Almost contra (i, j)-continuous multifunctions

The purpose of the present paper is to introduce, study and characterize the upper and lower almost contra (I, J)-continuous multifunctions. Also, we investigate its relation with another well known class of continuous multifunctions.

Autores:
Rosas, Ennis
Carpintero, Carlos
Sanabria, José
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3024
Acceso en línea:
https://hdl.handle.net/11323/3024
https://doi.org/10.30755/NSJOM.07956
https://repositorio.cuc.edu.co/
Palabra clave:
weakly (I, J)-continuous multifunctions
upper almost contra (I, J)-continuous multifunctions
I-regular open set
Iregular closed set
contra (I, J)-continuous multifunctions
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_45d029dc27ba538efc6c4b6d7f6c3f21
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3024
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Almost contra (i, j)-continuous multifunctions
title Almost contra (i, j)-continuous multifunctions
spellingShingle Almost contra (i, j)-continuous multifunctions
weakly (I, J)-continuous multifunctions
upper almost contra (I, J)-continuous multifunctions
I-regular open set
Iregular closed set
contra (I, J)-continuous multifunctions
title_short Almost contra (i, j)-continuous multifunctions
title_full Almost contra (i, j)-continuous multifunctions
title_fullStr Almost contra (i, j)-continuous multifunctions
title_full_unstemmed Almost contra (i, j)-continuous multifunctions
title_sort Almost contra (i, j)-continuous multifunctions
dc.creator.fl_str_mv Rosas, Ennis
Carpintero, Carlos
Sanabria, José
dc.contributor.author.spa.fl_str_mv Rosas, Ennis
Carpintero, Carlos
Sanabria, José
dc.subject.spa.fl_str_mv weakly (I, J)-continuous multifunctions
upper almost contra (I, J)-continuous multifunctions
I-regular open set
Iregular closed set
contra (I, J)-continuous multifunctions
topic weakly (I, J)-continuous multifunctions
upper almost contra (I, J)-continuous multifunctions
I-regular open set
Iregular closed set
contra (I, J)-continuous multifunctions
description The purpose of the present paper is to introduce, study and characterize the upper and lower almost contra (I, J)-continuous multifunctions. Also, we investigate its relation with another well known class of continuous multifunctions.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-04-11T16:00:37Z
dc.date.available.none.fl_str_mv 2019-04-11T16:00:37Z
dc.date.issued.none.fl_str_mv 2019-03-18
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 14505444
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3024
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.30755/NSJOM.07956
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 14505444
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/3024
https://doi.org/10.30755/NSJOM.07956
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://www.dmi.uns.ac.rs/nsjom/paper.html?noid=7956
dc.relation.references.spa.fl_str_mv [1] Abd El-Monsef, M. E., Lashien, E. F., and Nasef, A. A. On I-open sets and I-continuos functions. Kyungpook Math. J. 32, 1 (1992), 21–30. [2] Akdag, M. On upper and lower I-continuos multifunctions. Far East J. Math. Sci. 25, 1 (2007), 49–57. [3] Andrijevic, D. ´ Semipreopen sets. Mat. Vesnik 38, 1 (1986), 24–32. [4] Arivazhagi, C., and Rajesh, N. On upper and lower weakly I-continuous multifunctions. Ital. J. Pure Appl. Math. 36 (2016), 899–912. [5] Arivazhagi, C., Rajesh, N., and Shanthi, S. On upper and lower almost contra I-continuous multifunctions. Int. J. Pure Appl. Math. 115, 4 (2017), 787–799. [6] Ekici, E. Nearly continuous multifunctions. Acta Math. Univ. Comen. 72 (2003), 229–235. [7] Ekici, E. Almost nearly continuous multifunctions. Acta Math. Univ. Comen. 73 (2004), 175–186. [8] Jankovic, D., and Hamlett, T. R. ´ Compatible extensions of ideals. Boll. Un. Mat. Ital. B (7) 6, 3 (1992), 453–465. [9] Kuratowski, K. Topology. Academic Press, 1966. [10] Levine, N. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Montly 70, 1 (1963), 36–41. [11] Mashhour, A. S., Abd El-Monsef, M. E., and El-Deeb, S. N. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53. [12] Rosas, E., and Carpintero, C. Upper and lower weakly (I, J)-continuous multifunctions. Submitted. [13] Rosas, E., Carpintero, C., and Moreno, J. Upper and lower (I, J)- continuous multifunctions. Int J. Pure Appl. Math. 117, 1 (2017), 87–97. [14] Simithson, R. E. Almost and weak continuity for multifunctions. Bull. Calcutta Math. Soc. 70 (1978), 383–390. [15] Stone, M. H. Applications of the theory of boolean rings to general topology. Trans. Amer. Math. Soc. 41, 3 (1937), 375–481. [16] Vaidyanathaswamy, R. The localisation theory in set topology. Proc. Indian Acad. Sci. 20, 1 (1944), 51–61. [17] Zorlutuna, I. ω-continuous multifunctions. Filomat 27, 1 (2013), 165–172.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Novi Sad Journal of Mathematics
