Use of the industrial property system in Colombia (2018): A supervised learning application
The purpose of this paper is to establish ways to predict the spatial distribution of the use of the intellectual property system from information on industrial property applications and grants (distinctive signs and new creations) and copyright registrations in 2018. This will be done using supervi...
- Autores:
-
Lis-Gutiérrez, Jenny-Paola
Lis Gutiérrez, Melissa
GALLEGO-TORRES, ADRIANA PATRICIA
Ballesteros Ballesteros, Vladimir
Romero-Ospina, Manuel Francisco
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8043
- Acceso en línea:
- https://hdl.handle.net/11323/8043
https://doi.org/10.1007/978-3-030-53956-6_46
https://repositorio.cuc.edu.co/
- Palabra clave:
- Spatial distribution
Distinctive signs
New creations
Supervised learning
Machine learning
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_47698ec0456929e40e3e95380780368a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8043 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Use of the industrial property system in Colombia (2018): A supervised learning application |
title |
Use of the industrial property system in Colombia (2018): A supervised learning application |
spellingShingle |
Use of the industrial property system in Colombia (2018): A supervised learning application Spatial distribution Distinctive signs New creations Supervised learning Machine learning |
title_short |
Use of the industrial property system in Colombia (2018): A supervised learning application |
title_full |
Use of the industrial property system in Colombia (2018): A supervised learning application |
title_fullStr |
Use of the industrial property system in Colombia (2018): A supervised learning application |
title_full_unstemmed |
Use of the industrial property system in Colombia (2018): A supervised learning application |
title_sort |
Use of the industrial property system in Colombia (2018): A supervised learning application |
dc.creator.fl_str_mv |
Lis-Gutiérrez, Jenny-Paola Lis Gutiérrez, Melissa GALLEGO-TORRES, ADRIANA PATRICIA Ballesteros Ballesteros, Vladimir Romero-Ospina, Manuel Francisco |
dc.contributor.author.spa.fl_str_mv |
Lis-Gutiérrez, Jenny-Paola Lis Gutiérrez, Melissa GALLEGO-TORRES, ADRIANA PATRICIA Ballesteros Ballesteros, Vladimir Romero-Ospina, Manuel Francisco |
dc.subject.spa.fl_str_mv |
Spatial distribution Distinctive signs New creations Supervised learning Machine learning |
topic |
Spatial distribution Distinctive signs New creations Supervised learning Machine learning |
description |
The purpose of this paper is to establish ways to predict the spatial distribution of the use of the intellectual property system from information on industrial property applications and grants (distinctive signs and new creations) and copyright registrations in 2018. This will be done using supervised learning algorithms applied to information on industrial property applications and grants (trademarks and new creations) and copyright registrations in 2018. Within the findings, 4 algorithms were identified with a level of explanation higher than 80%: (i) Linear Regression, with an elastic network regularization; (ii) Stochastic Gradient Descent, with Hinge loss function, Ringe regularization (L2) and a constant learning rate; (iii) Neural Networks, with 1,000 layers, with Adam’s solution algorithm and 2,000 iterations; (iv) Random Forest, with 10 trees |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06-22 |
dc.date.accessioned.none.fl_str_mv |
2021-03-18T16:52:50Z |
dc.date.available.none.fl_str_mv |
2021-03-18T16:52:50Z |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
03029743 16113349 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8043 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-53956-6_46 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
