Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method

This paper present a purpose to characterize power lines in order to identify level of operation since the power grid planning. In order to model a power line was required the use of computational tools to generate a mathematical model in MATLAB, which was based on the finite difference method and r...

Full description

Autores:
Silva Ortega, Jorge Ivan
Hernandez Herrera, Hernan
Gomez Sandoval, Elibardo Jose
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/941
Acceso en línea:
http://hdl.handle.net/11323/941
https://repositorio.cuc.edu.co/
Palabra clave:
power lines
mathematical model
cross section
electric field
magnetic field
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_44b718836b1ee535e9a4d0ac106bfd92
oai_identifier_str oai:repositorio.cuc.edu.co:11323/941
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
title Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
spellingShingle Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
power lines
mathematical model
cross section
electric field
magnetic field
title_short Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
title_full Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
title_fullStr Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
title_full_unstemmed Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
title_sort Evaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference method
dc.creator.fl_str_mv Silva Ortega, Jorge Ivan
Hernandez Herrera, Hernan
Gomez Sandoval, Elibardo Jose
dc.contributor.author.spa.fl_str_mv Silva Ortega, Jorge Ivan
Hernandez Herrera, Hernan
Gomez Sandoval, Elibardo Jose
dc.subject.eng.fl_str_mv power lines
mathematical model
cross section
electric field
magnetic field
topic power lines
mathematical model
cross section
electric field
magnetic field
description This paper present a purpose to characterize power lines in order to identify level of operation since the power grid planning. In order to model a power line was required the use of computational tools to generate a mathematical model in MATLAB, which was based on the finite difference method and represent the electromagnetic field (EMF) contribution. The results were contrasted with real and measured values taken from a cross section of a power line that was previously modeled. Statistical analysis showed an accurate estimation of the electric and magnetic field emitted by the line identifying the same shape of the plotted curve and values in an acceptable range.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2018-11-14T13:39:51Z
dc.date.available.none.fl_str_mv 2018-11-14T13:39:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1690-4524
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/941
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1690-4524
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/941
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] International Commission on Non-Ionizing Radiation Protection, "Guidelines for limiting exposure to timevarying electric and magnetic fields (1 Hz to 100 kHz)," Health Physics, pp. 818-836, 2010. [2] IEEE, IEEE Std 644-1994. Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields From AC Power Lines, IEEE, 1995. [3] Ministerio de minas y Energía, Reglamento Técnico de Instalaciones Eléctricas (RETIE), Bogotá, 2013. [4] C. Polk and E. Postow, Handbook of Biological Effects of Electromagnetic Fields, CRC press, 1995. [5] K. Dezelak, G. Stumberger and F. Jakl, "Arrangements of overhead power line conductors related to the electromagnetic field limits," Proceedings of the International Symposium Modern Electric Power Systems (MEPS),, vol. 1, no. 6, pp. 20-22, 2010. [6] M. D'Amore and M. S. Sarto, "Electromagnetic field radiated from broadband signal transmission on power line carrier channels," IEEE Transactions on Power Delivery, vol. 12, no. 624 - 631, p. 2, 1997. [7] P. R. Clayton, Introduction to electromagnetic compatibility, John Wiley & Sons, 2006. [8] A. H. Sihvola, Electromagnetic mixing formulas and applications, 1999. [9] R. Olsen and C. Jaffa Kent, "Electromagnetic Coupling From Power Lines and Magnetic Field Safety Analysis," IEEE Power Engineering Review, vol. 4, no. 45,46, p. 12, 1984. [10] "Survey of Electromagnetic Field Radiation Associated with Power Transmission Lines in the State of Kuwait," International Conference on Electromagnetics in Advanced Applications, vol. 795, no. 797, pp. 17-21, 2007. [11] C. L. Alonso, J. Puente and J. Montana, "Straight Line Programs: A New Linear Genetic Programming Approach," 20th IEEE International Conference on Tools with Artificial Intelligence, 2008. ICTAI '08., vol. 2, pp. 517 - 524, 2008. [12] M. N. Sadiku, Elementos de electromagnetismo, 1998. [13] C. Alexander, M. Sadiku, A. Bermudez and C. Pedraza, Fundamentos de circuitos eléctricos, McGraw-Hill, 2006. [14] M. Sadiku, Numerical techniques in electromagnetics, CRC press, 2000. [15] C. Christopoulos, "The Transmission-line Modeling Method," IEEE Antennas and Propagation Magazine, vol. 39, pp. 90-92, 1997. [16] S. Pengxian , L. Yaohua and W. Ping , "Research on power electronic load simulation algorithm," IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), vol. 342, no. 347, pp. 9-11, 2014. [17] S. Khedimallah, B. Nekhoul, K. Kerroum and K. El Khamlichi Drissi, "Analysis of Power Line Communications electromagnetic field in electrical networks taking into account the power transformers," International Symposium on Electromagnetic Compatibility 2012, vol. 1, no. 6, pp. 17-21, 2012. [18] M. Vargas, D. Rondon, J. Herrera, J. Montana, D. Jimenez, M. Camargo, H. Torres and O. Duarte, "Grounding system modeling in EMTP/ATP based on its frequency response," IEEE Russia Power Tech,, vol. 1, no. 5, pp. 27-30, 2005. [19] M. Balbis Morejon, Caracterización Energética y Ahorro de Energía en Instituciones Educativas, Barranquilla: Coorporación Universidad de la Costa, 2010. [20] International Commission on Non-Ionizing Radiation Protection INCIRP, ICNIRP statement on the “guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz), ICNIRP, 2009.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Systemics, Cybernetics and Informatics
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/941/1/Evaluation%20and%20Modeling%20of%20the%20Variation%20of%20Electromagnetic%20Field%20on%20the.pdf
https://repositorio.cuc.edu.co/bitstream/11323/941/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/941/4/Evaluation%20and%20Modeling%20of%20the%20Variation%20of%20Electromagnetic%20Field%20on%20the.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/941/5/Evaluation%20and%20Modeling%20of%20the%20Variation%20of%20Electromagnetic%20Field%20on%20the.pdf.txt
bitstream.checksum.fl_str_mv 7ab216c813eb5b297e2bfcf02629adb1
8a4605be74aa9ea9d79846c1fba20a33
544266f87d177d57ea63801f4bef0b34
d579088455b92c7ff861ba7ac12d6b13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400032009814016
spelling Silva Ortega, Jorge Ivan45436e429d9054aabf8b79ae1e268b36Hernandez Herrera, Hernan70112297cf6e418258e1263b10874b19Gomez Sandoval, Elibardo Josed49e42ab72eae6a987e68f3aacbf44fe2018-11-14T13:39:51Z2018-11-14T13:39:51Z20151690-4524http://hdl.handle.net/11323/941Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper present a purpose to characterize power lines in order to identify level of operation since the power grid planning. In order to model a power line was required the use of computational tools to generate a mathematical model in MATLAB, which was based on the finite difference method and represent the electromagnetic field (EMF) contribution. The results were contrasted with real and measured values taken from a cross section of a power line that was previously modeled. Statistical analysis showed an accurate estimation of the electric and magnetic field emitted by the line identifying the same shape of the plotted curve and values in an acceptable range.engSystemics, Cybernetics and InformaticsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2power linesmathematical modelcross sectionelectric fieldmagnetic fieldEvaluation and modeling of the variation of electromagnetic field on the cross section of a transmission line using finite difference methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] International Commission on Non-Ionizing Radiation Protection, "Guidelines for limiting exposure to timevarying electric and magnetic fields (1 Hz to 100 kHz)," Health Physics, pp. 818-836, 2010. [2] IEEE, IEEE Std 644-1994. Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields From AC Power Lines, IEEE, 1995. [3] Ministerio de minas y Energía, Reglamento Técnico de Instalaciones Eléctricas (RETIE), Bogotá, 2013. [4] C. Polk and E. Postow, Handbook of Biological Effects of Electromagnetic Fields, CRC press, 1995. [5] K. Dezelak, G. Stumberger and F. Jakl, "Arrangements of overhead power line conductors related to the electromagnetic field limits," Proceedings of the International Symposium Modern Electric Power Systems (MEPS),, vol. 1, no. 6, pp. 20-22, 2010. [6] M. D'Amore and M. S. Sarto, "Electromagnetic field radiated from broadband signal transmission on power line carrier channels," IEEE Transactions on Power Delivery, vol. 12, no. 624 - 631, p. 2, 1997. [7] P. R. Clayton, Introduction to electromagnetic compatibility, John Wiley & Sons, 2006. [8] A. H. Sihvola, Electromagnetic mixing formulas and applications, 1999. [9] R. Olsen and C. Jaffa Kent, "Electromagnetic Coupling From Power Lines and Magnetic Field Safety Analysis," IEEE Power Engineering Review, vol. 4, no. 45,46, p. 12, 1984. [10] "Survey of Electromagnetic Field Radiation Associated with Power Transmission Lines in the State of Kuwait," International Conference on Electromagnetics in Advanced Applications, vol. 795, no. 797, pp. 17-21, 2007. [11] C. L. Alonso, J. Puente and J. Montana, "Straight Line Programs: A New Linear Genetic Programming Approach," 20th IEEE International Conference on Tools with Artificial Intelligence, 2008. ICTAI '08., vol. 2, pp. 517 - 524, 2008. [12] M. N. Sadiku, Elementos de electromagnetismo, 1998. [13] C. Alexander, M. Sadiku, A. Bermudez and C. Pedraza, Fundamentos de circuitos eléctricos, McGraw-Hill, 2006. [14] M. Sadiku, Numerical techniques in electromagnetics, CRC press, 2000. [15] C. Christopoulos, "The Transmission-line Modeling Method," IEEE Antennas and Propagation Magazine, vol. 39, pp. 90-92, 1997. [16] S. Pengxian , L. Yaohua and W. Ping , "Research on power electronic load simulation algorithm," IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), vol. 342, no. 347, pp. 9-11, 2014. [17] S. Khedimallah, B. Nekhoul, K. Kerroum and K. El Khamlichi Drissi, "Analysis of Power Line Communications electromagnetic field in electrical networks taking into account the power transformers," International Symposium on Electromagnetic Compatibility 2012, vol. 1, no. 6, pp. 17-21, 2012. [18] M. Vargas, D. Rondon, J. Herrera, J. Montana, D. Jimenez, M. Camargo, H. Torres and O. Duarte, "Grounding system modeling in EMTP/ATP based on its frequency response," IEEE Russia Power Tech,, vol. 1, no. 5, pp. 27-30, 2005. [19] M. Balbis Morejon, Caracterización Energética y Ahorro de Energía en Instituciones Educativas, Barranquilla: Coorporación Universidad de la Costa, 2010. [20] International Commission on Non-Ionizing Radiation Protection INCIRP, ICNIRP statement on the “guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz), ICNIRP, 2009.ORIGINALEvaluation and Modeling of the Variation of Electromagnetic Field on the.pdfEvaluation and Modeling of the Variation of Electromagnetic Field on the.pdfapplication/pdf408333https://repositorio.cuc.edu.co/bitstream/11323/941/1/Evaluation%20and%20Modeling%20of%20the%20Variation%20of%20Electromagnetic%20Field%20on%20the.pdf7ab216c813eb5b297e2bfcf02629adb1MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/941/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILEvaluation and Modeling of the Variation of Electromagnetic Field on the.pdf.jpgEvaluation and Modeling of the Variation of Electromagnetic Field on the.pdf.jpgimage/jpeg59038https://repositorio.cuc.edu.co/bitstream/11323/941/4/Evaluation%20and%20Modeling%20of%20the%20Variation%20of%20Electromagnetic%20Field%20on%20the.pdf.jpg544266f87d177d57ea63801f4bef0b34MD54open accessTEXTEvaluation and Modeling of the Variation of Electromagnetic Field on the.pdf.txtEvaluation and Modeling of the Variation of Electromagnetic Field on the.pdf.txttext/plain17145https://repositorio.cuc.edu.co/bitstream/11323/941/5/Evaluation%20and%20Modeling%20of%20the%20Variation%20of%20Electromagnetic%20Field%20on%20the.pdf.txtd579088455b92c7ff861ba7ac12d6b13MD55open access11323/941oai:repositorio.cuc.edu.co:11323/9412023-12-14 11:45:06.484open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=