Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network

This study synthesized zinc oxide nanoparticles (ZnO NPs) using a novel green approach, with Sida acuta leaf extract as a capping and reducing agent to initiate nucleation and structure formation. The innovation of this study lies in demonstrating the originality of utilizing zinc oxide nanoparticle...

Full description

Autores:
Jiang, Du
Arwa AL-Huqail
Yan, Cao
Yiding, Sun
Mazen, Garaleh
Ehab El Sayed Massoud
Elimam, Ali
Hamid, Assilzadeh
Escorcia Gutierrez, José
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13667
Acceso en línea:
https://hdl.handle.net/11323/13667
https://doi.org/10.1016/j.envres.2024.119204
https://repositorio.cuc.edu.co/
Palabra clave:
Zinc oxide NPs synthesis
Sida acuta
Antibacterial efficacy
Antioxidant potential
Antibacterial activity
Catalytic dye degradation
Convolutional neural network (CNN)
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_465e6060e639ab7059e21ccadb663196
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13667
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
title Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
spellingShingle Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
Zinc oxide NPs synthesis
Sida acuta
Antibacterial efficacy
Antioxidant potential
Antibacterial activity
Catalytic dye degradation
Convolutional neural network (CNN)
title_short Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
title_full Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
title_fullStr Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
title_full_unstemmed Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
title_sort Green synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network
dc.creator.fl_str_mv Jiang, Du
Arwa AL-Huqail
Yan, Cao
Yiding, Sun
Mazen, Garaleh
Ehab El Sayed Massoud
Elimam, Ali
Hamid, Assilzadeh
Escorcia Gutierrez, José
dc.contributor.author.none.fl_str_mv Jiang, Du
Arwa AL-Huqail
Yan, Cao
Yiding, Sun
Mazen, Garaleh
Ehab El Sayed Massoud
Elimam, Ali
Hamid, Assilzadeh
Escorcia Gutierrez, José
dc.subject.proposal.eng.fl_str_mv Zinc oxide NPs synthesis
Sida acuta
Antibacterial efficacy
Antioxidant potential
Antibacterial activity
Catalytic dye degradation
Convolutional neural network (CNN)
topic Zinc oxide NPs synthesis
Sida acuta
Antibacterial efficacy
Antioxidant potential
Antibacterial activity
Catalytic dye degradation
Convolutional neural network (CNN)
description This study synthesized zinc oxide nanoparticles (ZnO NPs) using a novel green approach, with Sida acuta leaf extract as a capping and reducing agent to initiate nucleation and structure formation. The innovation of this study lies in demonstrating the originality of utilizing zinc oxide nanoparticles for antibacterial action, antioxidant potential, and catalytic degradation of Congo red dye. This unique approach harnesses eco-friendly methods to initiate nucleation and structure formation. The synthesized nanoparticles' structure and conformation were characterized using UV–vis (λmax = 280 nm), X-ray, atomic force microscopy, SEM, HR-TEM and FTIR. The antibacterial activity of the Nps was tested against Pseudomonas sp, Klebsiella sp, Staphylococcus aureus, and E. coli, demonstrating efficacy. The nanoparticles exhibited unique properties, with a crystallite size of 20 nm (XRD), a surface roughness of 2.5 nm (AFM), and a specific surface area of 60 m2/g (SEM). A Convolutional Neural Network (CNN) was effectively employed to accurately classify and analyze microscopic images of green-synthesized zinc oxide nanoparticles. This research revealed their exceptional antioxidant potential, with an average DPPH scavenging rate of 80% at a concentration of 0.05 mg/mL. Additionally, zeta potential measurements indicated a stable net negative surface charge of approximately −12.2 mV. These quantitative findings highlight the promising applications of green-synthesized ZnO NPs in healthcare, materials science, and environmental remediation. The ZnO nanoparticles exhibited catalytic capabilities for dye degradation, and the degradation rate was determined using UV spectroscopy. Key findings of the study encompass the green synthesis of versatile zinc oxide nanoparticles, demonstrating potent antibacterial action, antioxidant capabilities, and catalytic dye degradation potential. These nanoparticles offer multifaceted solutions with minimal environmental impact, addressing challenges in various fields, from healthcare to environmental remediation.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-12T13:00:13Z
dc.date.available.none.fl_str_mv 2024-11-12T13:00:13Z
dc.date.issued.none.fl_str_mv 2024-05-25
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Jiang Du, Arwa AL-Huqail, Yan Cao, Hui Yao, Yiding Sun, Mazen Garaleh, Ehab El Sayed Massoud, Elimam Ali, Hamid Assilzadeh, José Escorcia-Gutierrez, Green synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network, Environmental Research, Volume 258, 2024, 119204, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2024.119204.
dc.identifier.issn.none.fl_str_mv 0013-9351
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13667
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.envres.2024.119204
dc.identifier.eissn.none.fl_str_mv 1096-0953
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Jiang Du, Arwa AL-Huqail, Yan Cao, Hui Yao, Yiding Sun, Mazen Garaleh, Ehab El Sayed Massoud, Elimam Ali, Hamid Assilzadeh, José Escorcia-Gutierrez, Green synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network, Environmental Research, Volume 258, 2024, 119204, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2024.119204.