03029743 16113349 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8043 https://doi.org/10.1007/978-3-030-53956-6_46 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Lis-Gutiérrez, J.P., Zerda-Sarmiento, A., Balaguera, M., Gaitán-Angulo, M., Lis-Gutiérrez, M.: Uso del sistema de propiedad industrial para signos distintivos en Colombia: un análisis departamental (2000–2016). En: Campos, G., Castaño, M., Gaitán-Angulo, M. & Sánchez, V. (Comps). Diálogos sobre investigación: avances científicos Konrad Lorenz, pp 193–215. Bogotá: Konrad Lorenz Editores (2019) 2. Lis-Gutiérrez, J.P., Lis-Gutiérrez, M., Gaitán-Angulo, M., Balaguera, M.I., Viloria, A., Santander-Abril, J.E.: Use of the industrial property system for new creations in colombia: a departmental analysis (2000–2016). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 786–796. Springer, Cham (2018). 10.1007/978-3-319-93803-5_74 3. WIPO. World intellectual property indicators. Ginebra: OMPI (2018) 4. WIPO. Datos y cifras de la OMPI sobre PI, edición de 2018. Ginebra: OMPI (2019) 6. Dirección Nacional de Derechos de Autor (DNDA). Estadísticas en línea [Base de datos]. Bogotá: DNDA (2019) 7. Moros Ochoa, A., Lis-Gutiérrez, J.P., Castro Nieto, G.Y., Vargas, C.A., Rincón. J.C.: La percepción de calidad de servicio como determinante de la recomendación: una predicción mediante inteligencia artificial para los hoteles en Cartagena. En: G. Campos, M.A. Castaño, M. Gaitán-Angulo, V. Sánchez (comp). Diálogos sobre investigación. Bogotá: Editorial Konrad Lorenz (2020) 8. Lis-Gutiérrez, J.P., Aguilera-Hernández, D., Escobedo David, L.R.: Análisis de las demandas de los integrantes del Ejército colombiano en calidad de víctimas; una aplicación de machine learning. En: G. Barbosa Castillo, M. Correa, y A. Ciro Gómez (eds.), Análisis de las demandas de los integrantes del Ejército en calidad de víctimas: una aplicación de “machine learning”, pp. 437–468. Universidad Externado de Colombia, Bogotá (2020) 9. Alimov A. Intellectual property rights reform and the cost of corporate debt. J. Int. Money Finance. 2019;91:195–211. doi: 10.1016/j.jimonfin.2018.12.004. 10. Sweet C, Eterovic D. Do patent rights matter? 40 years of innovation, complexity and productivity. World Dev. 2019;115:78–93. doi: 10.1016/j.worlddev.2018.10.009. 11. Auriol E, Biancini S, Paillacar R. Universal intellectual property rights: too much of a good thing? Int. J. Ind. Organ. 2019;65:51–81. doi: 10.1016/j.ijindorg.2019.01.003. 12. Campi M, Dueñas M. Intellectual property rights, trade agreements, and international trade. Res. Policy. 2019;48(3):531–545. doi: 10.1016/j.respol.2018.09.011. 13. Papageorgiadis N, McDonald F. Defining and measuring the institutional context of national intellectual property systems in a post-trips world. J. Int. Manag. 2019;25(1):3–18. doi: 10.1016/j.intman.2018.05.002 14. Miric M, Boudreau KJ, Jeppesen LB. Protecting their digital assets: the use of formal & informal appropriability strategies by App developers. Res. Policy. 2019;48(8):103738. doi: 10.1016/j.respol.2019.01.012. 15. Barroso A, Giarratana MS, Pasquini M. Product portfolio performance in new foreign markets: the EU trademark dual system. Res. Policy. 2019;48(1):11–21. doi: 10.1016/j.respol.2018.07.013. 16. Denicolai S, Hagen B, Zucchella A, Dudinskaya EC. When less family is more: trademark acquisition, family ownership, and internationalization. Int. Bus. Rev. 2019;28(2):238–251. doi: 10.1016/j.ibusrev.2018.09.002 17. Teixeira AA, Ferreira C. Intellectual property rights and the competitiveness of academic spin-offs. J. Innov. Knowl. 2019;4(3):154–161. doi: 10.1016/j.jik.2018.12.002. 18. Zhang D, Zheng W, Ning L. Does innovation facilitate firm survival? Evidence from chinese high-tech firms. Econ. Model. 2018;75:458–468. doi: 10.1016/j.econmod.2018.07.030 19. Kannan R, Vasanthi V. Soft Computing and Medical Bioinformatics. Singapore: Springer; 2019. Machine learning algorithms with roc curve for predicting and diagnosing the heart disease; pp. 63–72. 