal of engineering and technology, vol. 5, no. 2, pp. 1925-1933, 2013.PublicationORIGINAL24581-48259-1-PB.pdf24581-48259-1-PB.pdfapplication/pdf995321https://repositorio.cuc.edu.co/bitstreams/b73fd51e-28a5-4783-88a1-910ddf53a71b/downloadf3e9c0c6aa7771f2b7f4ac3a4af78616MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/af349d9d-7e4e-44c5-96d6-f9dfe150c05d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/17c7021e-db18-4aa3-9f08-7b048a52f6f1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL24581-48259-1-PB.pdf.jpg24581-48259-1-PB.pdf.jpgimage/jpeg64708https://repositorio.cuc.edu.co/bitstreams/3aea7cf3-b746-43a4-8764-5e3c203b3eac/downloadf8e8b938dfb33ab248a68e8ca8e83fdbMD54TEXT24581-48259-1-PB.pdf.txt24581-48259-1-PB.pdf.txttext/plain33195https://repositorio.cuc.edu.co/bitstreams/897ca2da-bdda-4e5d-91fd-238bc5b4d16d/downloadb491839cf891a8e45c9aa17e4935dad3MD5511323/8360oai:repositorio.cuc.edu.co:11323/83602024-09-16 16:44:39.421http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==