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://sites.dmi.uns.ac.rs/nsjom/paper.html?noid=ns7956
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c4415ebf-ac34-4014-b3e9-9cf586fcfe53/download
https://repositorio.cuc.edu.co/bitstreams/821aac15-e009-4923-bb35-c05d9d417a9c/download
https://repositorio.cuc.edu.co/bitstreams/5a290e92-faf6-4ba6-8c88-80e935aac4e4/download
https://repositorio.cuc.edu.co/bitstreams/f6c02408-7cc2-4114-90d1-55e46f739714/download
https://repositorio.cuc.edu.co/bitstreams/ae910675-b70f-4edc-bdbb-79eb2868fde0/download
bitstream.checksum.fl_str_mv 8d398a01482f26198cd8b605dfcfc653
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
131bf8fb10e628dc4521d4edf8df3ac6
92ff7cb6dacc16f6c102d51e3f70dd5c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760811490672640
spelling Rosas, EnnisCarpintero, CarlosSanabria, José2019-04-11T16:00:37Z2019-04-11T16:00:37Z2019-03-1814505444https://hdl.handle.net/11323/3024https://doi.org/10.30755/NSJOM.07956Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The purpose of the present paper is to introduce, study and characterize the upper and lower almost contra (I, J)-continuous multifunctions. Also, we investigate its relation with another well known class of continuous multifunctions.Rosas, Ennis-c145ef77-57b4-4c48-a23b-bd05bfbc6248-600Carpintero, Carlos-a355945f-e98f-41c1-bf2e-c139d8aa37cb-600Sanabria, José-d0d4bf22-e06b-4b65-9c66-b0cbd76bf5a8-600engNovi Sad Journal of Mathematicshttps://www.dmi.uns.ac.rs/nsjom/paper.html?noid=7956[1] Abd El-Monsef, M. E., Lashien, E. F., and Nasef, A. A. On I-open sets and I-continuos functions. Kyungpook Math. J. 32, 1 (1992), 21–30. [2] Akdag, M. On upper and lower I-continuos multifunctions. Far East J. Math. Sci. 25, 1 (2007), 49–57. [3] Andrijevic, D. ´ Semipreopen sets. Mat. Vesnik 38, 1 (1986), 24–32. [4] Arivazhagi, C., and Rajesh, N. On upper and lower weakly I-continuous multifunctions. Ital. J. Pure Appl. Math. 36 (2016), 899–912. [5] Arivazhagi, C., Rajesh, N., and Shanthi, S. On upper and lower almost contra I-continuous multifunctions. Int. J. Pure Appl. Math. 115, 4 (2017), 787–799. [6] Ekici, E. Nearly continuous multifunctions. Acta Math. Univ. Comen. 72 (2003), 229–235. [7] Ekici, E. Almost nearly continuous multifunctions. Acta Math. Univ. Comen. 73 (2004), 175–186. [8] Jankovic, D., and Hamlett, T. R. ´ Compatible extensions of ideals. Boll. Un. Mat. Ital. B (7) 6, 3 (1992), 453–465. [9] Kuratowski, K. Topology. Academic Press, 1966. [10] Levine, N. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Montly 70, 1 (1963), 36–41. [11] Mashhour, A. S., Abd El-Monsef, M. E., and El-Deeb, S. N. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53. [12] Rosas, E., and Carpintero, C. Upper and lower weakly (I, J)-continuous multifunctions. Submitted. [13] Rosas, E., Carpintero, C., and Moreno, J. Upper and lower (I, J)- continuous multifunctions. Int J. Pure Appl. Math. 117, 1 (2017), 87–97. [14] Simithson, R. E. Almost and weak continuity for multifunctions. Bull. Calcutta Math. Soc. 70 (1978), 383–390. [15] Stone, M. H. Applications of the theory of boolean rings to general topology. Trans. Amer. Math. Soc. 41, 3 (1937), 375–481. [16] Vaidyanathaswamy, R. The localisation theory in set topology. Proc. Indian Acad. Sci. 20, 1 (1944), 51–61. [17] Zorlutuna, I. ω-continuous multifunctions. Filomat 27, 1 (2013), 165–172.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2weakly (I, J)-continuous multifunctionsupper almost contra (I, J)-continuous multifunctionsI-regular open setIregular closed setcontra (I, J)-continuous multifunctionsAlmost contra (i, j)-continuous multifunctionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://sites.dmi.uns.ac.rs/nsjom/paper.html?noid=ns7956PublicationORIGINALAlmost contra (i, j)-continuous multifunctions.pdfAlmost contra (i, j)-continuous multifunctions.pdfapplication/pdf103297https://repositorio.cuc.edu.co/bitstreams/c4415ebf-ac34-4014-b3e9-9cf586fcfe53/download8d398a01482f26198cd8b605dfcfc653MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/821aac15-e009-4923-bb35-c05d9d417a9c/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/5a290e92-faf6-4ba6-8c88-80e935aac4e4/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAlmost contra (i, j)-continuous multifunctions.pdf.jpgAlmost contra (i, j)-continuous multifunctions.pdf.jpgimage/jpeg43513https://repositorio.cuc.edu.co/bitstreams/f6c02408-7cc2-4114-90d1-55e46f739714/download131bf8fb10e628dc4521d4edf8df3ac6MD55TEXTAlmost contra (i, j)-continuous multifunctions.pdf.txtAlmost contra (i, j)-continuous multifunctions.pdf.txttext/plain23312https://repositorio.cuc.edu.co/bitstreams/ae910675-b70f-4edc-bdbb-79eb2868fde0/download92ff7cb6dacc16f6c102d51e3f70dd5cMD5611323/3024oai:repositorio.cuc.edu.co:11323/30242024-09-17 12:48:24.753http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=