New optical solitons of Kundu-Eckhaus equation via λ-symmetry
New closed-form exact solutions for the nonlinear Kundu-Eckahus (KE) equation with generalized coefficients are obtained. A travelling wave transformation reduces the KE equation to a second-order ordinary differential equation that is completely integrated by using the λ-symmetry approach. A one-pa...
- Autores:
-
Mendoza, J.
Muriel, C.
Ramírez, J.
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6445
- Acceso en línea:
- https://hdl.handle.net/11323/6445
https://doi.org/10.1016/j.chaos.2020.109786
https://repositorio.cuc.edu.co/
- Palabra clave:
- λ-symmetry
Solitons
Kundu-Eckhaus equation
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_457a9cc1849243a99d7f06817b55756a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6445 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
title |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
spellingShingle |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry λ-symmetry Solitons Kundu-Eckhaus equation |
title_short |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
title_full |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
title_fullStr |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
title_full_unstemmed |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
title_sort |
New optical solitons of Kundu-Eckhaus equation via λ-symmetry |
dc.creator.fl_str_mv |
Mendoza, J. Muriel, C. Ramírez, J. |
dc.contributor.author.spa.fl_str_mv |
Mendoza, J. Muriel, C. Ramírez, J. |
dc.subject.spa.fl_str_mv |
λ-symmetry Solitons Kundu-Eckhaus equation |
topic |
λ-symmetry Solitons Kundu-Eckhaus equation |
description |
New closed-form exact solutions for the nonlinear Kundu-Eckahus (KE) equation with generalized coefficients are obtained. A travelling wave transformation reduces the KE equation to a second-order ordinary differential equation that is completely integrated by using the λ-symmetry approach. A one-parameter family of singular solutions of the reduced equation provides a unified expression for a class of solutions for the KE equation which contains, as particular cases, most of the exact solutions derived during the last years by using a great variety of powerful integration methods. The general solution of the reduced equation permits to construct a two-parameter family of exact solutions for the KE equation, providing a rich class of new exact solutions that, to the best or our knowledge, have not been reported before. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-30T22:11:33Z |
dc.date.available.none.fl_str_mv |
2020-06-30T22:11:33Z |
dc.date.issued.none.fl_str_mv |
2020-07 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6445 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.chaos.2020.109786 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6445 https://doi.org/10.1016/j.chaos.2020.109786 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/112d6669-10f2-4589-a1e9-beb3cfc6ebde/download https://repositorio.cuc.edu.co/bitstreams/db4aed00-84ae-47b5-9fac-8efe3733e764/download https://repositorio.cuc.edu.co/bitstreams/d4d5d7dc-d3f9-4af5-bf86-bb998e8eb279/download https://repositorio.cuc.edu.co/bitstreams/e45ecd5f-1bc5-4acf-87db-07cbc4defaf9/download https://repositorio.cuc.edu.co/bitstreams/80390b40-1aac-4413-be61-77e43ed3114b/download |
bitstream.checksum.fl_str_mv |
f7de3574d1ecf10b99a461a17b6de833 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 ab42aee84e9ba3d1b68cf952d57136bf ad70a0bfac5e161097886c2abc9326e8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760732803432448 |
spelling |
Mendoza, J.Muriel, C.Ramírez, J.2020-06-30T22:11:33Z2020-06-30T22:11:33Z2020-07https://hdl.handle.net/11323/6445https://doi.org/10.1016/j.chaos.2020.109786Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/New closed-form exact solutions for the nonlinear Kundu-Eckahus (KE) equation with generalized coefficients are obtained. A travelling wave transformation reduces the KE equation to a second-order ordinary differential equation that is completely integrated by using the λ-symmetry approach. A one-parameter family of singular solutions of the reduced equation provides a unified expression for a class of solutions for the KE equation which contains, as particular cases, most of the exact solutions derived during the last years by using a great variety of powerful integration methods. The general solution of the reduced equation permits to construct a two-parameter family of exact solutions for the KE equation, providing a rich class of new exact solutions that, to the best or our knowledge, have not been reported before.Mendoza, J.Muriel, C.Ramírez, J.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2λ-symmetrySolitonsKundu-Eckhaus equationNew optical solitons of Kundu-Eckhaus equation via λ-symmetryPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdfNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdfapplication/pdf288524https://repositorio.cuc.edu.co/bitstreams/112d6669-10f2-4589-a1e9-beb3cfc6ebde/downloadf7de3574d1ecf10b99a461a17b6de833MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/db4aed00-84ae-47b5-9fac-8efe3733e764/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d4d5d7dc-d3f9-4af5-bf86-bb998e8eb279/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.jpgNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.jpgimage/jpeg32740https://repositorio.cuc.edu.co/bitstreams/e45ecd5f-1bc5-4acf-87db-07cbc4defaf9/downloadab42aee84e9ba3d1b68cf952d57136bfMD54TEXTNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.txtNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.txttext/plain1019https://repositorio.cuc.edu.co/bitstreams/80390b40-1aac-4413-be61-77e43ed3114b/downloadad70a0bfac5e161097886c2abc9326e8MD5511323/6445oai:repositorio.cuc.edu.co:11323/64452024-09-17 10:52:16.234http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |