Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma

Introducción— La problemática a tratar en este trabajo es la detección de melanoma, el cual es uno de los distintos cánceres de piel que existen, el cual presenta una alta tasa de mortalidad. Objetivo— En este documento se presenta un proyecto de investigación en el área de Inteligencia Artificial c...

Full description

Autores:
Altuve, Abraham
Colon Muñoz, Elias Enrique
Núñez Valdez, Edward Rolando
Murillo, Luis
blanquicett benavides, luis alfredo
ARRIETA RODRIGUEZ, EUGENIA LUZ
NUÑEZ, EDWARD ROLANDO
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10593
Acceso en línea:
https://hdl.handle.net/11323/10593
https://repositorio.cuc.edu.co
Palabra clave:
Deep learning
Lesiones cutáneas
Melanoma
Procesamiento de imágenes
Redes neuronales convolucionales
Deep Learning
Skin lesions
Melanoma
Image processing
Convolutional neural networks
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_47792adf7969e67215b635b95d6a2487
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10593
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
dc.title.translated.none.fl_str_mv Detection in images of skin lesions using computer vision and deep learning
title Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
spellingShingle Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
Deep learning
Lesiones cutáneas
Melanoma
Procesamiento de imágenes
Redes neuronales convolucionales
Deep Learning
Skin lesions
Melanoma
Image processing
Convolutional neural networks
title_short Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
title_full Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
title_fullStr Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
title_full_unstemmed Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
title_sort Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanoma
dc.creator.fl_str_mv Altuve, Abraham
Colon Muñoz, Elias Enrique
Núñez Valdez, Edward Rolando
Murillo, Luis
blanquicett benavides, luis alfredo
ARRIETA RODRIGUEZ, EUGENIA LUZ
NUÑEZ, EDWARD ROLANDO
dc.contributor.author.none.fl_str_mv Altuve, Abraham
Colon Muñoz, Elias Enrique
Núñez Valdez, Edward Rolando
Murillo, Luis
blanquicett benavides, luis alfredo
ARRIETA RODRIGUEZ, EUGENIA LUZ
NUÑEZ, EDWARD ROLANDO
dc.subject.proposal.spa.fl_str_mv Deep learning
Lesiones cutáneas
Melanoma
Procesamiento de imágenes
Redes neuronales convolucionales
topic Deep learning
Lesiones cutáneas
Melanoma
Procesamiento de imágenes
Redes neuronales convolucionales
Deep Learning
Skin lesions
Melanoma
Image processing
Convolutional neural networks
dc.subject.proposal.eng.fl_str_mv Deep Learning
Skin lesions
Melanoma
Image processing
Convolutional neural networks
description Introducción— La problemática a tratar en este trabajo es la detección de melanoma, el cual es uno de los distintos cánceres de piel que existen, el cual presenta una alta tasa de mortalidad. Objetivo— En este documento se presenta un proyecto de investigación en el área de Inteligencia Artificial cuyo objetivo es la detección de melanoma por medio del análisis de imágenes utilizando Deep Learning. Metodología— Inicialmente se aplican operaciones morfológicas sobre la imagen para dejar solo el objeto de interés. Luego esta imagen se ingresa a una red neuronal convolucional, la cual ha sido entrenada para la detección de melanomas. Resultados— La arquitectura de red convolucional propuesta presenta unos resultados aceptables en la métrica de accuracy para la identificación de melanoma maligno o benigno. Sin embargo, se propone realizar futuros experimentos que puedan mejorar estos resultados. Conclusiones— Gracias a las técnicas de Deep Learning con esta clase de herramientas se está ofreciendo un sistema muy poderoso y útil a la hora de determinar el diagnóstico de este tipo de enfermedades.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-17T18:41:26Z
dc.date.available.none.fl_str_mv 2023-11-17T18:41:26Z
dc.date.issued.none.fl_str_mv 2023-07-13
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv A. Altuve, E. Colón, A. De la Rosa, L. Murillo, L. Blanquicett, E. Arrieta & E. Núñez, “Detección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo”, J. Comput. Electron. Sci.: Theory Appl., vol. 4, no. 1, pp. 41–62, 2023. https://doi. org/10.17981/cesta.04.01.2023.05
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10593
dc.identifier.doi.none.fl_str_mv 10.17981/cesta.04.01.2023.05
dc.identifier.eissn.spa.fl_str_mv 2745-0090
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co
identifier_str_mv A. Altuve, E. Colón, A. De la Rosa, L. Murillo, L. Blanquicett, E. Arrieta & E. Núñez, “Detección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo”, J. Comput. Electron. Sci.: Theory Appl., vol. 4, no. 1, pp. 41–62, 2023. https://doi. org/10.17981/cesta.04.01.2023.05
10.17981/cesta.04.01.2023.05
2745-0090
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10593
https://repositorio.cuc.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv CESTA
dc.relation.references.spa.fl_str_mv [1] M. Tapia, Comprender el cáncer: Conoce qué es el cáncer, por qué se produce y hasta qué punto se puede prevenir y curar. CHI, IL, USA: IPG, 2019.
[2] Equipo de redactores y equipo de editores médicos de la ACS, “El diagnóstico temprano del cáncer salva vidas y reduce los costos de tratamiento”, ACS, noviembre 20, 2020. Disponible en https://www3.paho.org/hq/index.php?option=com_content&v iew=article&id=12946:early-cancer-diagnosis-saves-lives-cuts-treatment-costs&Itemid=0&lang=es#gsc.tab=0
[3] Y. Ranchod & S. Frothingham, “The 13 Most Common Cancers with Statistics,” Healthline, March 7, 2019. Available: https:// www.healthline.com/health/most-common-cancers
[4] A. Adegun & S. Viriri, “Deep Learning techniques for skin lesion analysis and melanoma cancer detection: a survey of stateof-the-art,” Art Intell Rev, vol. 54, no. 2, pp. 811–841, Jun. 2020. https://doi.org/10.1007/S10462-020-09865-y
[5] Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang & Q. Sun, “Deep Learning for image-based cancer detection and diagnosis − A survey,” Pattern Recognit, vol. 83, pp. 134–149, Nov. 2018. https://doi.org/10.1016/J.PATCOG.2018.05.014
[6] K. Munir, H. Elahi, A. Ayub, F. Frezza & A. Rizzi, “Cancer Diagnosis Using Deep Learning: A Bibliographic Review,” Cancers, vol. 11, no. 9, pp. 1–36, Aug. 2019. https://doi.org/10.3390/CANCERS11091235
[7] H. Agudelo & M. Sarria, “Detección de cáncer de seno usando imágenes de histopatología y modelos de aprendizaje profundo pre-entrenados”, CESTA, vol. 2, no. 2, pp. 27–36, Dec. 2021. https://doi.org/10.17981/CESTA.02.02.2021.04
[8] S. U. Khan, N. Islam, Z. Jan, I. Ud Din & J. J. P. C. Rodrigues, “A novel Deep Learning based framework for the detection and classification of breast cancer using transfer learning,” Pattern Recognit Lett, vol. 125, pp. 1–6, Jul. 2019. https://doi. org/10.1016/J.PATREC.2019.03.022
[9] D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado, D. P. Naidich & S. Shetty, “End-to-end lung cancer screening with three-dimensional Deep Learning on low-dose chest computed tomography,” Nat Med, vol. 25, no. 6, pp. 954–961, May. 2019. https://doi.org/10.1038/s41591-019-0447-x
[10] F. Hernández-Pimentel, “A propósito del cáncer”, Rev Costarric Salud Pública, vol. 19, no. 2, pp. 67–69, Nov. 2010. Disponible en http://hdl.handle.net/20.500.11764/1255
[11] INC Colombia, “Melanoma,” gov.co, 2018. Disponible en https://www.cancer.gov.co/conozca-sobre-cancer-1/informacion-sobrecancer-para-pacientes/tipos-cancer/melanoma
[12] OMS, “Cáncer/ Prevención,” WHO, 12 jul. 2019. Disponible en https://www.who.int/cancer/prevention/es/
[13] G. L. Wells, “Generalidades sobre el cáncer de piel”, MSD, Sept. 6, 2022. Disponible en https://www.msdmanuals.com/es/professional/trastornos-dermatológicos/cánceres-cutáneos/generalidades-sobre-el-cáncer-de-piel
[14] Á. E. Acosta, E. Fierro, V. E. Velásquez & X. Rueda, “Melanoma: patogénesis, clínica e histopatología”, Rev Asoc Colomb de Dermatol, vol. 17, no. 2, pp. 87–108, Jun. 2009. Disponible en https://revista.asocolderma.org.co/index.php/asocolderma/article/view/156
[15] I. Goodfellow, Y. Bengio, A. Courville & J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning,” Genet Program Evolvable Mach, vol. 19, no. 1, pp. 305–307, Oct. 2017. https://doi.org/10.1007/S10710-017-9314-Z
[16] michaelbeale-IL, “Bringing Parallelism to the Web with River Trail,” GitHub, Nov 7, 2022. Available: http://intellabs.github. io/RiverTrail/tutorial/
[17] MAYOCLINIC, “Cáncer de piel,” Fundación Mayo para la Educación y la Investigación Médicas, Dic. 6, 2022. Disponible en https://www.mayoclinic.org/es-es/diseases-conditions/skin-cancer/symptoms-causes/syc-20377605
[18] AECC, “Cáncer de piel,” Asociación Española Contra el Cáncer, 2021. Disponible en https://www.aecc.es/es/todo-sobre-cancer/ tipos-cancer/cancer-piel
[19] ACS, “What Is Melanoma Skin Cancer?,” ACS, Aug. 14, 2019. Available: https://www.cancer.org/cancer/melanoma-skin-cancer/about/what-is-melanoma.html
[20] ACS, “¿Qué es el cáncer de piel tipo melanoma?,” ACS, Ago. 14, 2019. Disponible en https://www.cancer.org/es/cancer/cancerde-piel-tipo-melanoma/acerca/que-es-melanoma.html
[21] INC Colombia, “Diagnóstico y tratamiento del cáncer en Colombia”, gov.co, Abril 9, 2021. Disponible en https://www.cancer. gov.co/centro-investigacion/lineas-investigacion/diagnostico-tratamiento-del-cancer-colombia
[22] ISIC International, “The International Skin Imaging Collaboration,” ISIC, 2021. Available: https://www.isic-archive.com/
[23] OpenCV, “Image Inpainting,” Open Source Computer Vision, Jul 10, 2023. Available: https://docs.opencv.org/master/df/d3d/ tutorial_py_inpainting.html
[24] L. Bareiro, D. Leguizamón, D. Pinto-Roa, J. Vázquez & L. Salgueiro, “Computerized Medical Diagnosis of Melanocytic Lesions based on the ABCD approach,” CLEIej , vol 19, no. 2, pp. 5:1–5:22, Ago. 2016. https://doi.org/10.19153/cleiej.19.2.5
[25] MathWorks, “Ajuste de contraste”, The MathWorks Inc, 2023. https://es.mathworks.com/help/images/contrast-adjustment.html
[26] J. Scharcanski & M. Emre, Eds, Computer Vision Techniques for the Diagnosis of Skin Cancer. Verlag: Springer, 2013. https:// doi.org/10.1007/978-3-642-39608-3
dc.relation.citationendpage.spa.fl_str_mv 62
dc.relation.citationstartpage.spa.fl_str_mv 41
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 4
dc.rights.eng.fl_str_mv The author; licensee Universidad de la Costa - CUC
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
The author; licensee Universidad de la Costa - CUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 22 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/CESTA/article/view/4502
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8e30f274-af99-4a29-a15a-4e65998a965b/download
https://repositorio.cuc.edu.co/bitstreams/41123c68-bf58-4f41-b55c-c4d925824233/download
https://repositorio.cuc.edu.co/bitstreams/8e41713c-ad5f-42ff-93e1-89ee341903f1/download
https://repositorio.cuc.edu.co/bitstreams/a4b22042-14b7-429d-9a96-8cacbde761aa/download
bitstream.checksum.fl_str_mv ff24c3dca4d01e9c7d2ad00c11379560
2f9959eaf5b71fae44bbf9ec84150c7a
8cb5ee918d3ef1318cd07d9a56a48534
30f18253f9cb5db107d7d1b61e8dc9bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760664737218560
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)The author; licensee Universidad de la Costa - CUChttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Altuve, AbrahamColon Muñoz, Elias EnriqueNúñez Valdez, Edward RolandoMurillo, Luisblanquicett benavides, luis alfredoARRIETA RODRIGUEZ, EUGENIA LUZNUÑEZ, EDWARD ROLANDO2023-11-17T18:41:26Z2023-11-17T18:41:26Z2023-07-13A. Altuve, E. Colón, A. De la Rosa, L. Murillo, L. Blanquicett, E. Arrieta & E. Núñez, “Detección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo”, J. Comput. Electron. Sci.: Theory Appl., vol. 4, no. 1, pp. 41–62, 2023. https://doi. org/10.17981/cesta.04.01.2023.05https://hdl.handle.net/11323/1059310.17981/cesta.04.01.2023.052745-0090Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coIntroducción— La problemática a tratar en este trabajo es la detección de melanoma, el cual es uno de los distintos cánceres de piel que existen, el cual presenta una alta tasa de mortalidad. Objetivo— En este documento se presenta un proyecto de investigación en el área de Inteligencia Artificial cuyo objetivo es la detección de melanoma por medio del análisis de imágenes utilizando Deep Learning. Metodología— Inicialmente se aplican operaciones morfológicas sobre la imagen para dejar solo el objeto de interés. Luego esta imagen se ingresa a una red neuronal convolucional, la cual ha sido entrenada para la detección de melanomas. Resultados— La arquitectura de red convolucional propuesta presenta unos resultados aceptables en la métrica de accuracy para la identificación de melanoma maligno o benigno. Sin embargo, se propone realizar futuros experimentos que puedan mejorar estos resultados. Conclusiones— Gracias a las técnicas de Deep Learning con esta clase de herramientas se está ofreciendo un sistema muy poderoso y útil a la hora de determinar el diagnóstico de este tipo de enfermedades.Introduction— The problem to be addressed in this work is the detection of melanoma, which is one of the different skin cancers that exist, which has a high mortality rate. Objective— This document presents a research project in Artificial Intelligence whose objective is the detection of melanoma through image analysis using Deep Learning. Methodology— Initially, morphological operations are applied to the image to leave only the object of interest. This image is then fed into a convolutional neural network, which has been trained for melanoma detection. Results— The proposed convolutional network architecture presents acceptable results in the accuracy metric for the identification of malignant or bening melanoma. However, it is proposed to carry out future experiments that can improve these results. Conclusions— Thanks to Deep Learning techniques with this class of tools, a very powerful and useful system is being offered when it comes to determining the diagnosis of this type of disease.22 páginasapplication/pdfspaCorporación Universidad de la CostaBarranquillahttps://revistascientificas.cuc.edu.co/CESTA/article/view/4502Detección de melanoma en imágenes de lesiones cutáneas usando visión por computadora y aprendizaje profundo melanomaDetection in images of skin lesions using computer vision and deep learningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85CESTA[1] M. Tapia, Comprender el cáncer: Conoce qué es el cáncer, por qué se produce y hasta qué punto se puede prevenir y curar. CHI, IL, USA: IPG, 2019.