0013-9351
1096-0953
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13667
https://doi.org/10.1016/j.envres.2024.119204
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Environmental Research
dc.relation.references.none.fl_str_mv Ab Aziz, S.A.B., et al., 2013. Effect of zeta potential of stanum oxide (SnO2) on electrophoretic deposition (EPD) on porous alumina. Adv. Mater. Res. 795, 334–337.
Abbasi, M., Gholizadeh, R., Kasaee, S.R., Vaez, A., Chelliapan, S., Fadhil Al-Qaim, F., Kamyab, H., 2023. An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Scientific reports 13 (1), 5987.
Abdullah, A.H., Ridha, S., Mohshim, D.F., Yusuf, M., Kamyab, H., Krishna, S., Maoinser, M.A., 2022. A comprehensive review of nanoparticles: Effect on water- based drilling fluids and wellbore stability. Chemosphere 308, 136274.
Alwan, R.M., et al., 2015. Synthesis of zinc oXide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 5 (1), 1–6.
Alyamani, A.A., et al., 2021. Green fabrication of zinc oXide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoXicity and antibacterial properties. Molecules 26 (20), 6140.
Asmatulu, R., Khan, W., 2019. Chapter 13-Characterization of electrospun nanofibers. Synthesis and Applications of Electrospun Nanofibers 257–281.
Balaraman, P., Balasubramanian, B., Kaliannan, D., Durai, M., Kamyab, H., Park, S., Maruthupandian, A., 2020. Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste and Biomass Valorization 11, 5255–5271.
Balaraman, P., Balasubramanian, B., Liu, W.C., Kaliannan, D., Durai, M., Kamyab, H., Maruthupandian, A., 2022. Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environmental research 204, 112278.
Bharadwaj, K.K., et al., 2021. Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 11 (8), 1999.
Bhuyan, T., et al., 2015. Biosynthesis of zinc oXide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61.
Blanco, E., Shen, H., Ferrari, M., 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (9), 941–951.
Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioXidant activity. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 28 (1), 25–30.
Chahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Khorami, M., 2018. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct. Systems 22 (4), 413–424.
Chen, X., et al., 2017. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 1–10.
Chou Chau, Y.-F., et al., 2019. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 15, 102567.
Cioffi, B., et al., 2021. A potential risk assessment tool to monitor pathogens circulation in coastal waters. Environ. Res. 200, 111748.
Das, D., et al., 2013. Synthesis of ZnO nanoparticles and evaluation of antioXidant and cytotoXic activity. Colloids Surf. B Biointerfaces 111, 556–560.
Dhatwalia, J., et al., 2022. Rubus ellipticus Sm. Fruit extract mediated zinc oXide nanoparticles: a green approach for dye degradation and biomedical applications. Materials 15 (10), 3470.
Dizaj, S.M., et al., 2014. Antimicrobial activity of the metals and metal oXide nanoparticles. Mater. Sci. Eng. C 44, 278–284.
Edmond, M.B., et al., 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29 (2), 239–244.
Etienne, O.K., et al., 2021. Chemical characterization, antioXidant and enzyme inhibitory effects of Mitracarpus hirtus extracts. J. Pharmaceut. Biomed. Anal. 194, 113799.
Geetha, M.S., Nagabhushana, H., Shivananjaiah, H.N., 2016. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci.: Advanced Materials and Devices 1 (3), 301–310.
Gupta, A., et al., 2016. Nanoemulsions: formation, properties and applications. Soft Matter 12 (11), 2826–2841.
Hoshyar, N., et al., 2016. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11 (6), 673–692.
Hussain, I., et al., 2017. EXogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci. Hortic. 214, 158–164.
Jain, D., et al., 2020. Microbial fabrication of zinc oXide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front. Chem. 8, 778.
Jobin, M.-L., Alves, I.D., 2014. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Biochimie 107, 154–159.
Ju-Nam, Y., Lead, J., 2008. Manufactured nanoparticles and natural aquatic colloids: an overview of their chemical aspects, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414.
Kamyab, H., Chelliapan, S., Hayder, G., Yusuf, M., Taheri, M.M., Rezania, S., Nouri, J., 2023. EXploring the potential of layered metal and metal oXide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. Chemosphere 139103.
Kaningini, G.A., et al., 2021. Green synthesis and characterization of zinc oXide nanoparticles using bush tea (AthriXia phylicoides DC) natural extract: assessment of the synthesis process. F1000Research 10.
Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T., Khorami, M., 2020. Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with. Computers 36, 1539–1558.
Keflie, T.S., Biesalski, H.K., 2021. Micronutrients and bioactive substances: their potential roles in combating COVID-19. Nutrition 84, 111103.
Khan, I., Saeed, K., Khan, I., 2019. Nanoparticles: properties, applications and toXicities. Arab. J. Chem. 12 (7), 908–931.
Koehler, A., et al., 2024. Prediction of melanin content of Fonsecaea pedrosoi using Fourier transform infrared spectroscopy (FTIR) and chemometrics. Spectrochim. Acta Mol. Biomol. Spectrosc. 310, 123945.