20. Wu, C.C., et al.: Prediction of fatty liver disease using machine learning algorithms. Comput. Methods Programs Biomed. 170, 23–29 (2019 21. Alic, A.S., et al.: BIGSEA: a big data analytics platform for public transportation information. Future Gen. Comput. Syst. 96, 243–269 (2019) 22. Banik D, Ekbal A, Bhattacharyya P. Machine learning based optimized pruning approach for decoding in statistical machine translation. IEEE Access. 2019;7:1736–1751. doi: 10.1109/ACCESS.2018.2883738. 23. Aguilar, R., Torres, J., Martín, C.: Aprendizaje Automático en la Identificación de Sistemas. Un caso de estudio en la generación de un parque eólico. Revista iberoamericana de automática e informática industrial 16(1), 114–127 (2018) 24. Aristodemou L, Tietze F. The state-of-the-art on Intellectual Property Analytics (IPA): a literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Inf. 2018;55:37–51. doi: 10.1016/j.wpi.2018.07.002. 25. Havermans QA, Gabaly S, Hidalgo A. Forecasting European trademark and design filings: An innovative approach including exogenous variables and IP offices’ events. World Patent Inf. 2017;48:96–108. doi: 10.1016/j.wpi.2017.01.004. 26. Demsar, J., et al.: Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14(Aug), 2349–2353 (2013) 27. Departamento Administrativo Nacional de Estadística (DANE). Proyecciones de Población Departamental [Base de datos]. Bogotá: Dane (2020) 28. Quitian OIT, Lis-Gutiérrez JP, Viloria A. Supervised and unsupervised learning applied to crowdfunding. Adv. Intell. Syst. Comput. 2020;1108:90–97. 29. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Stanescu CLV, Crissien T. Machine learning applied to the H index of colombian authors with publications in scopus. Smart Innov. Syst. Technol. 2020;167:388–397. doi: 10.1007/978-981-15-1564-4_36. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Lecture Notes in Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354787/ |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3839f641-08e2-4a2c-9934-1958c08d070f/download https://repositorio.cuc.edu.co/bitstreams/f64a80de-f4ec-4961-8dba-42fadfca8c00/download https://repositorio.cuc.edu.co/bitstreams/fed20532-8c28-4779-9d89-113328520382/download https://repositorio.cuc.edu.co/bitstreams/b23756c9-7940-4c7f-8515-c6f0a37b4836/download https://repositorio.cuc.edu.co/bitstreams/2ba5656e-06b6-43fb-aeac-6dbadc4acc22/download |
bitstream.checksum.fl_str_mv |
6ebe73627e9dae2dc24f55cbc8627368 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad c9e84733c8d8c0672d3fb98ed490d707 0a944c673cacb818addbf4e8dd30b5b6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760823880646656 |
spelling |
Lis-Gutiérrez, Jenny-PaolaLis Gutiérrez, MelissaGALLEGO-TORRES, ADRIANA PATRICIABallesteros Ballesteros, VladimirRomero-Ospina, Manuel Francisco2021-03-18T16:52:50Z2021-03-18T16:52:50Z2020-06-220302974316113349https://hdl.handle.net/11323/8043https://doi.org/10.1007/978-3-030-53956-6_46Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The purpose of this paper is to establish ways to predict the spatial distribution of the use of the intellectual property system from information on industrial property applications and grants (distinctive signs and new creations) and copyright registrations in 2018. This will be done using supervised learning algorithms applied to information on industrial property applications and grants (trademarks and new creations) and copyright registrations in 2018. Within the findings, 4 algorithms were identified with a level of explanation higher than 80%: (i) Linear Regression, with an elastic network regularization; (ii) Stochastic Gradient Descent, with Hinge loss function, Ringe regularization (L2) and a constant learning rate; (iii) Neural Networks, with 1,000 layers, with Adam’s solution algorithm and 