[2] Equipo de redactores y equipo de editores médicos de la ACS, “El diagnóstico temprano del cáncer salva vidas y reduce los costos de tratamiento”, ACS, noviembre 20, 2020. Disponible en https://www3.paho.org/hq/index.php?option=com_content&v iew=article&id=12946:early-cancer-diagnosis-saves-lives-cuts-treatment-costs&Itemid=0&lang=es#gsc.tab=0[3] Y. Ranchod & S. Frothingham, “The 13 Most Common Cancers with Statistics,” Healthline, March 7, 2019. Available: https:// www.healthline.com/health/most-common-cancers[4] A. Adegun & S. Viriri, “Deep Learning techniques for skin lesion analysis and melanoma cancer detection: a survey of stateof-the-art,” Art Intell Rev, vol. 54, no. 2, pp. 811–841, Jun. 2020. https://doi.org/10.1007/S10462-020-09865-y[5] Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang & Q. Sun, “Deep Learning for image-based cancer detection and diagnosis − A survey,” Pattern Recognit, vol. 83, pp. 134–149, Nov. 2018. https://doi.org/10.1016/J.PATCOG.2018.05.014[6] K. Munir, H. Elahi, A. Ayub, F. Frezza & A. Rizzi, “Cancer Diagnosis Using Deep Learning: A Bibliographic Review,” Cancers, vol. 11, no. 9, pp. 1–36, Aug. 2019. https://doi.org/10.3390/CANCERS11091235[7] H. Agudelo & M. Sarria, “Detección de cáncer de seno usando imágenes de histopatología y modelos de aprendizaje profundo pre-entrenados”, CESTA, vol. 2, no. 2, pp. 27–36, Dec. 2021. https://doi.org/10.17981/CESTA.02.02.2021.04[8] S. U. Khan, N. Islam, Z. Jan, I. Ud Din & J. J. P. C. Rodrigues, “A novel Deep Learning based framework for the detection and classification of breast cancer using transfer learning,” Pattern Recognit Lett, vol. 125, pp. 1–6, Jul. 2019. https://doi. org/10.1016/J.PATREC.2019.03.022[9] D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado, D. P. Naidich & S. Shetty, “End-to-end lung cancer screening with three-dimensional Deep Learning on low-dose chest computed tomography,” Nat Med, vol. 25, no. 6, pp. 954–961, May. 2019. https://doi.org/10.1038/s41591-019-0447-x[10] F. Hernández-Pimentel, “A propósito del cáncer”, Rev Costarric Salud Pública, vol. 19, no. 2, pp. 67–69, Nov. 2010. Disponible en http://hdl.handle.net/20.500.11764/1255[11] INC Colombia, “Melanoma,” gov.co, 2018. Disponible en https://www.cancer.gov.co/conozca-sobre-cancer-1/informacion-sobrecancer-para-pacientes/tipos-cancer/melanoma[12] OMS, “Cáncer/ Prevención,” WHO, 12 jul. 2019. Disponible en https://www.who.int/cancer/prevention/es/[13] G. L. Wells, “Generalidades sobre el cáncer de piel”, MSD, Sept. 6, 2022. Disponible en https://www.msdmanuals.com/es/professional/trastornos-dermatológicos/cánceres-cutáneos/generalidades-sobre-el-cáncer-de-piel[14] Á. E. Acosta, E. Fierro, V. E. Velásquez & X. Rueda, “Melanoma: patogénesis, clínica e histopatología”, Rev Asoc Colomb de Dermatol, vol. 17, no. 2, pp. 87–108, Jun. 2009. Disponible en https://revista.asocolderma.org.co/index.php/asocolderma/article/view/156[15] I. Goodfellow, Y. Bengio, A. Courville & J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning,” Genet Program Evolvable Mach, vol. 19, no. 1, pp. 305–307, Oct. 2017. https://doi.org/10.1007/S10710-017-9314-Z[16] michaelbeale-IL, “Bringing Parallelism to the Web with River Trail,” GitHub, Nov 7, 2022. Available: http://intellabs.github. io/RiverTrail/tutorial/[17] MAYOCLINIC, “Cáncer de piel,” Fundación Mayo para la Educación y la Investigación Médicas, Dic. 6, 2022. Disponible en https://www.mayoclinic.org/es-es/diseases-conditions/skin-cancer/symptoms-causes/syc-20377605[18] AECC, “Cáncer de piel,” Asociación Española Contra el Cáncer, 2021. Disponible en https://www.aecc.es/es/todo-sobre-cancer/ tipos-cancer/cancer-piel[19] ACS, “What Is Melanoma Skin Cancer?,” ACS, Aug. 14, 2019. Available: https://www.cancer.org/cancer/melanoma-skin-cancer/about/what-is-melanoma.html[20] ACS, “¿Qué es el cáncer de piel tipo melanoma?,” ACS, Ago. 14, 2019. Disponible en https://www.cancer.org/es/cancer/cancerde-piel-tipo-melanoma/acerca/que-es-melanoma.html[21] INC Colombia, “Diagnóstico y tratamiento del cáncer en Colombia”, gov.co, Abril 9, 2021. Disponible en https://www.cancer. gov.co/centro-investigacion/lineas-investigacion/diagnostico-tratamiento-del-cancer-colombia[22] ISIC International, “The International Skin Imaging Collaboration,” ISIC, 2021. Available: https://www.isic-archive.com/[23] OpenCV, “Image Inpainting,” Open Source Computer Vision, Jul 10, 2023. Available: https://docs.opencv.org/master/df/d3d/ tutorial_py_inpainting.html[24] L. Bareiro, D. Leguizamón, D. Pinto-Roa, J. Vázquez & L. Salgueiro, “Computerized Medical Diagnosis of Melanocytic Lesions based on the ABCD approach,” CLEIej , vol 19, no. 2, pp. 5:1–5:22, Ago. 2016. https://doi.org/10.19153/cleiej.19.2.5[25] MathWorks, “Ajuste de contraste”, The MathWorks Inc, 2023. https://es.mathworks.com/help/images/contrast-adjustment.html[26] J. Scharcanski & M. Emre, Eds, Computer Vision Techniques for the Diagnosis of Skin Cancer. Verlag: Springer, 2013. https:// doi.org/10.1007/978-3-642-39608-3624114Deep learningLesiones cutáneasMelanomaProcesamiento de imágenesRedes neuronales convolucionalesDeep LearningSkin lesionsMelanomaImage processingConvolutional neural networksPublicationORIGINALDetección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo.pdfDetección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo.pdfArtículoapplication/pdf1555886https://repositorio.cuc.edu.co/bitstreams/8e30f274-af99-4a29-a15a-4e65998a965b/downloadff24c3dca4d01e9c7d2ad00c11379560MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/41123c68-bf58-4f41-b55c-c4d925824233/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTDetección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo.pdf.txtDetección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo.pdf.txtExtracted texttext/plain62376https://repositorio.cuc.edu.co/bitstreams/8e41713c-ad5f-42ff-93e1-89ee341903f1/download8cb5ee918d3ef1318cd07d9a56a48534MD53THUMBNAILDetección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo.pdf.jpgDetección de Melanoma en Imágenes de Lesiones Cutáneas usando Visión por Computadora y Aprendizaje Profundo.pdf.jpgGenerated Thumbnailimage/jpeg12862https://repositorio.cuc.edu.co/bitstreams/a4b22042-14b7-429d-9a96-8cacbde761aa/download30f18253f9cb5db107d7d1b61e8dc9bfMD5411323/10593oai:repositorio.cuc.edu.co:11323/105932024-09-16 16:37:34.081https://creativecommons.org/licenses/by-nc-nd/4.0/The author; licensee Universidad de la Costa - CUCopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=