Kouhbanani, M.A.J., Mosleh-Shirazi, S., Beheshtkhoo, N., Kasaee, S.R., Nekouian, S., Alshehery, S., Amani, A.M., 2023. Investigation through the antimicrobial activity of electrospun PCL nanofiber mats with green synthesized Ag–Fe nanoparticles. Journal of Drug Delivery Science and Technology 85, 104541.
Kumar, P., Kumar, S.V., 2023. Nanopriming of Eleusine coracana seeds using phyto- assisted magnetic nanoparticles (Fe3O4) synthesized from Colocasia esculenta leaves. Biomass Conversion and Biorefinery.
Lallo da Silva, B., et al., 2019. Relationship between structure and antimicrobial activity of zinc oXide nanoparticles: an overview. Int. J. Nanomed. 14, 9395–9410.
Lan, S., Lin, J., Zheng, N., 2014. Evaluation of the antioXidant activity of Coreopsis tinctoria Nuff. and optimisation of isolation by response surface methodology. Acta Pharm. 64 (3), 369–378.
Lei, H., et al., 2023. Enhanced tribocatalytic degradation of organic pollutants by ZnO nanoparticles of high crystallinity. Nanomaterials 13 (1), 46.
Look, D.C., 2001. Recent advances in ZnO materials and devices. Mater. Sci. Eng., B 80 (1), 383–387.
Ly, N.H., Nguyen, N.B., Tran, H.N., Hoang, T.T.H., Joo, S.W., Vasseghian, Y., Klemeˇs, J. J., 2023. Metal-organic framework nanopesticide carrier for accurate pesticide delivery and decrement of groundwater pollution. J. Clean. Prod. 402, 136809.
Mahdi Ismail, S.M., et al., 2023. Characterization of green synthesized of ZnO nanoparticles by using pinus brutia leaves extracts. J. Mol. Struct. 1280, 135063.
Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z.H., Palaninaicker, S., 2023. Green synthesis of zinc oXide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere 323, 138263.
Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., Shariati, M., 2013. Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams. Struct. Eng. Mech. Int. J. 46 (6), 853–868.
Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., Shariati, M., 2014. An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups. Smart Struct. Syst. Int. J. 14 (5), 785–809.
Mohd Yusof, H., et al., 2019. Microbial synthesis of zinc oXide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 10, 1–22.
Mohd Yusof, H., et al., 2020. Biosynthesis of zinc oXide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci. Rep. 10 (1), 19996.
Muhammad, W., et al., 2019. Optical, morphological and biological analysis of zinc oXide nanoparticles (ZnO NPs) using. RSC Adv. 9 (51), 29541–29548.
Nava, A.R., Daneshian, L., Sarma, H., 2022. Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Environ. Res. 215, 114212.
Nikalje, A.P., 2015. Nanotechnology and its applications in medicine. Med. Chem. 5 (2), 81–89.
Nilavukkarasi, M., Vijayakumar, S., Prathipkumar, S., 2020. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Materials Science for Energy Technologies 3, 335–343.
Pavlova, E.L., Zografov, N.N., Simeonova, L.S., 2016. Comparative study on the antioXidant capacities of synthetic influenza inhibitors and ellagic acid in model systems. Biomed. Pharmacother. 83, 755–762.
Prashanna Suvaitha, S., et al., 2023. Optical and biological properties of MgO/ZnO nanocomposite derived via eggshell membrane: a bio-waste approach. Bioproc. Biosyst. Eng. 46 (1), 39–51.
Preeti, et al., 2020. ZnO quantum dots: broad spectrum microbicidal agent against multidrug resistant pathogens E. coli and C. albicans. Frontiers in Nanotechnology 2, 576342.
Pushparaj, K., Liu, W.C., Meyyazhagan, A., Orlacchio, A., Pappusamy, M., Vadivalagan, C., Balasubramanian, B., 2022. Nano-from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy 240, 122732.
Rad, S.S., Sani, A.M., Mohseni, S., 2019. Biosynthesis, characterization and antimicrobial activities of zinc oXide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239–245.
Rahimi, M.T., et al., 2015. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int. J. Surg. 19, 128–133.
Rahman, A., et al., 2021. Zinc oXide and zinc oXide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioproc. Biosyst. Eng. 44 (7), 1333–1372.
Raimondi, F., et al., 2005. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew. Chem. Int. Ed. 44 (15), 2190–2209.
Rajeshkumar, S., et al., 2022. Degradation of toXic dye and antimicrobial and free radical potential of environmental benign zinc oXide nanoparticles. Bioinorgan. Chem. Appl. 2022, 4513208.
Rasouli, K., Rasouli, J., Mohtaram, M.S., Sabbaghi, S., Kamyab, H., Moradi, H., Chelliapan, S., 2023. Biomass-derived activated carbon nanocomposites for cleaner production: a review on aspects of photocatalytic pollutant degradation. J. Clean. Prod. 138181.
Reddy, K.M., et al., 2007. Selective toXicity of zinc oXide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90 (21).