2,000 iterations; (iv) Random Forest, with 10 treesLis-Gutiérrez, Jenny-Paola-will be generated-orcid-0000-0002-1438-7619-600Lis Gutiérrez, Melissa-will be generated-orcid-0000-0002-2598-3088-600GALLEGO-TORRES, ADRIANA PATRICIA-will be generated-orcid-0000-0002-6654-3177-600Ballesteros Ballesteros, Vladimir-will be generated-orcid-0000-0002-6920-789X-600Romero-Ospina, Manuel-Francisco-will be generated-orcid-0000-0002-6457-8827-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Computer Sciencehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354787/Spatial distributionDistinctive signsNew creationsSupervised learningMachine learningUse of the industrial property system in Colombia (2018): A supervised learning applicationPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion1. Lis-Gutiérrez, J.P., Zerda-Sarmiento, A., Balaguera, M., Gaitán-Angulo, M., Lis-Gutiérrez, M.: Uso del sistema de propiedad industrial para signos distintivos en Colombia: un análisis departamental (2000–2016). En: Campos, G., Castaño, M., Gaitán-Angulo, M. & Sánchez, V. (Comps). Diálogos sobre investigación: avances científicos Konrad Lorenz, pp 193–215. Bogotá: Konrad Lorenz Editores (2019)2. Lis-Gutiérrez, J.P., Lis-Gutiérrez, M., Gaitán-Angulo, M., Balaguera, M.I., Viloria, A., Santander-Abril, J.E.: Use of the industrial property system for new creations in colombia: a departmental analysis (2000–2016). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 786–796. Springer, Cham (2018). 10.1007/978-3-319-93803-5_743. WIPO. World intellectual property indicators. Ginebra: OMPI (2018)4. WIPO. Datos y cifras de la OMPI sobre PI, edición de 2018. Ginebra: OMPI (2019)6. Dirección Nacional de Derechos de Autor (DNDA). Estadísticas en línea [Base de datos]. Bogotá: DNDA (2019)7. Moros Ochoa, A., Lis-Gutiérrez, J.P., Castro Nieto, G.Y., Vargas, C.A., Rincón. J.C.: La percepción de calidad de servicio como determinante de la recomendación: una predicción mediante inteligencia artificial para los hoteles en Cartagena. En: G. Campos, M.A. Castaño, M. Gaitán-Angulo, V. Sánchez (comp). Diálogos sobre investigación. Bogotá: Editorial Konrad Lorenz (2020)8. Lis-Gutiérrez, J.P., Aguilera-Hernández, D., Escobedo David, L.R.: Análisis de las demandas de los integrantes del Ejército colombiano en calidad de víctimas; una aplicación de machine learning. En: G. Barbosa Castillo, M. Correa, y A. Ciro Gómez (eds.), Análisis de las demandas de los integrantes del Ejército en calidad de víctimas: una aplicación de “machine learning”, pp. 437–468. Universidad Externado de Colombia, Bogotá (2020)9. Alimov A. Intellectual property rights reform and the cost of corporate debt. J. Int. Money Finance. 2019;91:195–211. doi: 10.1016/j.jimonfin.2018.12.004.10. Sweet C, Eterovic D. Do patent rights matter? 40 years of innovation, complexity and productivity. World Dev. 2019;115:78–93. doi: 10.1016/j.worlddev.2018.10.009.11. Auriol E, Biancini S, Paillacar R. Universal intellectual property rights: too much of a good thing? Int. J. Ind. Organ. 2019;65:51–81. doi: 10.1016/j.ijindorg.2019.01.003.12. Campi M, Dueñas M. Intellectual property rights, trade agreements, and international trade. Res. Policy. 2019;48(3):531–545. doi: 10.1016/j.respol.2018.09.011.13. Papageorgiadis N, McDonald F. Defining and measuring the institutional context of national intellectual property systems in a post-trips world. J. Int. Manag. 2019;25(1):3–18. doi: 10.1016/j.intman.2018.05.00214. Miric M, Boudreau KJ, Jeppesen LB. Protecting their digital assets: the use of formal & informal appropriability strategies by App developers. Res. Policy. 2019;48(8):103738. doi: 10.1016/j.respol.2019.01.012.15. Barroso A, Giarratana MS, Pasquini M. Product portfolio performance in new foreign markets: the EU trademark dual system. Res. Policy. 