Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming

Renewable energy sources have shown remarkable growth in recent times in terms of their contribution to sustainable societies. However, integrating them into the national power grids is usually hindered because of their weather-dependent nature and variability. The combination of different sources t...

Full description

Autores:
Canales, Fausto
Jurasz, Jakub
Kies, Alexander
Arrieta-Castro, Marco
Peralta-Cayón, Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6467
Acceso en línea:
https://hdl.handle.net/11323/6467
https://doi.org/10.1016/j.mex.2020.100871
https://repositorio.cuc.edu.co/
Palabra clave:
Energetic complementarity
Renewable energy
Variable renewables
Geographic information systems
Complementariedad energética
Energía renovable
Renovables variables
Sistemas de Información Geográfica
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_45eb435d286966b63dd8f05ba798b64e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6467
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
dc.title.translated.spa.fl_str_mv Representación espacial de temporal complementariedad entre tres energías variables fuentes que utilizan coeficientes de correlación y calendario de compromiso
title Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
spellingShingle Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
Energetic complementarity
Renewable energy
Variable renewables
Geographic information systems
Complementariedad energética
Energía renovable
Renovables variables
Sistemas de Información Geográfica
title_short Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
title_full Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
title_fullStr Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
title_full_unstemmed Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
title_sort Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming
dc.creator.fl_str_mv Canales, Fausto
Jurasz, Jakub
Kies, Alexander
Arrieta-Castro, Marco
Peralta-Cayón, Andrés
dc.contributor.author.spa.fl_str_mv Canales, Fausto
Jurasz, Jakub
Kies, Alexander
Arrieta-Castro, Marco
Peralta-Cayón, Andrés
dc.subject.spa.fl_str_mv Energetic complementarity
Renewable energy
Variable renewables
Geographic information systems
Complementariedad energética
Energía renovable
Renovables variables
Sistemas de Información Geográfica
topic Energetic complementarity
Renewable energy
Variable renewables
Geographic information systems
Complementariedad energética
Energía renovable
Renovables variables
Sistemas de Información Geográfica
description Renewable energy sources have shown remarkable growth in recent times in terms of their contribution to sustainable societies. However, integrating them into the national power grids is usually hindered because of their weather-dependent nature and variability. The combination of different sources to profit from their beneficial complementarity has often been proposed as a partial solution to overcome these issues. Thus, efficient planning for optimizing the exploitation of these energy resources requires different types of decision support tools. A mathematical index for assessing energetic complementarity between multiple energy sources constitutes an important tool for this purpose, allowing a comparison of complementarity between existing facilities at different planning stages and also allowing a dynamic assessment of complementarity between variable energy sources throughout the operation, assisting in the dispatch of power supplies. This article presents a method for quantifying and spatially representing the total temporal energetic complementarity between three different variable renewable sources, through an index created from correlation coefficients and compromise programming. The method is employed to study the complementarity of wind speed, solar radiation and surface runoff on a monthly scale using continental Colombia as a case study during the year of 2015. This paper describes a method for quantifying and spatially representing energetic complementarity between three renewable energy sources. The method quantifies energetic complementarity by combining known metrics: correlations and compromise programming. The proposed index for energetic complementarity assessment is sensitive to the time scale adopted.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-06T20:18:01Z
dc.date.available.none.fl_str_mv 2020-07-06T20:18:01Z
dc.date.issued.none.fl_str_mv 2020-03-11
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 22150161
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6467
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.mex.2020.100871
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 22150161
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6467
https://doi.org/10.1016/j.mex.2020.100871
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] F.A. Canales, J. Jurasz, A. Beluco, A. Kies, Assessing temporal complementarity between three variable energy sources through correlation and compromise programming, Energy 192 (2020) 116637, doi:10.1016/j.energy.2019.116637.
[2] F.A. Canales, J. Jurasz, A. Kies, A. Beluco, M. Arrieta-castro, A. Peralta-cayón, Temporal complementarity between three variable renewable energy resources: A spatial representation, in: 11th Int. Conf. Appl. Energy, Applied Energy, Västerås, Sweden, 2019, pp. 1–6. http://www.energy-proceedings.org/temporal-complementarity-between-three-variablerenewable-energy-sources-a-spatial-representation/.