Regiel-Futyra, A., et al., 2015. The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity. RSC Adv. 5 (97), 80089–80097.
Safa, M., Kachitvichyanukul, V., 2019. Moment rotation prediction of precast beam to column connections using extreme learning machine. Struct. Eng. Mech. Int. J. 70 (5), 639–647.
Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M., 2020. Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Phys. A: Stat. Mech. Appl. 550, 124046.
Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M., Petkovi´c, D., 2016. Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos. Struct. Int. J. 21 (3), 679–688.
Salem, W., et al., 2015. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoXic Escherichia coli. International Journal of Medical Microbiology 305 (1), 85–95.
Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S., 2017. Synthesis of zinc oXide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 3 (4), 459–465.
Sˇebesta, M., et al., 2019. Increased colloidal stability and decreased solubility—sol—gel synthesis of zinc oXide nanoparticles with humic acids. J. Nanosci. Nanotechnol. 19 (5), 3024–3030.
Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Azar, V.M., Toghroli, A., Wakil, K., 2018. Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struc. Systems 22 (3), 335–340.
Segets, D., et al., 2009. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3 (7), 1703–1710.
Senguttuvan, J., Paulsamy, S., Karthika, K., 2014. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioXidant activities. Asian Pac. J. Trop. Biomed. 4, S359–S367.
Senthilkumar, R., et al., 2018. Phytochemical screening of aqueous leaf extract of Sida acuta burm. F. And its antibacterial activity. Journal of Emerging Technologies and Innovative Research 5 (8), 474–478.
Seshadri, V.D., 2021. Zinc oXide nanoparticles from Cassia auriculata flowers showed the potent antimicrobial and in vitro anticancer activity against the osteosarcoma MG- 63 cells. Saudi J. Biol. Sci. 28 (7), 4046–4054.
Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T., Shariati, A., 2020a. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Steel Compos. Struct. 34 (1), 155.
Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T., Toghroli, A., 2020b. Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Structu. Systems Int. J. 25 (2), 183–195.
Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N. T., Shariati, A., 2022. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 1–23.
Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Poi- Ngian, S., 2019. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Applied Sci. 9 (24), 5534.
Shittu, M., Alagbe, J., 2020. Phyto-nutritional profiles of broom weed (Sida acuta) leaf extract. International Journal on Integrated Education 3 (11), 119–124.
Siddheswaran, R., et al., 2013. Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al: ZnO (TM Co, Ni) thin films by sol–gel spin coating method. Spectrochim. Acta Mol. Biomol. Spectrosc. 106, 118–123.
Sidebottom, D.L., 2024. Dynamic light scattering study of the non-exponential α-relaxation in sodium germanate glass melts. J. Non-Cryst. Solids 627, 122819.
Silva, G.A., 2004. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 61 (3), 216–220.
Singh, J., et al., 2018. ‘Green’synthesis of metals and their oXide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16 (1), 1–24.
Singh, A., et al., 2020. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnology Reports 25, e00427.
Sirelkhatim, A., et al., 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242.
Srivastava, V., Gusain, D., Sharma, Y.C., 2013. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram. Int. 39 (8), 9803–9808.
Stoimenov, P.K., et al., 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir 18 (17), 6679–6686.
Sultanova, N., et al., 2001. Antioxidant and antimicrobial activities of Tamarix ramosissima. J. Ethnopharmacol. 78 (2), 201–205.
Syama, S., et al., 2014. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol. Mech. Methods 24 (9), 644–653.
Tan, Q., et al., 2019. Hierarchical zinc oxide/reduced graphene oxide composite: preparation route, mechanism study and lithium ion storage. J. Colloid Interface Sci. 548, 233–243.
Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A.M., Junin, R., 2022. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 312, 122867.
Titus, D., James Jebaseelan Samuel, E., Roopan, S.M., 2019. Chapter 12 - nanoparticle characterization techniques. In: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp. 303–319.
Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M., Ibrahim, Z., 2014. Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel Compos. Struct. 17 (5), 623–639.
Veerakumar, K., Govindarajan, M., Rajeswary, M., 2013. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 112 (12), 4073–4085.
Verma, C., et al., 2018. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J. Mol. Liq. 266, 577–590.
Win, T.T., et al., 2021. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci. Rep. 11 (1), 21996.
Xia, C., et al., 2023. Optimistic and possible contribution of nanomaterial on biomedical applications: a review. Environ. Res. 218, 114921.
Xia, C., Ren, T., Darabi, R., Shabani-Nooshabadi, M., Klemeˇs, J.J., Karaman, C., Chelliapan, S., 2023. Spotlighting the boosted energy storage capacity of CoFe2O4/ Graphene nanoribbons: A promising positive electrode material for high-energydensity asymmetric supercapacitor. Energy 270, 126914.
Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M., Boskabadi, A., 2021. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. J. Clean. Prod. 280, 124138.
Zainah, T.A.S.M.I., Shahaboddin, S.M.S.M.S., 1801. Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam. J. Intell. Manuf. 29 (8), 1793.
Zhang, Z., Karimi-Maleh, H., 2023. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324, 138302.
