Environmental indicators through artificial neural networks

Indicators are the most important management tool for environmental monitoring. Environmental indicators condense the information and simplify the approach to environmental phenomena, which are often complex, and makes them very useful for communication. The usefulness of these indicators consists o...

Full description

Autores:
silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Jiménez - Rodríguez, Luis Miguel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5956
Acceso en línea:
https://hdl.handle.net/11323/5956
https://repositorio.cuc.edu.co/
Palabra clave:
Artificial neural networks
Environmental indicators
Environmental monitoring
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_46f5ba8d4bbcaa2973b48b9795f30e0c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5956
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Environmental indicators through artificial neural networks
title Environmental indicators through artificial neural networks
spellingShingle Environmental indicators through artificial neural networks
Artificial neural networks
Environmental indicators
Environmental monitoring
title_short Environmental indicators through artificial neural networks
title_full Environmental indicators through artificial neural networks
title_fullStr Environmental indicators through artificial neural networks
title_full_unstemmed Environmental indicators through artificial neural networks
title_sort Environmental indicators through artificial neural networks
dc.creator.fl_str_mv silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Jiménez - Rodríguez, Luis Miguel
dc.contributor.author.spa.fl_str_mv silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Jiménez - Rodríguez, Luis Miguel
dc.subject.spa.fl_str_mv Artificial neural networks
Environmental indicators
Environmental monitoring
topic Artificial neural networks
Environmental indicators
Environmental monitoring
description Indicators are the most important management tool for environmental monitoring. Environmental indicators condense the information and simplify the approach to environmental phenomena, which are often complex, and makes them very useful for communication. The usefulness of these indicators consists of providing relevant information, summarized in the form of concise and illustrative statements for decision making, both for the organization's management and for the rest of the members. The prediction of limit values, together with the potentialities offered by the recommendation system based on ontology make this system a powerful tool for supporting decision-making in the Environmental Management process with a wide possibility of generalization in the business sector.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-30T13:45:56Z
dc.date.available.none.fl_str_mv 2020-01-30T13:45:56Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5956
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5956
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1088/1742-6596/1432/1/012049/pdf
dc.relation.references.spa.fl_str_mv [1] Cios, K. J., & Kurgan, L. A. (2000). Trends in Data Mining and Knowledge Discovery. (Dm), 1- 26.
[2] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[3] Demsar, J. (2006). Comparison of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, vol. 7: 31.
[4] Hutt, S.; Gardener, M.; Kamentz, D.; Duckworth, A.; D'Mello, S.: Prospectively Predicting 4- year College Graduation from Student Applications. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 280-289 (2018)
[5] Ahuja, R.; Kankane, Y.: Predicting the probability of student's degree completion by using different data mining techniques. Fourth International Conference on Image Information Processing (ICIIP), pp. 1-4 (2017)
[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)
[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.
[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)
[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)
[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).
[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.
[13] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Computer Science , 151 , 1225- 1230.
[14] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[15] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.
[16] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.
[17] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).
[18] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/
[19] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).
[20] Castellanos Domínguez, M. I., & Grangel González, I. (2013). Las ontologías, su uso para la gestión del conocimiento medioambiental. Paper presented at the III Taller Internacional la Matemática, la Informática y la Física en el Siglo XXI, Holguín.
[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4b869d4e-0572-49d9-abc6-d3ef3ea74267/download
https://repositorio.cuc.edu.co/bitstreams/ff9b4613-df9f-4711-a6b1-075b362e499d/download
https://repositorio.cuc.edu.co/bitstreams/7169895c-bfe2-4e31-a4a4-a60602406183/download
https://repositorio.cuc.edu.co/bitstreams/4fe45d76-ca21-485e-8255-ad4df1e80259/download
https://repositorio.cuc.edu.co/bitstreams/b191cd6a-a3e8-46b7-aff1-7a4b7ce51764/download
https://repositorio.cuc.edu.co/bitstreams/0a047f54-dd6f-40f0-906e-1366f1e84256/download
bitstream.checksum.fl_str_mv 4ecb7512bfddbaa627a81dcce5d8ed39
cba8a15324583e6c7edf87efac3c0a4f
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
27fc500a2590a5bb2d14b8ce6504c095
df13c0216b0116aaa770d10f3d035354
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166813093986304
spelling silva d, jesus gSenior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamJiménez - Rodríguez, Luis Miguel2020-01-30T13:45:56Z2020-01-30T13:45:56Z20201742-65881742-6596https://hdl.handle.net/11323/5956Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Indicators are the most important management tool for environmental monitoring. Environmental indicators condense the information and simplify the approach to environmental phenomena, which are often complex, and makes them very useful for communication. The usefulness of these indicators consists of providing relevant information, summarized in the form of concise and illustrative statements for decision making, both for the organization's management and for the rest of the members. The prediction of limit values, together with the potentialities offered by the recommendation system based on ontology make this system a powerful tool for supporting decision-making in the Environmental Management process with a wide possibility of generalization in the business sector.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Senior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamJiménez - Rodríguez, Luis Miguel-will be generated-orcid-0000-0002-0386-8433-600engJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012049/pdf[1] Cios, K. J., & Kurgan, L. A. (2000). Trends in Data Mining and Knowledge Discovery. (Dm), 1- 26.[2] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[3] Demsar, J. (2006). Comparison of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, vol. 7: 31.[4] Hutt, S.; Gardener, M.; Kamentz, D.; Duckworth, A.; D'Mello, S.: Prospectively Predicting 4- year College Graduation from Student Applications. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 280-289 (2018)[5] Ahuja, R.; Kankane, Y.: Predicting the probability of student's degree completion by using different data mining techniques. Fourth International Conference on Image Information Processing (ICIIP), pp. 1-4 (2017)[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.[13] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Computer Science , 151 , 1225- 1230.[14] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[15] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.[16] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.[17] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).[18] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/[19] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).[20] Castellanos Domínguez, M. I., & Grangel González, I. (2013). Las ontologías, su uso para la gestión del conocimiento medioambiental. Paper presented at the III Taller Internacional la Matemática, la Informática y la Física en el Siglo XXI, Holguín.[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Artificial neural networksEnvironmental indicatorsEnvironmental monitoringEnvironmental indicators through artificial neural networksArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEnvironmental Indicators through Artificial Neural Networks.pdfEnvironmental Indicators through Artificial Neural Networks.pdfapplication/pdf643649https://repositorio.cuc.edu.co/bitstreams/4b869d4e-0572-49d9-abc6-d3ef3ea74267/download4ecb7512bfddbaa627a81dcce5d8ed39MD51Environmental Indicators through Artificial Neural Networks.pdfEnvironmental Indicators through Artificial Neural Networks.pdfapplication/pdf1510882https://repositorio.cuc.edu.co/bitstreams/ff9b4613-df9f-4711-a6b1-075b362e499d/downloadcba8a15324583e6c7edf87efac3c0a4fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/7169895c-bfe2-4e31-a4a4-a60602406183/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/4fe45d76-ca21-485e-8255-ad4df1e80259/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEnvironmental Indicators through Artificial Neural Networks.pdf.jpgEnvironmental Indicators through Artificial Neural Networks.pdf.jpgimage/jpeg27267https://repositorio.cuc.edu.co/bitstreams/b191cd6a-a3e8-46b7-aff1-7a4b7ce51764/download27fc500a2590a5bb2d14b8ce6504c095MD55TEXTEnvironmental Indicators through Artificial Neural Networks.pdf.txtEnvironmental Indicators through Artificial Neural Networks.pdf.txttext/plain22247https://repositorio.cuc.edu.co/bitstreams/0a047f54-dd6f-40f0-906e-1366f1e84256/downloaddf13c0216b0116aaa770d10f3d035354MD5711323/5956oai:repositorio.cuc.edu.co:11323/59562024-09-17 14:12:55.283http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=