New optical solitons of Kundu-Eckhaus equation via λ-symmetry

New closed-form exact solutions for the nonlinear Kundu-Eckahus (KE) equation with generalized coefficients are obtained. A travelling wave transformation reduces the KE equation to a second-order ordinary differential equation that is completely integrated by using the λ-symmetry approach. A one-pa...

Full description

Autores:
Mendoza, J.
Muriel, C.
Ramírez, J.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6445
Acceso en línea:
https://hdl.handle.net/11323/6445
https://doi.org/10.1016/j.chaos.2020.109786
https://repositorio.cuc.edu.co/
Palabra clave:
λ-symmetry
Solitons
Kundu-Eckhaus equation
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_457a9cc1849243a99d7f06817b55756a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6445
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv New optical solitons of Kundu-Eckhaus equation via λ-symmetry
title New optical solitons of Kundu-Eckhaus equation via λ-symmetry
spellingShingle New optical solitons of Kundu-Eckhaus equation via λ-symmetry
λ-symmetry
Solitons
Kundu-Eckhaus equation
title_short New optical solitons of Kundu-Eckhaus equation via λ-symmetry
title_full New optical solitons of Kundu-Eckhaus equation via λ-symmetry
title_fullStr New optical solitons of Kundu-Eckhaus equation via λ-symmetry
title_full_unstemmed New optical solitons of Kundu-Eckhaus equation via λ-symmetry
title_sort New optical solitons of Kundu-Eckhaus equation via λ-symmetry
dc.creator.fl_str_mv Mendoza, J.
Muriel, C.
Ramírez, J.
dc.contributor.author.spa.fl_str_mv Mendoza, J.
Muriel, C.
Ramírez, J.
dc.subject.spa.fl_str_mv λ-symmetry
Solitons
Kundu-Eckhaus equation
topic λ-symmetry
Solitons
Kundu-Eckhaus equation
description New closed-form exact solutions for the nonlinear Kundu-Eckahus (KE) equation with generalized coefficients are obtained. A travelling wave transformation reduces the KE equation to a second-order ordinary differential equation that is completely integrated by using the λ-symmetry approach. A one-parameter family of singular solutions of the reduced equation provides a unified expression for a class of solutions for the KE equation which contains, as particular cases, most of the exact solutions derived during the last years by using a great variety of powerful integration methods. The general solution of the reduced equation permits to construct a two-parameter family of exact solutions for the KE equation, providing a rich class of new exact solutions that, to the best or our knowledge, have not been reported before.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-30T22:11:33Z
dc.date.available.none.fl_str_mv 2020-06-30T22:11:33Z
dc.date.issued.none.fl_str_mv 2020-07
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6445
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.chaos.2020.109786
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6445
https://doi.org/10.1016/j.chaos.2020.109786
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/112d6669-10f2-4589-a1e9-beb3cfc6ebde/download
https://repositorio.cuc.edu.co/bitstreams/db4aed00-84ae-47b5-9fac-8efe3733e764/download
https://repositorio.cuc.edu.co/bitstreams/d4d5d7dc-d3f9-4af5-bf86-bb998e8eb279/download
https://repositorio.cuc.edu.co/bitstreams/e45ecd5f-1bc5-4acf-87db-07cbc4defaf9/download
https://repositorio.cuc.edu.co/bitstreams/80390b40-1aac-4413-be61-77e43ed3114b/download
bitstream.checksum.fl_str_mv f7de3574d1ecf10b99a461a17b6de833
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
ab42aee84e9ba3d1b68cf952d57136bf
ad70a0bfac5e161097886c2abc9326e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760732803432448
spelling Mendoza, J.Muriel, C.Ramírez, J.2020-06-30T22:11:33Z2020-06-30T22:11:33Z2020-07https://hdl.handle.net/11323/6445https://doi.org/10.1016/j.chaos.2020.109786Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/New closed-form exact solutions for the nonlinear Kundu-Eckahus (KE) equation with generalized coefficients are obtained. A travelling wave transformation reduces the KE equation to a second-order ordinary differential equation that is completely integrated by using the λ-symmetry approach. A one-parameter family of singular solutions of the reduced equation provides a unified expression for a class of solutions for the KE equation which contains, as particular cases, most of the exact solutions derived during the last years by using a great variety of powerful integration methods. The general solution of the reduced equation permits to construct a two-parameter family of exact solutions for the KE equation, providing a rich class of new exact solutions that, to the best or our knowledge, have not been reported before.Mendoza, J.Muriel, C.Ramírez, J.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2λ-symmetrySolitonsKundu-Eckhaus equationNew optical solitons of Kundu-Eckhaus equation via λ-symmetryPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdfNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdfapplication/pdf288524https://repositorio.cuc.edu.co/bitstreams/112d6669-10f2-4589-a1e9-beb3cfc6ebde/downloadf7de3574d1ecf10b99a461a17b6de833MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/db4aed00-84ae-47b5-9fac-8efe3733e764/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d4d5d7dc-d3f9-4af5-bf86-bb998e8eb279/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.jpgNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.jpgimage/jpeg32740https://repositorio.cuc.edu.co/bitstreams/e45ecd5f-1bc5-4acf-87db-07cbc4defaf9/downloadab42aee84e9ba3d1b68cf952d57136bfMD54TEXTNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.txtNew optical solitons of Kundu-Eckhaus equation via λ-symmetry.pdf.txttext/plain1019https://repositorio.cuc.edu.co/bitstreams/80390b40-1aac-4413-be61-77e43ed3114b/downloadad70a0bfac5e161097886c2abc9326e8MD5511323/6445oai:repositorio.cuc.edu.co:11323/64452024-09-17 10:52:16.234http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=