[3] A. Beluco, P.K. de Souza, A. Krenzinger, A dimensionless index evaluating the time complementarity between solar and hydraulic energies, Renew. Energy 33 (2008) 2157–2165 https://doi.org/10.1016/j.renene.2008.01.019.
[4] A. Beluco, A. Risso, F.A. Canales, Simplified evaluation of energetic complementarity based on monthly average data, MethodsX 6 (2019) 1194–1198 https://doi.org/10.1016/j.mex.2019.05.019
[5] E.M. Borba, R.M. Brito, An index assessing the energetic complementarity in time between more than two energy resources, Energy Power Eng 09 (2017) 505–514 https://doi.org/10.4236/epe.2017.99035
[6] S. Han, L. Zhang, Y. Liu, H. Zhang, J. Yan, L. Li, X. Lei, X. Wang, Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio, Appl. Energy 236 (2019) 973–984 https://doi.org/10.1016/j. apenergy.2018.12.059.
[7] I. Kougias, S. Szabó, F. Monforti-Ferrario, T. Huld, K. Bódis, A methodology for optimization of the complementarity between small-hydropower plants and solar pv systems, Renew. Energy 87 (2016) 1023–1030 https://doi.org/10.1016/j.renene.2015. 09.073.
[8] J. Jurasz, A. Beluco, F.A. Canales, The impact of complementarity on power supply reliability of small scale hybrid energy systems, Energy 161 (2018) 737–743 https://doi.org/10.1016/j.energy.2018.07.182
[9] A.R. Silva, F.M. Pimenta, A.T. Assireu, M.H.C. Spyrides, Complementarity of Brazil ’ s hydro and offshore wind power, Renew. Sustain. Energy Rev. 56 (2016) 413–427 https://doi.org/10.1016/j.rser.2015.11.045.
[10] M.A. Vega-Sánchez, P.D. Castañeda-Jiménez, R. Peña-Gallardo, A. Ruiz-Alonso, J.A. Morales-Saldaña, E.R. Palacios-hernández, Evaluation of complementarity of wind and solar energy resources over Mexico using an image processing approach, in: IEEE Int. Autumn Meet. Power, Electron. Comput., IEEE, Ixtapa, Mexico Evaluation, 2017, pp. 1–5
[11] M.P. Cantão, M.R. Bessa, R. Bettega, D.H.M. Detzel, J.M. Lima, Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps, Renew. Energy 101 (2017) 1215–1225 https://doi.org/10.1016/j.renene.2016.10.012.
[12] A. Risso, A. Beluco, R.de C.M. Alves, Complementarity roses evaluating spatial complementarity in time between energy resources, Energies 11 (2018) 1–14 https://doi.org/10.3390/en11071918.
[13] A. Risso, A. Beluco, R.de C.M. Alves, Qualitative evaluation of spatial complementarity between renewable energy resources with complementarity roses, MethodsX 6 (2019) 800–804 https://doi.org/10.1016/j.mex.2019.04.005.
[14] M. Gershon, L. Duckstein, Multiobjective approaches to river basin planning, J. Water Resour. Plan. Manag. 109 (1983) 13–28 https://doi.org/10.1061/(ASCE)0733-9496(1983)109:1(13).
[15] Copernicus Climate Change Service (C3S), ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 2017 https://cds.climate.copernicus.eu/ (accessed April 28, 2019).
