Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK
Este artículo muestra el diseño y los resultados de simulación de un amplificador de potencia Doherty sobre tecnología híbrida. El amplificador fue diseñado a 2,4 GHz, obteniendo una eficiencia de potencia aditiva arriba del 70 % a 6-dB debajo de saturación, junto con una ganancia a pequeña señal de...
- Autores:
-
Moreno Rubio, Jorge
Angarita Malaver, Edison Ferney
Fernández González, Herman
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12102
- Acceso en línea:
- https://hdl.handle.net/11323/12102
https://revistascientificas.cuc.edu.co/ingecuc/article/view/384
- Palabra clave:
- Power Amplifier
High Efficiency
GaN Devices
Doherty
Microwave Circuits
Amplificador de potencia
alta eficiencia
dispositivos GaN
Doherty
circuitos de microondas
- Rights
- openAccess
- License
- INGE CUC - 2015
id |
RCUC2_472eec5cd9cdc60d32689ff20a59c6f7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12102 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
dc.title.translated.eng.fl_str_mv |
A 25 W 70% Efficiency Doherty Power Amplifier at 6 dB Output Back-Off for 2.4 GHz Applications with VGS, PEAK |
title |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
spellingShingle |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK Power Amplifier High Efficiency GaN Devices Doherty Microwave Circuits Amplificador de potencia alta eficiencia dispositivos GaN Doherty circuitos de microondas |
title_short |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
title_full |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
title_fullStr |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
title_full_unstemmed |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
title_sort |
Amplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAK |
dc.creator.fl_str_mv |
Moreno Rubio, Jorge Angarita Malaver, Edison Ferney Fernández González, Herman |
dc.contributor.author.spa.fl_str_mv |
Moreno Rubio, Jorge Angarita Malaver, Edison Ferney Fernández González, Herman |
dc.subject.eng.fl_str_mv |
Power Amplifier High Efficiency GaN Devices Doherty Microwave Circuits |
topic |
Power Amplifier High Efficiency GaN Devices Doherty Microwave Circuits Amplificador de potencia alta eficiencia dispositivos GaN Doherty circuitos de microondas |
dc.subject.spa.fl_str_mv |
Amplificador de potencia alta eficiencia dispositivos GaN Doherty circuitos de microondas |
description |
Este artículo muestra el diseño y los resultados de simulación de un amplificador de potencia Doherty sobre tecnología híbrida. El amplificador fue diseñado a 2,4 GHz, obteniendo una eficiencia de potencia aditiva arriba del 70 % a 6-dB debajo de saturación, junto con una ganancia a pequeña señal de 17 dB. Las ecuaciones de análisis y diseño son presentadas considerando polarización clase AB para el amplificador principal y clase C para el amplificador auxiliar a 6-dB debajo de saturación, y dispositivos FET. Un control adicional sobre el punto de polarización del dispositivo auxiliar se ha llevado a cabo, para incrementar la ganancia en la región Doherty y facilitar el diseño de la rama auxiliar. Un dispositivo GaN-HEMT CGH40010 de Cree ha sido usado con un modelo no-lineal garantizado hasta 6-GHz y con una potencia de salida esperada de 10-W. La potencia de salida obtenida es mayor a 25-W. La simulación ha sido llevada a cabo usando Agilent ADS. El presente diseño representaría el estado del arte en términos de caracterización de onda continua (OC). |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2015-01-05 00:00:00 2024-04-09T20:13:33Z |
dc.date.available.none.fl_str_mv |
2015-01-05 00:00:00 2024-04-09T20:13:33Z |
dc.date.issued.none.fl_str_mv |
2015-01-05 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12102 |
dc.identifier.url.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/384 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 2382-4700 |
url |
https://hdl.handle.net/11323/12102 https://revistascientificas.cuc.edu.co/ingecuc/article/view/384 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.spa.fl_str_mv |
J. Moreno, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, and G. Ghione, “Development of single-stage and doherty GaN-based hybrid RF power amplifiers for quasi-constant envelope and high peak to average power ratio wireless standards,” Microw. Opt. Technol. Lett., vol. 54, no. 1, pp. 206–210, 2012. DOI:10.1002/mop.26459 [2] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwood: Artech House, 2006. [3] P. Colantonio, F. Giannini, and E. Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, 1st ed. Gran Bretaña: Wiley, 2009. [4] K. Bumman, M. Junghwan, and K. Ildu, “Efficiently Amplified,” IEEE Microw. Mag., vol. 11, no. 5, pp. 87–100, 2010. DOI:10.1109/MMM.2010.937099 [5] W. Doherty, “A New High Efficiency Power Amplifier for Modulated Waves,” IEEE RFIC Virtual J., vol. 24, no. 1, pp. 1163–1182, 2006. DOI:10.1109/JRPROC.1936.228468 [6] B. Kim, I. Kim, and J. Moon, “Advanced Doherty Architecture,” IEEE Microw. Mag., vol. 11, no. 5, pp. 72–86, 2010. DOI:10.1109/MMM.2010.937098 [7] J. Shealy, J. Smart, M. Poulton, R. Sadler, D. Grider, S. Gibb, B. Hosse, B. Sousa, D. Halchin, and V. Steel, “Gallium nitride (GaN) HEMT’s: Progress and potential for commercial applications,” in Symposium Gallium Arsenide Integrated Circuit (GaAs IC), 2002, pp. 243–246. DOI:10.1109/gaas.2002.1049069 [8] J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid. State. Electron., vol. 52, no. 1, pp. 115–120, 2008. DOI:10.1016/j.sse.2007.07.009 [9] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “A 22W 65% efficiency GaN Doherty Power Amplifier at 3.5 GHz for WiMAX applications,” in Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), 2011, pp. 1–4. DOI:10.1109/inmmic.2011.5773332 [10] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “"3-3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2543–2548, 2012. DOI:10.1109/TMTT.2012.2201745 [11] V. Camarchia, J. Fang, J. Moreno Rubio, M. Pirola, and R. Quaglia, “7 GHz MMIC GaN Doherty Power Amplifier With 47% Efficiency at 7 dB Output Back-Off,” IEEE Microw. Wirel. Components Lett., vol. 23, no. 1, pp. 34–36, 2012. DOI:10.1109/LMWC.2012.2234090 |
dc.relation.citationendpage.none.fl_str_mv |
52 |
dc.relation.citationstartpage.none.fl_str_mv |
48 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
11 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/384/2015104 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2015 : (Enero - Junio) |
dc.rights.spa.fl_str_mv |
INGE CUC - 2015 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2015 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/384 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/00b4f7b9-2bca-43fe-8a3c-c28b48454032/download |
bitstream.checksum.fl_str_mv |
7382b161525bba3b1b3e20b4270a1019 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166678365601792 |
spelling |
Moreno Rubio, JorgeAngarita Malaver, Edison FerneyFernández González, Herman2015-01-05 00:00:002024-04-09T20:13:33Z2015-01-05 00:00:002024-04-09T20:13:33Z2015-01-050122-6517https://hdl.handle.net/11323/12102https://revistascientificas.cuc.edu.co/ingecuc/article/view/3842382-4700Este artículo muestra el diseño y los resultados de simulación de un amplificador de potencia Doherty sobre tecnología híbrida. El amplificador fue diseñado a 2,4 GHz, obteniendo una eficiencia de potencia aditiva arriba del 70 % a 6-dB debajo de saturación, junto con una ganancia a pequeña señal de 17 dB. Las ecuaciones de análisis y diseño son presentadas considerando polarización clase AB para el amplificador principal y clase C para el amplificador auxiliar a 6-dB debajo de saturación, y dispositivos FET. Un control adicional sobre el punto de polarización del dispositivo auxiliar se ha llevado a cabo, para incrementar la ganancia en la región Doherty y facilitar el diseño de la rama auxiliar. Un dispositivo GaN-HEMT CGH40010 de Cree ha sido usado con un modelo no-lineal garantizado hasta 6-GHz y con una potencia de salida esperada de 10-W. La potencia de salida obtenida es mayor a 25-W. La simulación ha sido llevada a cabo usando Agilent ADS. El presente diseño representaría el estado del arte en términos de caracterización de onda continua (OC).This paper shows