Zhu, X., Pathakoti, K., Hwang, H.-M., 2019. Chapter 10 - green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp. 223–263.
dc.relation.citationendpage.none.fl_str_mv 28
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 258
dc.rights.none.fl_str_mv © 2024 Published by Elsevier Inc.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2024 Published by Elsevier Inc.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 28 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc.
dc.publisher.place.none.fl_str_mv United States
publisher.none.fl_str_mv Academic Press Inc.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0013935124011095?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/21991fb6-89d4-407a-9b18-7915de89d4f5/download
https://repositorio.cuc.edu.co/bitstreams/8102ef1c-bcaa-4703-8a60-5f35506ec087/download
https://repositorio.cuc.edu.co/bitstreams/a464a150-1976-4d7b-95a8-fa0a01a1fa06/download
https://repositorio.cuc.edu.co/bitstreams/a0bb4c4a-2124-4fdd-bd9c-8d981ef75f56/download
bitstream.checksum.fl_str_mv e705ec73a9ca06b0624da42bfc0d8a52
73a5432e0b76442b22b026844140d683
4f643f6f8809401c9154974f294721ee
3aceb2e9a350cc9015cce94c3464eefe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166634696605696
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Published by Elsevier Inc.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiang, DuArwa AL-HuqailYan, CaoYiding, SunMazen, GaralehEhab El Sayed MassoudElimam, AliHamid, AssilzadehEscorcia Gutierrez, José2024-11-12T13:00:13Z2024-11-12T13:00:13Z2024-05-25Jiang Du, Arwa AL-Huqail, Yan Cao, Hui Yao, Yiding Sun, Mazen Garaleh, Ehab El Sayed Massoud, Elimam Ali, Hamid Assilzadeh, José Escorcia-Gutierrez, Green synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network, Environmental Research, Volume 258, 2024, 119204, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2024.119204.0013-9351https://hdl.handle.net/11323/13667https://doi.org/10.1016/j.envres.2024.1192041096-0953Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study synthesized zinc oxide nanoparticles (ZnO NPs) using a novel green approach, with Sida acuta leaf extract as a capping and reducing agent to initiate nucleation and structure formation. The innovation of this study lies in demonstrating the originality of utilizing zinc oxide nanoparticles for antibacterial action, antioxidant potential, and catalytic degradation of Congo red dye. This unique approach harnesses eco-friendly methods to initiate nucleation and structure formation. The synthesized nanoparticles' structure and conformation were characterized using UV–vis (λmax = 280 nm), X-ray, atomic force microscopy, SEM, HR-TEM and FTIR. The antibacterial activity of the Nps was tested against Pseudomonas sp, Klebsiella sp, Staphylococcus aureus, and E. coli, demonstrating efficacy. The nanoparticles exhibited unique properties, with a crystallite size of 20 nm (XRD), a surface roughness of 2.5 nm (AFM), and a specific surface area of 60 m2/g (SEM). A Convolutional Neural Network (CNN) was effectively employed to accurately classify and analyze microscopic images of green-synthesized zinc oxide nanoparticles. This research revealed their exceptional antioxidant potential, with an average DPPH scavenging rate of 80% at a concentration of 0.05 mg/mL. Additionally, zeta potential measurements indicated a stable net negative surface charge of approximately −12.2 mV. These quantitative findings highlight the promising applications of green-synthesized ZnO NPs in healthcare, materials science, and environmental remediation. The ZnO nanoparticles exhibited catalytic capabilities for dye degradation, and the degradation rate was determined using UV spectroscopy. Key findings of the study encompass the green synthesis of versatile zinc oxide nanoparticles, demonstrating potent antibacterial action, antioxidant capabilities, and catalytic dye degradation potential. These nanoparticles offer multifaceted solutions with minimal environmental impact, addressing challenges in various fields, from healthcare to environmental remediation.28 páginasapplication/pdfengAcademic Press Inc.United Stateshttps://www.sciencedirect.com/science/article/pii/S0013935124011095?via%3DihubGreen synthesis of zinc oxide nanoparticles from sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural networkArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Environmental ResearchAb Aziz, S.A.B., et al., 2013. Effect of zeta potential of stanum oxide (SnO2) on electrophoretic deposition (EPD) on porous alumina. Adv. Mater. Res. 795, 334–337.Abbasi, M., Gholizadeh, R., Kasaee, S.R., Vaez, A., Chelliapan, S., Fadhil Al-Qaim, F., Kamyab, H., 2023. An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Scientific reports 13 (1), 5987.Abdullah, A.H., Ridha, S., Mohshim, D.F., Yusuf, M., Kamyab, H., Krishna, S., Maoinser, M.A., 2022. A comprehensive review of nanoparticles: Effect on water- based drilling fluids and wellbore stability. Chemosphere 308, 136274.Alwan, R.M., et al., 2015. Synthesis of zinc oXide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 5 (1), 1–6.Alyamani, A.A., et al., 2021. Green fabrication of zinc oXide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoXicity and antibacterial properties. Molecules 26 (20), 6140.Asmatulu, R., Khan, W., 2019. Chapter 13-Characterization of electrospun nanofibers. Synthesis and Applications of Electrospun Nanofibers 257–281.Balaraman, P., Balasubramanian, B., Kaliannan, D., Durai, M., Kamyab, H., Park, S., Maruthupandian, A., 2020. Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste and Biomass Valorization 11, 5255–5271.Balaraman, P., Balasubramanian, B., Liu, W.C., Kaliannan, D., Durai, M., Kamyab, H., Maruthupandian, A., 2022. Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environmental research 204, 112278.Bharadwaj, K.K., et al., 2021. Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 11 (8), 1999.Bhuyan, T., et al., 2015. Biosynthesis of zinc oXide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61.Blanco, E., Shen, H., Ferrari, M., 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (9), 941–951.Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioXidant activity. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 28 (1), 25–30.Chahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Khorami, M., 2018. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct. Systems 22 (4), 413–424.Chen, X., et al., 2017. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 1–10.Chou Chau, Y.-F., et al., 2019. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 15, 102567.Cioffi, B., et al., 2021. A potential risk assessment tool to monitor pathogens circulation in coastal waters. Environ. Res. 200, 111748.Das, D., et al., 2013. Synthesis of ZnO nanoparticles and evaluation of antioXidant and cytotoXic activity. Colloids Surf. B Biointerfaces 111, 556–560.Dhatwalia, J., et al., 2022. Rubus ellipticus Sm. Fruit extract mediated zinc oXide nanoparticles: a green approach for dye degradation and biomedical applications. Materials 15 (10), 3470.Dizaj, S.M., et al., 2014. Antimicrobial activity of the metals and metal oXide nanoparticles. Mater. Sci. Eng. C 44, 278–284.Edmond, M.B., et al., 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29 (2), 239–244.Etienne, O.K., et al., 2021. Chemical characterization, antioXidant and enzyme inhibitory effects of Mitracarpus hirtus extracts. J. Pharmaceut. Biomed. Anal. 194, 113799.Geetha, M.S., Nagabhushana, H., Shivananjaiah, H.N., 2016. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci.: Advanced Materials and Devices 1 (3), 301–310.Gupta, A., et al., 2016. Nanoemulsions: formation, properties and applications. Soft Matter 12 (11), 2826–2841.Hoshyar, N., et al., 2016. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11 (6), 673–692.Hussain, I., et al., 2017. EXogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci. Hortic. 214, 158–164.Jain, D., et al., 2020. Microbial fabrication of zinc oXide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front. Chem. 8, 778.Jobin, M.-L., Alves, I.D., 2014. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Biochimie 107, 154–159.Ju-Nam, Y., Lead, J., 2008. Manufactured nanoparticles and natural aquatic colloids: an overview of their chemical aspects, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414.Kamyab, H., Chelliapan, S., Hayder, G., Yusuf, M., Taheri, M.M., Rezania, S., Nouri, J., 2023. EXploring the potential of layered metal and metal oXide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. Chemosphere 139103.Kaningini, G.A., et al., 2021. Green synthesis and characterization of zinc oXide nanoparticles using bush tea (AthriXia phylicoides DC) natural extract: assessment of the synthesis process. F1000Research 10.Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T., Khorami, M., 2020. Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with. Computers 36, 1539–1558.Keflie, T.S., Biesalski, H.K., 2021. Micronutrients and bioactive substances: their potential roles in combating COVID-19. Nutrition 84, 111103.Khan, I., Saeed, K., Khan, I., 2019. Nanoparticles: properties, applications and toXicities. Arab. J. Chem. 12 (7), 908–931.Koehler, A., et al., 2024. Prediction of melanin content of Fonsecaea pedrosoi using Fourier transform infrared spectroscopy (FTIR) and chemometrics. Spectrochim. Acta Mol. Biomol. Spectrosc. 310, 123945.Kouhbanani, M.A.J., Mosleh-Shirazi, S., Beheshtkhoo, N., Kasaee, S.R., Nekouian, S., Alshehery, S., Amani, A.M., 2023. Investigation through the antimicrobial activity of electrospun PCL nanofiber mats with green synthesized Ag–Fe nanoparticles. Journal of Drug Delivery Science and Technology 85, 104541.Kumar, P., Kumar, S.V., 2023. Nanopriming of Eleusine coracana seeds using phyto- assisted magnetic nanoparticles (Fe3O4) synthesized from Colocasia esculenta leaves. Biomass Conversion and Biorefinery.Lallo da Silva, B., et al., 2019. Relationship between structure and antimicrobial activity of zinc oXide nanoparticles: an overview. Int. J. Nanomed. 14, 9395–9410.Lan, S., Lin, J., Zheng, N., 2014. Evaluation of the antioXidant activity of Coreopsis tinctoria Nuff. and optimisation of isolation by response surface methodology. Acta Pharm. 64 (3), 369–378.Lei, H., et al., 2023. Enhanced tribocatalytic degradation of organic pollutants by ZnO nanoparticles of high crystallinity. Nanomaterials 13 (1), 46.Look, D.C., 2001. Recent advances in ZnO materials and devices. Mater. Sci. Eng., B 80 (1), 383–387.Ly, N.H., Nguyen, N.B., Tran, H.N., Hoang, T.T.H., Joo, S.W., Vasseghian, Y., Klemeˇs, J. J., 2023. Metal-organic framework nanopesticide carrier for accurate pesticide delivery and decrement of groundwater pollution. J. Clean. Prod. 402, 136809.Mahdi Ismail, S.M., et al., 2023. Characterization of green synthesized of ZnO nanoparticles by using pinus brutia leaves extracts. J. Mol. Struct. 1280, 135063.Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z.H., Palaninaicker, S., 2023. Green synthesis of zinc oXide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere 323, 138263.Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., Shariati, M., 2013. Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams. Struct. Eng. Mech. Int. J. 46 (6), 853–868.Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., Shariati, M., 2014. An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups. Smart Struct. Syst. Int. J. 14 (5), 785–809.Mohd Yusof, H., et al., 2019. Microbial synthesis of zinc oXide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 10, 1–22.Mohd Yusof, H., et al., 2020. Biosynthesis of zinc oXide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci. Rep. 10 (1), 19996.Muhammad, W., et al., 2019. Optical, morphological and biological analysis of zinc oXide nanoparticles (ZnO NPs) using. RSC Adv. 9 (51), 29541–29548.Nava, A.R., Daneshian, L., Sarma, H., 2022. Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Environ. Res. 215, 114212.Nikalje, A.P., 2015. Nanotechnology and its applications in medicine. Med. Chem. 5 (2), 81–89.Nilavukkarasi, M., Vijayakumar, S., Prathipkumar, S., 2020. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Materials Science for Energy Technologies 3, 335–343.Pavlova, E.L., Zografov, N.N., Simeonova, L.S., 2016. Comparative study on the antioXidant capacities of synthetic influenza inhibitors and ellagic acid in model systems. Biomed. Pharmacother. 83, 755–762.Prashanna Suvaitha, S., et al., 2023. Optical and biological properties of MgO/ZnO nanocomposite derived via eggshell membrane: a bio-waste approach. Bioproc. Biosyst. Eng. 46 (1), 39–51.Preeti, et al., 2020. ZnO quantum dots: broad spectrum microbicidal agent against multidrug resistant pathogens E. coli and C. albicans. Frontiers in Nanotechnology 2, 576342.Pushparaj, K., Liu, W.C., Meyyazhagan, A., Orlacchio, A., Pappusamy, M., Vadivalagan, C., Balasubramanian, B., 2022. Nano-from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy 240, 122732.Rad, S.S., Sani, A.M., Mohseni, S., 2019. Biosynthesis, characterization and antimicrobial activities of zinc oXide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239–245.Rahimi, M.T., et al., 2015. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int. J. Surg. 19, 128–133.Rahman, A., et al., 2021. Zinc oXide and zinc oXide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioproc. Biosyst. Eng. 44 (7), 1333–1372.Raimondi, F., et al., 2005. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew. Chem. Int. Ed. 44 (15), 2190–2209.Rajeshkumar, S., et al., 2022. Degradation of toXic dye and antimicrobial and free radical potential of environmental benign zinc oXide nanoparticles. Bioinorgan. Chem. Appl. 2022, 4513208.Rasouli, K., Rasouli, J., Mohtaram, M.S., Sabbaghi, S., Kamyab, H., Moradi, H., Chelliapan, S., 2023. Biomass-derived activated carbon nanocomposites for cleaner production: a review on aspects of photocatalytic pollutant degradation. J. Clean. Prod. 138181.Reddy, K.M., et al., 2007. Selective toXicity of zinc oXide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90 (21).Regiel-Futyra, A., et al., 2015. The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity. RSC Adv. 5 (97), 80089–80097.Safa, M., Kachitvichyanukul, V., 2019. Moment rotation prediction of precast beam to column connections using extreme learning machine. Struct. Eng. Mech. Int. J. 70 (5), 639–647.Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M., 2020. Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Phys. A: Stat. Mech. Appl. 550, 124046.Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M., Petkovi´c, D., 2016. Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos. Struct. Int. J. 21 (3), 679–688.Salem, W., et al., 2015. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoXic Escherichia coli. International Journal of Medical Microbiology 305 (1), 85–95.Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S., 2017. Synthesis of zinc oXide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 3 (4), 459–465.Sˇebesta, M., et al., 2019. Increased colloidal stability and decreased solubility—sol—gel synthesis of zinc oXide nanoparticles with humic acids. J. Nanosci. Nanotechnol. 19 (5), 3024–3030.Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Azar, V.M., Toghroli, A., Wakil, K., 2018. Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struc. Systems 22 (3), 335–340.Segets, D., et al., 2009. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3 (7), 1703–1710.Senguttuvan, J., Paulsamy, S., Karthika, K., 2014. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioXidant activities. Asian Pac. J. Trop. Biomed. 4, S359–S367.Senthilkumar, R., et al., 2018. Phytochemical screening of aqueous leaf extract of Sida acuta burm. F. And its antibacterial activity. Journal of Emerging Technologies and Innovative Research 5 (8), 474–478.Seshadri, V.D., 2021. Zinc oXide nanoparticles from Cassia auriculata flowers showed the potent antimicrobial and in vitro anticancer activity against the osteosarcoma MG- 63 cells. Saudi J. Biol. Sci. 28 (7), 4046–4054.Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T., Shariati, A., 2020a. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Steel Compos. Struct. 34 (1), 155.Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T., Toghroli, A., 2020b. Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Structu. Systems Int. J. 25 (2), 183–195.Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N. T., Shariati, A., 2022. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 1–23.Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Poi- Ngian, S., 2019. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Applied Sci. 9 (24), 5534.Shittu, M., Alagbe, J., 2020. Phyto-nutritional profiles of broom weed (Sida acuta) leaf extract. International Journal on Integrated Education 3 (11), 119–124.Siddheswaran, R., et al., 2013. Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al: ZnO (TM Co, Ni) thin films by sol–gel spin coating method. Spectrochim. Acta Mol. Biomol. Spectrosc. 106, 118–123.Sidebottom, D.L., 2024. Dynamic light scattering study of the non-exponential α-relaxation in sodium germanate glass melts. J. Non-Cryst. Solids 627, 122819.Silva, G.A., 2004. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 61 (3), 216–220.Singh, J., et al., 2018. ‘Green’synthesis of metals and their oXide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16 (1), 1–24.Singh, A., et al., 2020. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnology Reports 25, e00427.Sirelkhatim, A., et al., 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242.Srivastava, V., Gusain, D., Sharma, Y.C., 2013. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram. Int. 39 (8), 9803–9808.Stoimenov, P.K., et al., 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir 18 (17), 6679–6686.Sultanova, N., et al., 2001. Antioxidant and antimicrobial activities of Tamarix ramosissima. J. Ethnopharmacol. 78 (2), 201–205.Syama, S., et al., 2014. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol. Mech. Methods 24 (9), 644–653.Tan, Q., et al., 2019. Hierarchical zinc oxide/reduced graphene oxide composite: preparation route, mechanism study and lithium ion storage. J. Colloid Interface Sci. 548, 233–243.Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A.M., Junin, R., 2022. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 312, 122867.Titus, D., James Jebaseelan Samuel, E., Roopan, S.M., 2019. Chapter 12 - nanoparticle characterization techniques. In: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp. 303–319.Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M., Ibrahim, Z., 2014. Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel Compos. Struct. 17 (5), 623–639.Veerakumar, K., Govindarajan, M., Rajeswary, M., 2013. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 112 (12), 4073–4085.Verma, C., et al., 2018. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J. Mol. Liq. 266, 577–590.Win, T.T., et al., 2021. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci. Rep. 11 (1), 21996.Xia, C., et al., 2023. Optimistic and possible contribution of nanomaterial on biomedical applications: a review. Environ. Res. 218, 114921.Xia, C., Ren, T., Darabi, R., Shabani-Nooshabadi, M., Klemeˇs, J.J., Karaman, C., Chelliapan, S., 2023. Spotlighting the boosted energy storage capacity of CoFe2O4/ Graphene nanoribbons: A promising positive electrode material for high-energydensity asymmetric supercapacitor. Energy 270, 126914.Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M., Boskabadi, A., 2021. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. J. Clean. Prod. 280, 124138.Zainah, T.A.S.M.I., Shahaboddin, S.M.S.M.S., 1801. Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam. J. Intell. Manuf. 29 (8), 1793.Zhang, Z., Karimi-Maleh, H., 2023. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324, 138302.Zhu, X., Pathakoti, K., Hwang, H.-M., 2019. Chapter 10 - green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier, pp. 223–263.281258Zinc oxide NPs synthesisSida acutaAntibacterial efficacyAntioxidant potentialAntibacterial activityCatalytic dye degradationConvolutional neural network (CNN)PublicationORIGINALGreen synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for.pdfGreen synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for.pdfapplication/pdf13786914https://repositorio.cuc.edu.co/bitstreams/21991fb6-89d4-407a-9b18-7915de89d4f5/downloade705ec73a9ca06b0624da42bfc0d8a52MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/8102ef1c-bcaa-4703-8a60-5f35506ec087/download73a5432e0b76442b22b026844140d683MD52TEXTGreen synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for.pdf.txtGreen synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for.pdf.txtExtracted texttext/plain100413https://repositorio.cuc.edu.co/bitstreams/a464a150-1976-4d7b-95a8-fa0a01a1fa06/download4f643f6f8809401c9154974f294721eeMD53THUMBNAILGreen synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for.pdf.jpgGreen synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for.pdf.jpgGenerated Thumbnailimage/jpeg13941https://repositorio.cuc.edu.co/bitstreams/a0bb4c4a-2124-4fdd-bd9c-8d981ef75f56/download3aceb2e9a350cc9015cce94c3464eefeMD5411323/13667oai:repositorio.cuc.edu.co:11323/136672024-11-13 03:00:50.829https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Published by Elsevier Inc.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K