2019;48(1):11–21. doi: 10.1016/j.respol.2018.07.013.16. Denicolai S, Hagen B, Zucchella A, Dudinskaya EC. When less family is more: trademark acquisition, family ownership, and internationalization. Int. Bus. Rev. 2019;28(2):238–251. doi: 10.1016/j.ibusrev.2018.09.00217. Teixeira AA, Ferreira C. Intellectual property rights and the competitiveness of academic spin-offs. J. Innov. Knowl. 2019;4(3):154–161. doi: 10.1016/j.jik.2018.12.002.18. Zhang D, Zheng W, Ning L. Does innovation facilitate firm survival? Evidence from chinese high-tech firms. Econ. Model. 2018;75:458–468. doi: 10.1016/j.econmod.2018.07.03019. Kannan R, Vasanthi V. Soft Computing and Medical Bioinformatics. Singapore: Springer; 2019. Machine learning algorithms with roc curve for predicting and diagnosing the heart disease; pp. 63–72.20. Wu, C.C., et al.: Prediction of fatty liver disease using machine learning algorithms. Comput. Methods Programs Biomed. 170, 23–29 (201921. Alic, A.S., et al.: BIGSEA: a big data analytics platform for public transportation information. Future Gen. Comput. Syst. 96, 243–269 (2019)22. Banik D, Ekbal A, Bhattacharyya P. Machine learning based optimized pruning approach for decoding in statistical machine translation. IEEE Access. 2019;7:1736–1751. doi: 10.1109/ACCESS.2018.2883738.23. Aguilar, R., Torres, J., Martín, C.: Aprendizaje Automático en la Identificación de Sistemas. Un caso de estudio en la generación de un parque eólico. Revista iberoamericana de automática e informática industrial 16(1), 114–127 (2018)24. Aristodemou L, Tietze F. The state-of-the-art on Intellectual Property Analytics (IPA): a literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Inf. 2018;55:37–51. doi: 10.1016/j.wpi.2018.07.002.25. Havermans QA, Gabaly S, Hidalgo A. Forecasting European trademark and design filings: An innovative approach including exogenous variables and IP offices’ events. World Patent Inf. 2017;48:96–108. doi: 10.1016/j.wpi.2017.01.004.26. Demsar, J., et al.: Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14(Aug), 2349–2353 (2013)27. Departamento Administrativo Nacional de Estadística (DANE). Proyecciones de Población Departamental [Base de datos]. Bogotá: Dane (2020)28. Quitian OIT, Lis-Gutiérrez JP, Viloria A. Supervised and unsupervised learning applied to crowdfunding. Adv. Intell. Syst. Comput. 2020;1108:90–97.29. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Stanescu CLV, Crissien T. Machine learning applied to the H index of colombian authors with publications in scopus. Smart Innov. Syst. Technol. 2020;167:388–397. doi: 10.1007/978-981-15-1564-4_36.PublicationORIGINALUse of the industrial property system in Colombia (2018) A supervised learning application.pdfUse of the industrial property system in Colombia (2018) A supervised learning application.pdfapplication/pdf133664https://repositorio.cuc.edu.co/bitstreams/3839f641-08e2-4a2c-9934-1958c08d070f/download6ebe73627e9dae2dc24f55cbc8627368MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f64a80de-f4ec-4961-8dba-42fadfca8c00/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/fed20532-8c28-4779-9d89-113328520382/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILUse of the industrial property system in Colombia (2018) A supervised learning application.pdf.jpgUse of the industrial property system in Colombia (2018) A supervised learning application.pdf.jpgimage/jpeg41480https://repositorio.cuc.edu.co/bitstreams/b23756c9-7940-4c7f-8515-c6f0a37b4836/downloadc9e84733c8d8c0672d3fb98ed490d707MD54TEXTUse of the industrial property system in Colombia (2018) A supervised learning application.pdf.txtUse of the industrial property system in Colombia (2018) A supervised learning application.pdf.txttext/plain1262https://repositorio.cuc.edu.co/bitstreams/2ba5656e-06b6-43fb-aeac-6dbadc4acc22/download0a944c673cacb818addbf4e8dd30b5b6MD5511323/8043oai:repositorio.cuc.edu.co:11323/80432024-09-17 14:05:32.861http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |