Efecto de las cargas dinámicas desarrolladas en la interfaz llanta – pavimento, en la vida por fatiga y ahuellamiento en pavimentos flexibles
The present investigation intends to evaluate the effect that dynamic loads have on life due to fatigue and life due to rutting (Number of repetitions allowed due to fatigue and recess), due to the fact that pavements are actually affected by dynamic loads and not by static loads as currently perfor...
- Autores:
-
Pineda Morales, Ramon José
Rodríguez, Yicela Johanna
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6427
- Acceso en línea:
- https://hdl.handle.net/11323/6427
https://repositorio.cuc.edu.co/
- Palabra clave:
- Dynamic loads
Roughness
Fatigue
Rutting
International roughness index
Cargas dinámicas
Rugosidad
Fatiga
Ahuellamiento
Índice de rugosidad internacional
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
Summary: | The present investigation intends to evaluate the effect that dynamic loads have on life due to fatigue and life due to rutting (Number of repetitions allowed due to fatigue and recess), due to the fact that pavements are actually affected by dynamic loads and not by static loads as currently performed in pavement designs. In order to achieve the objectives of the investigation, estimate dynamic loads on pavements with roughness levels IRI (International Roughness Index) of 1 m / km to 10 m / km, temperatures of 15 degrees Celsius and 30 degrees Celsius and a constant speed of 80 km / h, typical of rural roads in Colombia. Then, the stresses and deformations to which they would sometimes be from each of these dynamic loads were determined, for this to estimate the number of allowable repetitions due to fatigue and rutting. As a result of the investigation, it can be concluded that, in the cases evaluated, life due to fatigue was inferior to life due to rutting, that is because, pavements would first fail due to fatigue, this was to be expected since, as loads increased, then stresses on the surface are increased and therefore fatigue is generated in asphalt pavements. In addition, when we use thicker asphalt thicknesses, decreasing the likelihood of collapse by fatigue and rutting. On the other hand, a measure that increases the value of the IRI (International Roughness Index),, decreases the life due to fatigue and rutting, this means that it measures a measure that we have a path with greater IRI (International Roughness Index), the dynamic load is increased and consequently the useful life of the pavement; in the case of comparing pavements with greater thicknesses of asphalt, it is noted that this improves life due to fatigue and rutting, especially the latter, since, by placing high asphalt thicknesses, the stresses on the subgrade are reduced. Finally, in the case of temperature, for all cases as the temperature increases from 15 ° C to 30 ° C, there is a reduction in the number of permissible repetitions, that is, the dynamic effect of asphalt mixtures a Low temperature help resist more number of equivalent axes. |
---|