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv MethodsX
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/6467/1/Canales%20%282020%29%20Spatial%20representation%20of%20temporal%20complementarity.pdf
https://repositorio.cuc.edu.co/bitstream/11323/6467/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/6467/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/6467/4/Canales%20%282020%29%20Spatial%20representation%20of%20temporal%20complementarity.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/6467/5/Canales%20%282020%29%20Spatial%20representation%20of%20temporal%20complementarity.pdf.txt
bitstream.checksum.fl_str_mv ab60a40b0175c13bbdd3107e5b49dd2e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
58c1095aefa25e084d75d35e7e43bb3b
dbff55e205db9215b00c93a413fa9510
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400058140327936
spelling Canales, Fausto0682879bea857c7ccbcd9e1b7d60ddfcJurasz, Jakub2bc26a86e912d2aead7f2403f3f83586Kies, Alexander7aebe6052e23bd9de9dee30a6bf2cdfdArrieta-Castro, Marco4a2d273246a66862575e407a90a5f992Peralta-Cayón, Andrés687e044edfed03c4f3a707c95d5813642020-07-06T20:18:01Z2020-07-06T20:18:01Z2020-03-1122150161https://hdl.handle.net/11323/6467https://doi.org/10.1016/j.mex.2020.100871Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Renewable energy sources have shown remarkable growth in recent times in terms of their contribution to sustainable societies. However, integrating them into the national power grids is usually hindered because of their weather-dependent nature and variability. The combination of different sources to profit from their beneficial complementarity has often been proposed as a partial solution to overcome these issues. Thus, efficient planning for optimizing the exploitation of these energy resources requires different types of decision support tools. A mathematical index for assessing energetic complementarity between multiple energy sources constitutes an important tool for this purpose, allowing a comparison of complementarity between existing facilities at different planning stages and also allowing a dynamic assessment of complementarity between variable energy sources throughout the operation, assisting in the dispatch of power supplies. This article presents a method for quantifying and spatially representing the total temporal energetic complementarity between three different variable renewable sources, through an index created from correlation coefficients and compromise programming. The method is employed to study the complementarity of wind speed, solar radiation and surface runoff on a monthly scale using continental Colombia as a case study during the year of 2015. This paper describes a method for quantifying and spatially representing energetic complementarity between three renewable energy sources. The method quantifies energetic complementarity by combining known metrics: correlations and compromise programming. The proposed index for energetic complementarity assessment is sensitive to the time scale adopted.Las fuentes de energía renovable han mostrado un crecimiento notable en los últimos tiempos en términos de su contribución a sociedades sostenibles. Sin embargo, su integración en las redes eléctricas nacionales generalmente se ve obstaculizada debido a su naturaleza y variabilidad dependientes del clima. La combinación de diferentes fuentes para beneficiarse de su complementariedad beneficiosa a menudo se ha propuesto como una solución parcial para superar estos problemas. Por lo tanto, la planificación eficiente para optimizar la explotación de estos recursos energéticos requiere diferentes tipos de herramientas de apoyo a la decisión. Un índice matemático para evaluar la complementariedad energética entre múltiples fuentes de energía constituye una herramienta importante para este propósito, lo que permite una comparación de la complementariedad entre las instalaciones existentes en diferentes etapas de planificación y también permite una evaluación dinámica de la complementariedad entre las fuentes de energía variables a lo largo de la operación, ayudando en la despacho de suministros de energía. Este artículo presenta un método para cuantificar y representar espacialmente la complementariedad energética temporal total entre tres fuentes renovables variables diferentes, a través de un índice creado a partir de coeficientes de correlación y programación de compromiso. El método se emplea para estudiar la complementariedad de la velocidad del viento, la radiación solar y la escorrentía superficial en una escala mensual utilizando Colombia continental como un estudio de caso durante el año 2015.engMethodsXCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energetic complementarityRenewable energyVariable renewablesGeographic information systemsComplementariedad energéticaEnergía renovableRenovables variablesSistemas de Información GeográficaSpatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programmingRepresentación espacial de temporal complementariedad entre tres energías variables fuentes que utilizan coeficientes de correlación y calendario de compromisoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] F.A. Canales, J. Jurasz, A. Beluco, A. Kies, Assessing temporal complementarity between three variable energy sources through correlation and compromise programming, Energy 192 (2020) 116637, doi:10.1016/j.energy.2019.116637.[2] F.A. Canales, J. Jurasz, A. Kies, A. Beluco, M. Arrieta-castro, A. Peralta-cayón, Temporal complementarity between three variable renewable energy resources: A spatial representation, in: 11th Int. Conf. Appl. Energy, Applied Energy, Västerås, Sweden, 2019, pp. 1–6. http://www.energy-proceedings.org/temporal-complementarity-between-three-variablerenewable-energy-sources-a-spatial-representation/.[3] A. Beluco, P.K. de Souza, A. Krenzinger, A dimensionless index evaluating the time complementarity between solar and hydraulic energies, Renew. Energy 33 (2008) 2157–2165 https://doi.org/10.1016/j.renene.2008.01.019.[4] A. Beluco, A. Risso, F.A. Canales, Simplified evaluation of energetic complementarity based on monthly average data, MethodsX 6 (2019) 1194–1198 https://doi.org/10.1016/j.mex.2019.05.019[5] E.M. Borba, R.M. Brito, An index assessing the energetic complementarity in time between more than two energy resources, Energy Power Eng 09 (2017) 505–514 https://doi.org/10.4236/epe.2017.99035[6] S. Han, L. Zhang, Y. Liu, H. Zhang, J. Yan, L. Li, X. Lei, X. Wang, Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio, Appl. Energy 236 (2019) 973–984 https://doi.org/10.1016/j. apenergy.2018.12.059.[7] I. Kougias, S. Szabó, F. Monforti-Ferrario, T. Huld, K. Bódis, A methodology for optimization of the complementarity between small-hydropower plants and solar pv systems, Renew. Energy 87 (2016) 1023–1030 https://doi.org/10.1016/j.renene.2015. 09.073.[8] J. Jurasz, A. Beluco, F.A. Canales, The impact of complementarity on power supply reliability of small scale hybrid energy systems, Energy 161 (2018) 737–743 https://doi.org/10.1016/j.energy.2018.07.182[9] A.R. Silva, F.M. Pimenta, A.T. Assireu, M.H.C. Spyrides, Complementarity of Brazil ’ s hydro and offshore wind power, Renew. Sustain. Energy Rev. 56 (2016) 413–427 https://doi.org/10.1016/j.rser.2015.11.045.[10] M.A. Vega-Sánchez, P.D. Castañeda-Jiménez, R. Peña-Gallardo, A. Ruiz-Alonso, J.A. Morales-Saldaña, E.R. Palacios-hernández, Evaluation of complementarity of wind and solar energy resources over Mexico using an image processing approach, in: IEEE Int. Autumn Meet. Power, Electron. Comput., IEEE, Ixtapa, Mexico Evaluation, 2017, pp. 1–5[11] M.P. Cantão, M.R. Bessa, R. Bettega, D.H.M. Detzel, J.M. Lima, Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps, Renew. Energy 101 (2017) 1215–1225 https://doi.org/10.1016/j.renene.2016.10.012.[12] A. Risso, A. Beluco, R.de C.M. Alves, Complementarity roses evaluating spatial complementarity in time between energy resources, Energies 11 (2018) 1–14 https://doi.org/10.3390/en11071918.[13] A. Risso, A. Beluco, R.de C.M. Alves, Qualitative evaluation of spatial complementarity between renewable energy resources with complementarity roses, MethodsX 6 (2019) 800–804 https://doi.org/10.1016/j.mex.2019.04.005.[14] M. Gershon, L. Duckstein, Multiobjective approaches to river basin planning, J. Water Resour. Plan. Manag. 109 (1983) 13–28 https://doi.org/10.1061/(ASCE)0733-9496(1983)109:1(13).[15] Copernicus Climate Change Service (C3S), ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 2017 https://cds.climate.copernicus.eu/ (accessed April 28, 2019).ORIGINALCanales (2020) Spatial representation of temporal complementarity.pdfCanales (2020) Spatial representation of temporal complementarity.pdfapplication/pdf1360012https://repositorio.cuc.edu.co/bitstream/11323/6467/1/Canales%20%282020%29%20Spatial%20representation%20of%20temporal%20complementarity.pdfab60a40b0175c13bbdd3107e5b49dd2eMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/6467/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/6467/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILCanales (2020) Spatial representation of temporal complementarity.pdf.jpgCanales (2020) Spatial representation of temporal complementarity.pdf.jpgimage/jpeg45244https://repositorio.cuc.edu.co/bitstream/11323/6467/4/Canales%20%282020%29%20Spatial%20representation%20of%20temporal%20complementarity.pdf.jpg58c1095aefa25e084d75d35e7e43bb3bMD54open accessTEXTCanales (2020) Spatial representation of temporal complementarity.pdf.txtCanales (2020) Spatial representation of temporal complementarity.pdf.txttext/plain20677https://repositorio.cuc.edu.co/bitstream/11323/6467/5/Canales%20%282020%29%20Spatial%20representation%20of%20temporal%20complementarity.pdf.txtdbff55e205db9215b00c93a413fa9510MD55open access11323/6467oai:repositorio.cuc.edu.co:11323/64672023-12-14 12:22:50.756CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==