the design and simulation results of a hybrid Doherty power amplifier. The amplifier has been designed at 2,4 GHz, obtaining power-added efficiency above 70 % for 6 dB output power back-off, together with a small signal gain of 17 dB. Design and analysis equations are presented considering class AB bias conditions for the main amplifier and class C for the peak one in back-off larger than 6 dB, and FET device assumption. An additional control on the bias point of the peak device has been carried out, in order to increase the gain on the Doherty region and ease the design of the peak branch. A Cree’s GaN-HEMT CGH40010F device has been used with a nonlinear model guarantied up to 6 GHz and with an expected output power of 10 W. The obtained output power is higher than 25-W. The simulation has been carried out using Agilent ADS CAD tools. The present design could present the state of the art in terms of continuous-wave (CW) characterizationapplication/pdfspaUniversidad de la CostaINGE CUC - 2015https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/384Power AmplifierHigh EfficiencyGaN DevicesDohertyMicrowave CircuitsAmplificador de potenciaalta eficienciadispositivos GaNDohertycircuitos de microondasAmplificador de Potencia Doherty de 25 W, 70% de Eficiencia y Back Off de Salida de 6 dB para Aplicaciones a 2,4 GHz, con Control de VGS, PEAKA 25 W 70% Efficiency Doherty Power Amplifier at 6 dB Output Back-Off for 2.4 GHz Applications with VGS, PEAKArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucJ. Moreno, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, and G. Ghione, “Development of single-stage and doherty GaN-based hybrid RF power amplifiers for quasi-constant envelope and high peak to average power ratio wireless standards,” Microw. Opt. Technol. Lett., vol. 54, no. 1, pp. 206–210, 2012. DOI:10.1002/mop.26459 [2] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwood: Artech House, 2006. [3] P. Colantonio, F. Giannini, and E. Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, 1st ed. Gran Bretaña: Wiley, 2009. [4] K. Bumman, M. Junghwan, and K. Ildu, “Efficiently Amplified,” IEEE Microw. Mag., vol. 11, no. 5, pp. 87–100, 2010. DOI:10.1109/MMM.2010.937099 [5] W. Doherty, “A New High Efficiency Power Amplifier for Modulated Waves,” IEEE RFIC Virtual J., vol. 24, no. 1, pp. 1163–1182, 2006. DOI:10.1109/JRPROC.1936.228468 [6] B. Kim, I. Kim, and J. Moon, “Advanced Doherty Architecture,” IEEE Microw. Mag., vol. 11, no. 5, pp. 72–86, 2010. DOI:10.1109/MMM.2010.937098 [7] J. Shealy, J. Smart, M. Poulton, R. Sadler, D. Grider, S. Gibb, B. Hosse, B. Sousa, D. Halchin, and V. Steel, “Gallium nitride (GaN) HEMT’s: Progress and potential for commercial applications,” in Symposium Gallium Arsenide Integrated Circuit (GaAs IC), 2002, pp. 243–246. DOI:10.1109/gaas.2002.1049069 [8] J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid. State. Electron., vol. 52, no. 1, pp. 115–120, 2008. DOI:10.1016/j.sse.2007.07.009 [9] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “A 22W 65% efficiency GaN Doherty Power Amplifier at 3.5 GHz for WiMAX applications,” in Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), 2011, pp. 1–4. DOI:10.1109/inmmic.2011.5773332 [10] J. Rubio, J. Fang, R. Quaglia, V. Camarchia, M. Pirola, S. Guerrieri, and G. Ghione, “"3-3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2543–2548, 2012. DOI:10.1109/TMTT.2012.2201745 [11] V. Camarchia, J. Fang, J. Moreno Rubio, M. Pirola, and R. Quaglia, “7 GHz MMIC GaN Doherty Power Amplifier With 47% Efficiency at 7 dB Output Back-Off,” IEEE Microw. Wirel. Components Lett., vol. 23, no. 1, pp. 34–36, 2012. DOI:10.1109/LMWC.2012.22340905248111https://revistascientificas.cuc.edu.co/ingecuc/article/download/384/2015104Núm. 1 , Año 2015 : (Enero - Junio)PublicationOREORE.xmltext/xml2777https://repositorio.cuc.edu.co/bitstreams/00b4f7b9-2bca-43fe-8a3c-c28b48454032/download7382b161525bba3b1b3e20b4270a1019MD5111323/12102oai:repositorio.cuc.edu.co:11323/121022024-09-17 11:02:24.931https://creativecommons.org/licenses/by-nc-sa/4.0/INGE CUC - 2015metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |