Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)

The construction sector worldwide represents one of the main activities in all society and which in turn represents a sizable percentage of the generation of tons and tons of waste that are not adequately treated and therefore generate a high impact environmental damage. The use of Construction and...

Full description

Autores:
Remolina Durán, Jesús Guillermo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/247
Acceso en línea:
https://hdl.handle.net/11323/247
https://repositorio.cuc.edu.co/
Palabra clave:
Agregado de concreto reciclado
Residuos de Construcción y Demolición
resistencia a la compresión
módulo de rotura
aprovechamiento de residuos
propiedades físico mecánicas
resistencia a flexión
Recycled concrete aggregate
Construction and Demolition Waste
Compressive strength
Modulus of rupture
Waste utilization
Physical-mechanical properties
Flexural strength
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_447797fff42e78712322c89f35380651
oai_identifier_str oai:repositorio.cuc.edu.co:11323/247
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
title Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
spellingShingle Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
Agregado de concreto reciclado
Residuos de Construcción y Demolición
resistencia a la compresión
módulo de rotura
aprovechamiento de residuos
propiedades físico mecánicas
resistencia a flexión
Recycled concrete aggregate
Construction and Demolition Waste
Compressive strength
Modulus of rupture
Waste utilization
Physical-mechanical properties
Flexural strength
title_short Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
title_full Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
title_fullStr Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
title_full_unstemmed Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
title_sort Determinación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)
dc.creator.fl_str_mv Remolina Durán, Jesús Guillermo
dc.contributor.advisor.spa.fl_str_mv Sabau, Marian
dc.contributor.author.spa.fl_str_mv Remolina Durán, Jesús Guillermo
dc.contributor.coasesor.spa.fl_str_mv Serrano, Iván
dc.subject.eng.fl_str_mv Agregado de concreto reciclado
Residuos de Construcción y Demolición
resistencia a la compresión
módulo de rotura
aprovechamiento de residuos
propiedades físico mecánicas
resistencia a flexión
topic Agregado de concreto reciclado
Residuos de Construcción y Demolición
resistencia a la compresión
módulo de rotura
aprovechamiento de residuos
propiedades físico mecánicas
resistencia a flexión
Recycled concrete aggregate
Construction and Demolition Waste
Compressive strength
Modulus of rupture
Waste utilization
Physical-mechanical properties
Flexural strength
dc.subject.none.fl_str_mv Recycled concrete aggregate
Construction and Demolition Waste
Compressive strength
Modulus of rupture
Waste utilization
Physical-mechanical properties
Flexural strength
description The construction sector worldwide represents one of the main activities in all society and which in turn represents a sizable percentage of the generation of tons and tons of waste that are not adequately treated and therefore generate a high impact environmental damage. The use of Construction and Demolition Waste as aggregates for concrete contributes one of the great innovative ideas of recent decades that mitigate this damage and bring about better environmental development. The objective of this work is to determine and evaluate the physical-mechanical parameters of concrete mixtures whose natural coarse aggregate is replaced in different percentages by recycled aggregates obtained from the processing of hydraulic concrete demA2olition waste from a roadway in the city of Barranquilla. Three (3) distinctive designs were carried out, replacing 0%, 50% and 100% of the natural aggregate by recycling. Subsequently, the properties of each of the materials for the preparation of the mixtures, such as density, absorption, granulometry, relative humidity and specific gravity, were analyzed and evaluated to evaluate and compare their influence on the behavior of fresh and hardened concrete. Likewise, with these materials, the three concrete mixtures were made with different percentages of replacement to manufacture the specimens to perform compression tests in cylinders and flexure tests in three points in beams, for both with curing days of 7,14 and 28. The analysis of results was carried out by means of tables and graphs, together with different statistical and numerical methods to find correlations between the different variables analyzed and thus be able to reach a clear position regarding the objective of the work and the researchers found worldwide. In addition to determining the feasibility of using recycled concrete with RCD aggregates in low transit or other rigid pavement structures.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-03T15:45:41Z
dc.date.available.none.fl_str_mv 2018-11-03T15:45:41Z
dc.date.issued.none.fl_str_mv 2018-01-19
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/247
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/247
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv (NTC), N. T. C. INGENIERÍA CIVIL Y ARQUITECTURA. CEMENTO PÓRTLAND. ESPECIFICACIONES FÍSICAS Y MECÁNICAS. Colombia. (UAESP), U. A. E. de S. P. (2012). Foro internacional Gestión integral de los RCD. Ajdukiewicz, A., & Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 24(2), 269-279.https://doi.org/10.1016/S0958-9465(01)00012-9 Alcaldía de Barranquilla. (2015). Plan de Gestión Integral de Residuos Sólidos – PGIRS. 2016 -2027, 178. Ambiente, D. D. E. (s. f.). Guía para la elaboración del Plan de Gestión Integral de Residuos de Construcción y Demolición (RCD) en obra. Angulo, S. C., Carrijo, P. M., Figueiredo, A. D., Chaves, A. P., & John, V. M. (2010). On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Materials and Structures,43(4), 519-528. https://doi.org/10.1617/s11527-009-95089 Angulo, S. C., John, V. M., Ulsen, C., & Kahn, H. (2014). Caracterização de agregados de resíduos de construção e demolição reciclados separados por líquidos densos. I Conferência Latino-Americana De Construção Sustentável X Encontro Nacional De Tecnologia Do Ambiente Construído, (November 2014). Argos. FICHA TÉCNICA CEMENTO USO ESTRUCTURAL (2017). Arora, S., & Singh, S. P. (2017). Fatigue strength and failure probability of concrete made with RCA. Magazine of Concrete Research, 69(2), 55-67. https://doi.org/10.1680/jmacr.15.00353 Asociación Española de Normalización y Certificación (AENOR). Aridos para hormigón. (2009). España. Association française de Normalisation. Granulats pour béton (2017). Francia. ASTM International. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) (2016) Banjad Pečur, I., Štirmer, N., & Milovanović, B. (2015). Recycled aggregate concrete for nearly zero-energy buildings. Magazine of Concrete Research, 67(11), 575-584. https://doi.org/10.1680/macr.14.00220 Barritt, J. (2016). An overview on recycling and waste in construction. Proceedings of the Institution of Civil Engineers - Construction Materials, 169(2), 49-53. https://doi.org/10.1680/coma.15.00006 Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68,501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003 Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003 Bell, N. (2003). WASTE MINIMISATION AND RESOURCE RECOVERY. Environment Design Guide, 1-7. Recuperado a partir de http://www.jstor.org/stable/26148421 Bobadilla, R. (2012). ESTADO DEL ARTE DEL APROVECHAMIENTO DEL CONCRETO RECICLADO, 237. Bran, A. (2016). Propuesta para el manejo integral de los residuos de la construcción y la demolición. Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012 Camacol Bogotá y Cundinamarca - Construcción Sostenible. (s. f.). Cembureau. (2012). Activity report 2012. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Cembureau. (2013). Activity report 2013. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Cembureau. (2014). Activity report 2014. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Cembureau. (2016). Activity Report 2016. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011a). Behaviour of recycled aggregate concrete under drop weight impact load. Construction and Building Materials, 25(1), 69-80. https://doi.org/10.1016/j.conbuildmat.2010.06.055 Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011b). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44(1), 205-220. https://doi.org/10.1617/s11527-010-9620-x Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 143, 395-413. https://doi.org/10.1016/j.apenergy.2015.01.023 Comisión asesora permanente para el regimen de construcciones sismo resistentes. (2010). El Reglamento Colombiano de Construcción Sismo Resistente (NSR-10), 530-827. Committee ACI 211. (2002). Standard Practice for Selecting Proportions for Normal , Heavyweight , and Mass Concrete ( ACI 211 . 1-91 ). Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23(1), 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006 Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for lowshrinkage concretes. Waste Management, 30(4), 655-659. https://doi.org/10.1016/j.wasman.2009.11.026 Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing differentkinds of recycled aggregate. Construction and Building Materials, 23(1), 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006 Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for lowshrinkage concretes. Waste Management, 30(4), 655-659. https://doi.org/10.1016/j.wasman.2009.11.026 Costa, U., & Ursella, P. (2003). Construction and demolition waste recycling in Italy, WASCON 2003—Progress on the road to sustainability. San sebastian, España. Courard, L., Michel, F., & Delhez, P. (2010). Use of concrete road recycled aggregates for Roller Compacted Concrete. Construction and Building Materials, 24(3), 390-395. https://doi.org/10.1016/j.conbuildmat.2009.08.040 de Brito, J., & Alves, F. (2010). Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures, 43(S1), 35-51. https://doi.org/10.1617/s11527-010-9595-7 de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete. London: Springer London. https://doi.org/10.1007/978-1-4471-4540-0 DE GUZMAN SANCHEZ, D. (2001). Tecnología del concreto y del mortero. Cali. de Santos, D., Monercillo, B., & García, A. (2011). Gestión de residuos en las obras de construcción y demolición (2.a ed., p. 26). del Río Merino, M., Izquierdo Gracia, P., & Weis Azevedo, I. S. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste Management & Research, 28(2), 118-129. https://doi.org/10.1177/0734242X09103841 Dias, N., & Carvalho, M. T. (s. f.). Recovery of Packaging Glass Refuse By Mechanical Biological Treatment Plant- Case Study, 2-12 Dimoudi, A., & Tompa, C. (2008). Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 53(1-2), 86-95. https://doi.org/10.1016/j.resconrec.2008.09.008 Dr.S.R.Choudhari, A. N. D., & Dr.A.R.Gajbhiye. (2012). Performance Evaluation Of Recycled Aggregate Used In Concrete, 5. EC Commision of the European communities. (2000). 532/200/CE Construction and demolition waste. Eguchi, K., Teranishi, K., Nakagome, A., Kishimoto, H., Shinozaki, K., & Narikawa, M. (2007). Application of recycled coarse aggregate by mixture to concrete construction. Construction and Building Materials, 21(7), 1542-1551. https://doi.org/10.1016/j.conbuildmat.2005.12.023 EPD. (2015). Monitoring of Solid Waste in Hong Kong 2014. Escombros, M. D. E., La, E. N., Bogotá, C. D. E., La, E. N., & Bogotá, C. D. E. (2013). Disponible en: http://www.redalyc.org/articulo.oa?id=75029150005. Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37(5), 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002 European Commission Environment. (2011). Construction and Demolition Waste management. Recuperado a partir de http://ec.europa.eu/environment/waste/studies/mixed_waste.htm European Parliament and Council. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Official Journal of the European Union, 3-30. https://doi.org/2008/98/EC.; 32008L0098 Eurostat (2011). (2011). Waste statistics, European commission. Recuperado 8 de diciembre de 2017, a partir de http://epp.eurostat.ec.europa.eu/statistics_%0Aexplained/index.php/Waste_statistics Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 29(5), 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004 FIGUEREDO, J. V., & PADILLA, E. P. (2017). OBTENCIÓN DE UNA MEZCLA DE CONCRETO CON RESIDUOS PLÁSTICOS DE EQUIPOS ELECTRÓNICOS PARA LA FABRICACIÓN DE ELEMENTOS NO ESTRUCTURALES, 0-171. Fischer, C., Werge, M. (2009). EU as a recycling society: Present recycling levels of municipal waste and construction demolition waste in the EU. ETC. SCP. Copenhagen. Franklin Associates, & Prairie Village, K. (1998). Characterization of building-related construction and demolition debris in the United States Report No. EPA530-R-98-010 prepared for The U.S. Environmental Protection Agency Gartner, E. (2004). Industrially interesting approaches to «low-CO2» cements. Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021 Gómez-Soberón, J. M. . (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 32(8), 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0 González-Fonteboa, B., & Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429-437. https://doi.org/10.1016/j.buildenv.2007.01.008 González-Fonteboa, B., Martínez-Abella, F., Eiras-López, J., & Seara-Paz, S. (2011). Effect of recycled coarse aggregate on damage of recycled concrete. Materials and Structures, 44(10), 1759-1771. https://doi.org/10.1617/s11527-011-9736-7 Gutierres, A. (2013). Hormigon Reciclado. H.Kosmatka, S., & L.wilson, M. (2011). Design and Control of Concrete Mixtures. Construction. Recuperado a partir de http://www.cement.org/bookstore/supporting/cd100/EB001Frt.pdf Halmeman, M. C. R., Souza, P. C. de, & Casarin, A. N. (2009). Caracterização dos resíduos de construção e demolição na unidade de recebimento de resíduos sólidos no município de Campo Mourão – PR. Revista Tecnológica, 203-209. Ho, N. Y., Lee, Y. P. K., Lim, W. F., Chew, K. C., Low, G. L., & Ting, S. K. (2015). Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Magazine of Concrete Research, 67(12), 633-644. https://doi.org/10.1680/macr.14.00212 Hook, W. R., Cole, L. W., Cost, V. T., Diulus, D. H., & Mullarky, J. I. (2001). Guide for Design and Construction of Concrete Parking Lots Reported by ACI Committee 330. Concrete, 92(Reapproved), 1-32. Hooton, R., & Gómez-Soberón, J. (2003). Relationship Between Gas Adsorption and the Shrinkage and Creep of Recycled Aggregate Concrete. Cement, Concrete and Aggregates, 25(2), 11386. https://doi.org/10.1520/CCA10442J HUANG, S., & ZHAO, X. (2009). Recycled aggregate. Sichuan Building Science (Vol. 1). IMCYC. (s. f.). Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. CEMENTO PORTLAND. CLASIFICACIÓN Y NOMENCLATURA (2014). Intergovernmental Panel on Climate change. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Repor. Recuperado a partir de http://www.cambridge.org/co/academic/subjects/earth-andenvironmental-science/climatology-and-climate-change/climate-change-2007-physicalscience-basis-working-group-i-contribution-fourth-assessment-reportipcc?format=PB&isbn=9780521705967#ZLO59QBvldKCbkO Jo, B.-W., Park, S.-K., & Park, J.-C. (2008). Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Construction and Building Materials, 22(12), 2281-2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009 Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 33(5), 703-711. https://doi.org/10.1016/S0008- 8846(02)01033-5 KAWANO, H. (2000). Outline of JIS/TR on recycled concrete using recycled aggregate. International Workshop on Recycled Aggregate (p. 43.48). Nigata, Japan. Kia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193, 221-233. https://doi.org/10.1016/j.jenvman.2017.02.018 KIER. (2008). Sustainable construction: simple ways to make it happen. IHS BRE Press. Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029 Letelier, V., Tarela, E., Osses, R., Cárdenas, J. P., & Moriconi, G. (2016). Mechanical Properties of Concrete With Recycled Aggregates and Waste Glass. Structural Concrete, (1), 4-10. https://doi.org/10.1002/suco.201500143 Levy, S. M., & Helene, P. (2004). Durability of recycled aggregates concrete: A safe way to sustainable development. Cement and Concrete Research, 34(11), 1975-1980. https://doi.org/10.1016/j.cemconres.2004.02.009 Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23(3), 1287-1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019 LIMA, A. S., & CABRAL, A. E. B. (2013). Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza ( CE ). Engenharia Sanitária e Ambiental, 18(2), 169-176. https://doi.org/10.1590/S1413-41522013000200009 Limbachiya, M. C. (2010). Recycled aggregates: Production, properties and value-added sustainable applications. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(6), 1011-1016. https://doi.org/10.1007/s11595-010-0140-x Limbachiya, M. C., Marrocchino, E., & Koulouris, A. (2007). Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management. https://doi.org/10.1016/j.wasman.2006.01.005 Limbachiya, M., Koulouris, A., Roberts, J., & Fried, A. (2004). Properties of recycled aggregate concrete. En RILEM international symposium on environment-conscious materials and systems for sustainable development (p. 136). Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1), 437-447. https://doi.org/10.1016/j.conbuildmat.2011.06.043 Lye, C.-Q., Dhir, R. K., & Ghataora, G. S. (2016). Shrinkage of recycled aggregate concrete. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(12), 867- 891. https://doi.org/10.1680/jstbu.15.00138 Marie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. https://doi.org/10.1016/j.jclepro.2012.07.020 Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30(11), 2255-2264. https://doi.org/10.1016/j.wasman.2010.04.012 McGinnis, M. J., Davis, M., de la Rosa, A., Weldon, B. D., & Kurama, Y. C. (2017). Quantified sustainability of recycled concrete aggregates. Magazine of Concrete Research, 69(23), 1203-1211. https://doi.org/10.1680/jmacr.16.00338 McNeil, K., & Kang, T. H.-K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61-69. https://doi.org/10.1007/s40069- 013-0032-5 Mena, C., & Valdés, Y. (2014). Dosificación óptima de una mezcla de concreto con materiales reciclados procedentes de residuos de construcción y demolición (RCD) de la ciudad de Cali para uso en obras viales de bajo tránsito. Ministerio de Ambiente y Desarrollo Sostenible. Resolución No 0472 del 28 de Febrero del 2017 (2017). Colombia. Nixon, P. J. (1978). Recycled concrete as an aggregate for concrete—a review. Matériaux et Constructions, 11(5), 371-378. https://doi.org/10.1007/BF02473878 O. Rageh, M., Hosny, H., & Abdel-Rehem, A. (2017). Sustainability Requirements of Concrete Structures. American Journal of Civil Engineering and Architecture, 5(5), 174-186. https://doi.org/10.12691/ajcea-5-5-1 Oikonomou, N. D. (2005). Recycled concrete aggregates. Cement and Concrete Composites, 27(2), 315-318. https://doi.org/10.1016/j.cemconcomp.2004.02.020 Pacheco Bustos, C. A., Fuentes Pumarejo, L. G., Sánchez Cotte, É. H., & Rondón Quintana, H. A. (2017). Construction demolition waste (CDW), a perspective of achievement for the city of Barranquilla since its management model. Ingeniería y Desarrollo, 35(2), 533-555. Pataki, D. E., Emmi, P. C., Forster, C. B., Mills, J. I., Pardyjak, E. R., Peterson, T. R., … Dudley-Murphy, E. (2009). An integrated approach to improving fossil fuel emissions scenarios with urban ecosystem studies. Ecological Complexity, 6(1), 1-14. https://doi.org/10.1016/j.ecocom.2008.09.003 Pavón, E., Etxeberria, M., & Díaz, N. E. (2012). Estudio de la aplicabilidad del hormigón con árido grueso reciclado en La Habana, Cuba. Materiales de Construcción, 62(307), 431-441. https://doi.org/10.3989/mc.2012.63210 https://doi.org/10.14482/inde.35.2.10174 Peng, C. (2016). Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. Journal of Cleaner Production, 112, 453-465. https://doi.org/10.1016/j.jclepro.2015.08.078 Pereira, L. (2002). Construction and demolition waste recycling: the case of the Portuguese northern region (in Portuguese). Minho University. Poon, C. ., Shui, Z. ., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005 Poon, C. S. (2007). Reducing construction waste. Waste Management, 27(12), 1715-1716. https://doi.org/10.1016/j.wasman.2007.08.013 Poon, C. S., Kou, S. C., & Lam, L. (2007). Influence of recycled aggregate on slump and bleeding of fresh concrete. Materials and Structures, 40(9), 981-988. https://doi.org/10.1617/s11527-006-9192-y Porrero, J., Ramos, C., Grases, J., & Velazco, G. J. (2014). MANUAL DEL CONCRETO ESTRUCURAL. Venezuela. Quiroz, M., & Salamanca, L. (2006). APOYO DIDÁCTICO PARA LA ENSEÑANZA Y APRENDIZAJE EN LA ASIGNATURA DE «TECNOLOGÍA DEL HORMIGÓN». UNIVERSIDAD MAYOR DE SAN SIMÓN. Rahal, K. (2007). Mechanical properties of concrete with recycled coarse aggregate. Building and Environment, 42(1), 407-415. https://doi.org/10.1016/j.buildenv.2005.07.033 Rakshvir, M., & Barai, S. V. (2006). Studies on recycled aggregates-based concrete. Waste Management & Research, 24(3), 225-233. https://doi.org/10.1177/0734242X06064820 Reixach, F., Cuscó, A., & Barroso, J. (2000). Situatión actual y perspectives de futuro de los resíduos de la construcción. Cataluña, España. Romero, E. (2006). Residuos de Construcción y Demolición. España. Recuperado a partir http://www.uhu.es/emilio.romero/docencia/Residuos Construccion.pdf Rosas Chaves, J. A. (2014). Mobiliario urbano prefabricado en concreto con agregado grueso reciclado. Recuperado a partir de http://www.bdigital.unal.edu.co/47108/1/396288.2014COMPLETA.pdf Sabău, M., Pop, I., & Oneţ, T. (2016). Experimental study on local bond stress-slip relationship in self-compacting concrete. Materials and Structures, 49(9), 3693-3711. https://doi.org/10.1617/s11527-015-0749-5 Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O., & Sadeghi-Nik, A. (2016). The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, 112, 2363-2373. https://doi.org/10.1016/j.jclepro.2015.09.107 Sanchez de guzman, D. (1996). TECNOLOGÍA DEL COONCRETO Y DEL MORTERO (3.a ed.). Bogotá. Sandler, K., & Swingle, P. (2006). OSWER Innovations Pilot: Building Deconstruction and Reuse. Recuperado a partir de http://www.epa.gov/oswer/ Secretaría Distrital de Ambiente. (2012). Resolución 01115 de 2012: "Por medio de la cual se adoptan los lineamientos Técnico - Ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el Distrito Capital."\tRegistro Distrital 4977 de octubre 1 de 2012., 1-19. Senthil Kumar, K., & Baskar, K. (2014). Response Surfaces for Fresh and Hardened Properties of Concrete with E-Waste (HIPS). Journal of Waste Management, 2014, 1-14. https://doi.org/10.1155/2014/517219 Shen, L. Y., Tam, V. W. Y., Tam, C. M., & Drew, D. (2004). Mapping Approach for Examining Waste Management on Construction Sites, 130(August), 472-481. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:4(472) Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate – A review. Journal of Cleaner Production, 112, 466-472. https://doi.org/10.1016/j.jclepro.2015.08.057 Silva, R. V., de Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117 Silva, R. V., de Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: a review. European Journal of Environmental and Civil Engineering, 19(7), 825-849. https://doi.org/10.1080/19648189.2014.974831 Silva, R. V., de Brito, J., & Dhir, R. K. (2017). Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production, 143, 598-614. https://doi.org/10.1016/j.jclepro.2016.12.070 Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117 Specifications for concrete with recycled aggregates. (1994). Materials and Structures, 27(9), 557-559. https://doi.org/10.1007/BF02473217 Suocheng, D., Tong, K. W., & Yuping, W. (2001). Municipal solid waste management in China: using commercial management to solve a growing problem. Utilities Policy, 10(1), 7-11. https://doi.org/10.1016/S0957-1787(02)00011-5 Surya, M., VVL, K. R., & Lakshmy, P. (2013). Recycled Aggregate Concrete for Transportation Infrastructure. Procedia - Social and Behavioral Sciences, 104, 1158-1167. https://doi.org/10.1016/j.sbspro.2013.11.212 Susunaga Monroy, J. M. (2013). Construcción Sostenible, Una Alternativa Para La Edificación De Viviendas De Interes Social Y Prioritario. Journal of Chemical Information and Modeling, 53(9), 1689-1699. https://doi.org/10.1017/CBO9781107415324.004 The Netherlands Standardization Institute (NEN). Aggegates for concrete (2005). Holanda. Topçu, İ. B., & Şengel, S. (2004). Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 34(8), 1307-1312. https://doi.org/10.1016/j.cemconres.2003.12.019 Tu, T.-Y., Chen, Y.-Y., & Hwang, C.-L. (2006). Properties of HPC with recycled aggregates. Cement and Concrete Research, 36(5), 943-950. https://doi.org/10.1016/j.cemconres.2005.11.022 United Nations Conference on Environment and Development (UNCED). (1992). Agenda 21, the Rio Declaration on Environment and Development, the Statement of Forest Principles, the United Nations Framework Convention on Climate Change and the United Nations Convention on Biological Diversity. Rio de Janeiro United Nations Environment Programme. (2009). Common carbon metric for measuring energy use and reporting greenhouse gas emissions from building operations. United Nations Environment Programme (UNEP). (2009). Building andClimateChange: Summary for Decision-Makers, SustainableBuildings & Climate Initiative. Universidad de san simon. (2006). Libro básico sobre tecnología del concreto. Ürge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy, 36(2), 642-661. https://doi.org/10.1016/j.enpol.2007.10.009 US Departament of Transportation. (2004). Transportation Applications Of Recycled Concrete Aggregate - State of the ractice National Review September 2004. Recuperado a partir de https://www.fhwa.dot.gov/pavement/recycling/applications.pdf Vadera, S., Woolas, P., Flint, C., Pearson, I., Hodge, M., Jordan, W., & Davies, M. (2008). Strategy for sustainable construction. Materials Science, (June), 64. https://doi.org/8731/2k/6/08/NP URN 08/973 Wang, J., Kang, X., & Tam, V. W. (2008). An investigation of construction wastes: an empirical study in Shenzhen. Journal of Engineering, Design and Technology, 6(3), 227-236. https://doi.org/10.1108/17260530810918252 Waste, S., & Response, E. (2000). OSWER Innovation Project Success Story:, 1-4. World Construction Aggregates - Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Tre. (s. f.). Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020 Xiao, J., & Zhang, G. (s. f.). Research and Modification on Recycled Aggregates, (1), 2-9. Yanik, K. (s. f.). Report: Global demand for aggregates to rise. Recuperado 6 de diciembre de 2017, a partir de http://www.pitandquarry.com/report-global-demand-for-aggregates-to-rise/ Youcai, Z., & Sheng, H. (2017). General Introduction of Construction and Demolition Waste. En Pollution Control and Resource Recovery (pp. 1-14). Elsevier. 154 https://doi.org/10.1016/B978-0-12-811754-5.00001-4 Zaharieva, R., Buyle-Bodin, F., Skoczylas, F., & Wirquin, E. (2003). Assessment of the surface permeation properties of recycled aggregate concrete. Cement and Concrete Composites, 25(2), 223-232. https://doi.org/10.1016/S0958-9465(02)00010-0
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/70aef153-3149-4227-a03a-cc442783395b/download
https://repositorio.cuc.edu.co/bitstreams/e79554cd-3521-4b9a-82f8-02dc9c107c08/download
https://repositorio.cuc.edu.co/bitstreams/1972059d-8deb-41d0-9df7-419c546872f5/download
https://repositorio.cuc.edu.co/bitstreams/0ab610a5-6a6d-474a-94fe-47340003c6c1/download
bitstream.checksum.fl_str_mv 3ec44bae7744d9d5ba31c8348be0d8f4
8a4605be74aa9ea9d79846c1fba20a33
63b7c19e6346e27c47da1565215da3fa
ac1a763b651245a1b6fd0065f5d40fb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166818646196224
spelling Sabau, MarianRemolina Durán, Jesús GuillermoSerrano, Iván2018-11-03T15:45:41Z2018-11-03T15:45:41Z2018-01-19https://hdl.handle.net/11323/247Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The construction sector worldwide represents one of the main activities in all society and which in turn represents a sizable percentage of the generation of tons and tons of waste that are not adequately treated and therefore generate a high impact environmental damage. The use of Construction and Demolition Waste as aggregates for concrete contributes one of the great innovative ideas of recent decades that mitigate this damage and bring about better environmental development. The objective of this work is to determine and evaluate the physical-mechanical parameters of concrete mixtures whose natural coarse aggregate is replaced in different percentages by recycled aggregates obtained from the processing of hydraulic concrete demA2olition waste from a roadway in the city of Barranquilla. Three (3) distinctive designs were carried out, replacing 0%, 50% and 100% of the natural aggregate by recycling. Subsequently, the properties of each of the materials for the preparation of the mixtures, such as density, absorption, granulometry, relative humidity and specific gravity, were analyzed and evaluated to evaluate and compare their influence on the behavior of fresh and hardened concrete. Likewise, with these materials, the three concrete mixtures were made with different percentages of replacement to manufacture the specimens to perform compression tests in cylinders and flexure tests in three points in beams, for both with curing days of 7,14 and 28. The analysis of results was carried out by means of tables and graphs, together with different statistical and numerical methods to find correlations between the different variables analyzed and thus be able to reach a clear position regarding the objective of the work and the researchers found worldwide. In addition to determining the feasibility of using recycled concrete with RCD aggregates in low transit or other rigid pavement structures.El sector de la construcción a nivel mundial representa una de las principales actividades en toda sociedad y que a su vez representa en gran porcentaje la generación de toneladas y toneladas de residuos que no son tratados adecuadamente y como consecuencia generan un daño ambiental de alto impacto. La utilización de los Residuos de Construcción y Demolición como agregados para concreto contribuye una de las grandes ideas innovadoras de las últimas décadas que mitigan este daño y traen consigo un mejor desarrollo ambiental. El presente trabajo tiene por objetivo determinar y evaluar los parámetros físico-mecánicos de mezclas de concreto cuyo agregado grueso natural es reemplazado en diversos porcentajes por agregado reciclado obtenido del procesamiento de Residuos de Demolición de concreto hidráulico proveniente una vía de la ciudad de barranquilla. Se llevaron a cabo tres (3) diseños diferentes, reemplazando en un 0%, 50% y 100% del agregado natural por reciclado. Posteriormente se analizaron y evaluaron las propiedades de cada uno de los materiales para la elaboración de las mezclas tales como densidad, absorción, granulometría, humedad relativa y gravedad específica con el fin de evaluar y comparar la influencia de estos en el comportamiento de concreto en estado fresco y endurecido. De igual manera con esos materiales se elaboraron las tres mezclas de concreto con diferentes porcentajes de reemplazo con el fin de fabricar las probetas para realizar ensayos de compresión en cilindros y de flexión en tres puntos en viguetas, para ambas con días de curado de 7, 14 y 28. El análisis de resultados se llevó a cabo por medio de tablas y gráficos, sumado a diferentes métodos estadísticos y numéricos para encontrar correlaciones entre las diferentes variables analizadas y así poder llegar a una posición clara frente al objetivo del trabajo y a las investigaciones encontradas a nivel mundial. Además de determinar la posible viabilidad para la utilización del concreto reciclado con agregados de RCD en estructuras de pavimento rígido de bajo transito u otras.Remolina Durán, Jesús Guillermo-ad4ad36a-95c4-413c-83ef-fc7e01095112-0spaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agregado de concreto recicladoResiduos de Construcción y Demoliciónresistencia a la compresiónmódulo de roturaaprovechamiento de residuospropiedades físico mecánicasresistencia a flexiónRecycled concrete aggregateConstruction and Demolition WasteCompressive strengthModulus of ruptureWaste utilizationPhysical-mechanical propertiesFlexural strengthDeterminación de parámetros físico-mecánicos y de durabilidad en concreto reciclado con residuos de construcción y demolición (RCD)Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionIngeniería Civil(NTC), N. T. C. INGENIERÍA CIVIL Y ARQUITECTURA. CEMENTO PÓRTLAND. ESPECIFICACIONES FÍSICAS Y MECÁNICAS. Colombia. (UAESP), U. A. E. de S. P. (2012). Foro internacional Gestión integral de los RCD. Ajdukiewicz, A., & Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 24(2), 269-279.https://doi.org/10.1016/S0958-9465(01)00012-9 Alcaldía de Barranquilla. (2015). Plan de Gestión Integral de Residuos Sólidos – PGIRS. 2016 -2027, 178. Ambiente, D. D. E. (s. f.). Guía para la elaboración del Plan de Gestión Integral de Residuos de Construcción y Demolición (RCD) en obra. Angulo, S. C., Carrijo, P. M., Figueiredo, A. D., Chaves, A. P., & John, V. M. (2010). On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Materials and Structures,43(4), 519-528. https://doi.org/10.1617/s11527-009-95089 Angulo, S. C., John, V. M., Ulsen, C., & Kahn, H. (2014). Caracterização de agregados de resíduos de construção e demolição reciclados separados por líquidos densos. I Conferência Latino-Americana De Construção Sustentável X Encontro Nacional De Tecnologia Do Ambiente Construído, (November 2014). Argos. FICHA TÉCNICA CEMENTO USO ESTRUCTURAL (2017). Arora, S., & Singh, S. P. (2017). Fatigue strength and failure probability of concrete made with RCA. Magazine of Concrete Research, 69(2), 55-67. https://doi.org/10.1680/jmacr.15.00353 Asociación Española de Normalización y Certificación (AENOR). Aridos para hormigón. (2009). España. Association française de Normalisation. Granulats pour béton (2017). Francia. ASTM International. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) (2016) Banjad Pečur, I., Štirmer, N., & Milovanović, B. (2015). Recycled aggregate concrete for nearly zero-energy buildings. Magazine of Concrete Research, 67(11), 575-584. https://doi.org/10.1680/macr.14.00220 Barritt, J. (2016). An overview on recycling and waste in construction. Proceedings of the Institution of Civil Engineers - Construction Materials, 169(2), 49-53. https://doi.org/10.1680/coma.15.00006 Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68,501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003 Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003 Bell, N. (2003). WASTE MINIMISATION AND RESOURCE RECOVERY. Environment Design Guide, 1-7. Recuperado a partir de http://www.jstor.org/stable/26148421 Bobadilla, R. (2012). ESTADO DEL ARTE DEL APROVECHAMIENTO DEL CONCRETO RECICLADO, 237. Bran, A. (2016). Propuesta para el manejo integral de los residuos de la construcción y la demolición. Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012 Camacol Bogotá y Cundinamarca - Construcción Sostenible. (s. f.). Cembureau. (2012). Activity report 2012. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Cembureau. (2013). Activity report 2013. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Cembureau. (2014). Activity report 2014. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Cembureau. (2016). Activity Report 2016. Recuperado a partir de http://www.cembureau.be/%0Aactivityreports Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011a). Behaviour of recycled aggregate concrete under drop weight impact load. Construction and Building Materials, 25(1), 69-80. https://doi.org/10.1016/j.conbuildmat.2010.06.055 Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011b). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44(1), 205-220. https://doi.org/10.1617/s11527-010-9620-x Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 143, 395-413. https://doi.org/10.1016/j.apenergy.2015.01.023 Comisión asesora permanente para el regimen de construcciones sismo resistentes. (2010). El Reglamento Colombiano de Construcción Sismo Resistente (NSR-10), 530-827. Committee ACI 211. (2002). Standard Practice for Selecting Proportions for Normal , Heavyweight , and Mass Concrete ( ACI 211 . 1-91 ). Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23(1), 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006 Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for lowshrinkage concretes. Waste Management, 30(4), 655-659. https://doi.org/10.1016/j.wasman.2009.11.026 Corinaldesi, V., & Moriconi, G. (2009). Behaviour of cementitious mortars containing differentkinds of recycled aggregate. Construction and Building Materials, 23(1), 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006 Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for lowshrinkage concretes. Waste Management, 30(4), 655-659. https://doi.org/10.1016/j.wasman.2009.11.026 Costa, U., & Ursella, P. (2003). Construction and demolition waste recycling in Italy, WASCON 2003—Progress on the road to sustainability. San sebastian, España. Courard, L., Michel, F., & Delhez, P. (2010). Use of concrete road recycled aggregates for Roller Compacted Concrete. Construction and Building Materials, 24(3), 390-395. https://doi.org/10.1016/j.conbuildmat.2009.08.040 de Brito, J., & Alves, F. (2010). Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures, 43(S1), 35-51. https://doi.org/10.1617/s11527-010-9595-7 de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete. London: Springer London. https://doi.org/10.1007/978-1-4471-4540-0 DE GUZMAN SANCHEZ, D. (2001). Tecnología del concreto y del mortero. Cali. de Santos, D., Monercillo, B., & García, A. (2011). Gestión de residuos en las obras de construcción y demolición (2.a ed., p. 26). del Río Merino, M., Izquierdo Gracia, P., & Weis Azevedo, I. S. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste Management & Research, 28(2), 118-129. https://doi.org/10.1177/0734242X09103841 Dias, N., & Carvalho, M. T. (s. f.). Recovery of Packaging Glass Refuse By Mechanical Biological Treatment Plant- Case Study, 2-12 Dimoudi, A., & Tompa, C. (2008). Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 53(1-2), 86-95. https://doi.org/10.1016/j.resconrec.2008.09.008 Dr.S.R.Choudhari, A. N. D., & Dr.A.R.Gajbhiye. (2012). Performance Evaluation Of Recycled Aggregate Used In Concrete, 5. EC Commision of the European communities. (2000). 532/200/CE Construction and demolition waste. Eguchi, K., Teranishi, K., Nakagome, A., Kishimoto, H., Shinozaki, K., & Narikawa, M. (2007). Application of recycled coarse aggregate by mixture to concrete construction. Construction and Building Materials, 21(7), 1542-1551. https://doi.org/10.1016/j.conbuildmat.2005.12.023 EPD. (2015). Monitoring of Solid Waste in Hong Kong 2014. Escombros, M. D. E., La, E. N., Bogotá, C. D. E., La, E. N., & Bogotá, C. D. E. (2013). Disponible en: http://www.redalyc.org/articulo.oa?id=75029150005. Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37(5), 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002 European Commission Environment. (2011). Construction and Demolition Waste management. Recuperado a partir de http://ec.europa.eu/environment/waste/studies/mixed_waste.htm European Parliament and Council. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Official Journal of the European Union, 3-30. https://doi.org/2008/98/EC.; 32008L0098 Eurostat (2011). (2011). Waste statistics, European commission. Recuperado 8 de diciembre de 2017, a partir de http://epp.eurostat.ec.europa.eu/statistics_%0Aexplained/index.php/Waste_statistics Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 29(5), 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004 FIGUEREDO, J. V., & PADILLA, E. P. (2017). OBTENCIÓN DE UNA MEZCLA DE CONCRETO CON RESIDUOS PLÁSTICOS DE EQUIPOS ELECTRÓNICOS PARA LA FABRICACIÓN DE ELEMENTOS NO ESTRUCTURALES, 0-171. Fischer, C., Werge, M. (2009). EU as a recycling society: Present recycling levels of municipal waste and construction demolition waste in the EU. ETC. SCP. Copenhagen. Franklin Associates, & Prairie Village, K. (1998). Characterization of building-related construction and demolition debris in the United States Report No. EPA530-R-98-010 prepared for The U.S. Environmental Protection Agency Gartner, E. (2004). Industrially interesting approaches to «low-CO2» cements. Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021 Gómez-Soberón, J. M. . (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 32(8), 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0 González-Fonteboa, B., & Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429-437. https://doi.org/10.1016/j.buildenv.2007.01.008 González-Fonteboa, B., Martínez-Abella, F., Eiras-López, J., & Seara-Paz, S. (2011). Effect of recycled coarse aggregate on damage of recycled concrete. Materials and Structures, 44(10), 1759-1771. https://doi.org/10.1617/s11527-011-9736-7 Gutierres, A. (2013). Hormigon Reciclado. H.Kosmatka, S., & L.wilson, M. (2011). Design and Control of Concrete Mixtures. Construction. Recuperado a partir de http://www.cement.org/bookstore/supporting/cd100/EB001Frt.pdf Halmeman, M. C. R., Souza, P. C. de, & Casarin, A. N. (2009). Caracterização dos resíduos de construção e demolição na unidade de recebimento de resíduos sólidos no município de Campo Mourão – PR. Revista Tecnológica, 203-209. Ho, N. Y., Lee, Y. P. K., Lim, W. F., Chew, K. C., Low, G. L., & Ting, S. K. (2015). Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Magazine of Concrete Research, 67(12), 633-644. https://doi.org/10.1680/macr.14.00212 Hook, W. R., Cole, L. W., Cost, V. T., Diulus, D. H., & Mullarky, J. I. (2001). Guide for Design and Construction of Concrete Parking Lots Reported by ACI Committee 330. Concrete, 92(Reapproved), 1-32. Hooton, R., & Gómez-Soberón, J. (2003). Relationship Between Gas Adsorption and the Shrinkage and Creep of Recycled Aggregate Concrete. Cement, Concrete and Aggregates, 25(2), 11386. https://doi.org/10.1520/CCA10442J HUANG, S., & ZHAO, X. (2009). Recycled aggregate. Sichuan Building Science (Vol. 1). IMCYC. (s. f.). Instituto Colombiano de Normas Técnicas y Certificación ICONTEC. CEMENTO PORTLAND. CLASIFICACIÓN Y NOMENCLATURA (2014). Intergovernmental Panel on Climate change. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Repor. Recuperado a partir de http://www.cambridge.org/co/academic/subjects/earth-andenvironmental-science/climatology-and-climate-change/climate-change-2007-physicalscience-basis-working-group-i-contribution-fourth-assessment-reportipcc?format=PB&isbn=9780521705967#ZLO59QBvldKCbkO Jo, B.-W., Park, S.-K., & Park, J.-C. (2008). Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Construction and Building Materials, 22(12), 2281-2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009 Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 33(5), 703-711. https://doi.org/10.1016/S0008- 8846(02)01033-5 KAWANO, H. (2000). Outline of JIS/TR on recycled concrete using recycled aggregate. International Workshop on Recycled Aggregate (p. 43.48). Nigata, Japan. Kia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193, 221-233. https://doi.org/10.1016/j.jenvman.2017.02.018 KIER. (2008). Sustainable construction: simple ways to make it happen. IHS BRE Press. Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029 Letelier, V., Tarela, E., Osses, R., Cárdenas, J. P., & Moriconi, G. (2016). Mechanical Properties of Concrete With Recycled Aggregates and Waste Glass. Structural Concrete, (1), 4-10. https://doi.org/10.1002/suco.201500143 Levy, S. M., & Helene, P. (2004). Durability of recycled aggregates concrete: A safe way to sustainable development. Cement and Concrete Research, 34(11), 1975-1980. https://doi.org/10.1016/j.cemconres.2004.02.009 Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23(3), 1287-1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019 LIMA, A. S., & CABRAL, A. E. B. (2013). Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza ( CE ). Engenharia Sanitária e Ambiental, 18(2), 169-176. https://doi.org/10.1590/S1413-41522013000200009 Limbachiya, M. C. (2010). Recycled aggregates: Production, properties and value-added sustainable applications. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(6), 1011-1016. https://doi.org/10.1007/s11595-010-0140-x Limbachiya, M. C., Marrocchino, E., & Koulouris, A. (2007). Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management. https://doi.org/10.1016/j.wasman.2006.01.005 Limbachiya, M., Koulouris, A., Roberts, J., & Fried, A. (2004). Properties of recycled aggregate concrete. En RILEM international symposium on environment-conscious materials and systems for sustainable development (p. 136). Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1), 437-447. https://doi.org/10.1016/j.conbuildmat.2011.06.043 Lye, C.-Q., Dhir, R. K., & Ghataora, G. S. (2016). Shrinkage of recycled aggregate concrete. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(12), 867- 891. https://doi.org/10.1680/jstbu.15.00138 Marie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. https://doi.org/10.1016/j.jclepro.2012.07.020 Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30(11), 2255-2264. https://doi.org/10.1016/j.wasman.2010.04.012 McGinnis, M. J., Davis, M., de la Rosa, A., Weldon, B. D., & Kurama, Y. C. (2017). Quantified sustainability of recycled concrete aggregates. Magazine of Concrete Research, 69(23), 1203-1211. https://doi.org/10.1680/jmacr.16.00338 McNeil, K., & Kang, T. H.-K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61-69. https://doi.org/10.1007/s40069- 013-0032-5 Mena, C., & Valdés, Y. (2014). Dosificación óptima de una mezcla de concreto con materiales reciclados procedentes de residuos de construcción y demolición (RCD) de la ciudad de Cali para uso en obras viales de bajo tránsito. Ministerio de Ambiente y Desarrollo Sostenible. Resolución No 0472 del 28 de Febrero del 2017 (2017). Colombia. Nixon, P. J. (1978). Recycled concrete as an aggregate for concrete—a review. Matériaux et Constructions, 11(5), 371-378. https://doi.org/10.1007/BF02473878 O. Rageh, M., Hosny, H., & Abdel-Rehem, A. (2017). Sustainability Requirements of Concrete Structures. American Journal of Civil Engineering and Architecture, 5(5), 174-186. https://doi.org/10.12691/ajcea-5-5-1 Oikonomou, N. D. (2005). Recycled concrete aggregates. Cement and Concrete Composites, 27(2), 315-318. https://doi.org/10.1016/j.cemconcomp.2004.02.020 Pacheco Bustos, C. A., Fuentes Pumarejo, L. G., Sánchez Cotte, É. H., & Rondón Quintana, H. A. (2017). Construction demolition waste (CDW), a perspective of achievement for the city of Barranquilla since its management model. Ingeniería y Desarrollo, 35(2), 533-555. Pataki, D. E., Emmi, P. C., Forster, C. B., Mills, J. I., Pardyjak, E. R., Peterson, T. R., … Dudley-Murphy, E. (2009). An integrated approach to improving fossil fuel emissions scenarios with urban ecosystem studies. Ecological Complexity, 6(1), 1-14. https://doi.org/10.1016/j.ecocom.2008.09.003 Pavón, E., Etxeberria, M., & Díaz, N. E. (2012). Estudio de la aplicabilidad del hormigón con árido grueso reciclado en La Habana, Cuba. Materiales de Construcción, 62(307), 431-441. https://doi.org/10.3989/mc.2012.63210 https://doi.org/10.14482/inde.35.2.10174 Peng, C. (2016). Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. Journal of Cleaner Production, 112, 453-465. https://doi.org/10.1016/j.jclepro.2015.08.078 Pereira, L. (2002). Construction and demolition waste recycling: the case of the Portuguese northern region (in Portuguese). Minho University. Poon, C. ., Shui, Z. ., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005 Poon, C. S. (2007). Reducing construction waste. Waste Management, 27(12), 1715-1716. https://doi.org/10.1016/j.wasman.2007.08.013 Poon, C. S., Kou, S. C., & Lam, L. (2007). Influence of recycled aggregate on slump and bleeding of fresh concrete. Materials and Structures, 40(9), 981-988. https://doi.org/10.1617/s11527-006-9192-y Porrero, J., Ramos, C., Grases, J., & Velazco, G. J. (2014). MANUAL DEL CONCRETO ESTRUCURAL. Venezuela. Quiroz, M., & Salamanca, L. (2006). APOYO DIDÁCTICO PARA LA ENSEÑANZA Y APRENDIZAJE EN LA ASIGNATURA DE «TECNOLOGÍA DEL HORMIGÓN». UNIVERSIDAD MAYOR DE SAN SIMÓN. Rahal, K. (2007). Mechanical properties of concrete with recycled coarse aggregate. Building and Environment, 42(1), 407-415. https://doi.org/10.1016/j.buildenv.2005.07.033 Rakshvir, M., & Barai, S. V. (2006). Studies on recycled aggregates-based concrete. Waste Management & Research, 24(3), 225-233. https://doi.org/10.1177/0734242X06064820 Reixach, F., Cuscó, A., & Barroso, J. (2000). Situatión actual y perspectives de futuro de los resíduos de la construcción. Cataluña, España. Romero, E. (2006). Residuos de Construcción y Demolición. España. Recuperado a partir http://www.uhu.es/emilio.romero/docencia/Residuos Construccion.pdf Rosas Chaves, J. A. (2014). Mobiliario urbano prefabricado en concreto con agregado grueso reciclado. Recuperado a partir de http://www.bdigital.unal.edu.co/47108/1/396288.2014COMPLETA.pdf Sabău, M., Pop, I., & Oneţ, T. (2016). Experimental study on local bond stress-slip relationship in self-compacting concrete. Materials and Structures, 49(9), 3693-3711. https://doi.org/10.1617/s11527-015-0749-5 Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O., & Sadeghi-Nik, A. (2016). The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, 112, 2363-2373. https://doi.org/10.1016/j.jclepro.2015.09.107 Sanchez de guzman, D. (1996). TECNOLOGÍA DEL COONCRETO Y DEL MORTERO (3.a ed.). Bogotá. Sandler, K., & Swingle, P. (2006). OSWER Innovations Pilot: Building Deconstruction and Reuse. Recuperado a partir de http://www.epa.gov/oswer/ Secretaría Distrital de Ambiente. (2012). Resolución 01115 de 2012: "Por medio de la cual se adoptan los lineamientos Técnico - Ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el Distrito Capital."\tRegistro Distrital 4977 de octubre 1 de 2012., 1-19. Senthil Kumar, K., & Baskar, K. (2014). Response Surfaces for Fresh and Hardened Properties of Concrete with E-Waste (HIPS). Journal of Waste Management, 2014, 1-14. https://doi.org/10.1155/2014/517219 Shen, L. Y., Tam, V. W. Y., Tam, C. M., & Drew, D. (2004). Mapping Approach for Examining Waste Management on Construction Sites, 130(August), 472-481. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:4(472) Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate – A review. Journal of Cleaner Production, 112, 466-472. https://doi.org/10.1016/j.jclepro.2015.08.057 Silva, R. V., de Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117 Silva, R. V., de Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: a review. European Journal of Environmental and Civil Engineering, 19(7), 825-849. https://doi.org/10.1080/19648189.2014.974831 Silva, R. V., de Brito, J., & Dhir, R. K. (2017). Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production, 143, 598-614. https://doi.org/10.1016/j.jclepro.2016.12.070 Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117 Specifications for concrete with recycled aggregates. (1994). Materials and Structures, 27(9), 557-559. https://doi.org/10.1007/BF02473217 Suocheng, D., Tong, K. W., & Yuping, W. (2001). Municipal solid waste management in China: using commercial management to solve a growing problem. Utilities Policy, 10(1), 7-11. https://doi.org/10.1016/S0957-1787(02)00011-5 Surya, M., VVL, K. R., & Lakshmy, P. (2013). Recycled Aggregate Concrete for Transportation Infrastructure. Procedia - Social and Behavioral Sciences, 104, 1158-1167. https://doi.org/10.1016/j.sbspro.2013.11.212 Susunaga Monroy, J. M. (2013). Construcción Sostenible, Una Alternativa Para La Edificación De Viviendas De Interes Social Y Prioritario. Journal of Chemical Information and Modeling, 53(9), 1689-1699. https://doi.org/10.1017/CBO9781107415324.004 The Netherlands Standardization Institute (NEN). Aggegates for concrete (2005). Holanda. Topçu, İ. B., & Şengel, S. (2004). Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 34(8), 1307-1312. https://doi.org/10.1016/j.cemconres.2003.12.019 Tu, T.-Y., Chen, Y.-Y., & Hwang, C.-L. (2006). Properties of HPC with recycled aggregates. Cement and Concrete Research, 36(5), 943-950. https://doi.org/10.1016/j.cemconres.2005.11.022 United Nations Conference on Environment and Development (UNCED). (1992). Agenda 21, the Rio Declaration on Environment and Development, the Statement of Forest Principles, the United Nations Framework Convention on Climate Change and the United Nations Convention on Biological Diversity. Rio de Janeiro United Nations Environment Programme. (2009). Common carbon metric for measuring energy use and reporting greenhouse gas emissions from building operations. United Nations Environment Programme (UNEP). (2009). Building andClimateChange: Summary for Decision-Makers, SustainableBuildings & Climate Initiative. Universidad de san simon. (2006). Libro básico sobre tecnología del concreto. Ürge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy, 36(2), 642-661. https://doi.org/10.1016/j.enpol.2007.10.009 US Departament of Transportation. (2004). Transportation Applications Of Recycled Concrete Aggregate - State of the ractice National Review September 2004. Recuperado a partir de https://www.fhwa.dot.gov/pavement/recycling/applications.pdf Vadera, S., Woolas, P., Flint, C., Pearson, I., Hodge, M., Jordan, W., & Davies, M. (2008). Strategy for sustainable construction. Materials Science, (June), 64. https://doi.org/8731/2k/6/08/NP URN 08/973 Wang, J., Kang, X., & Tam, V. W. (2008). An investigation of construction wastes: an empirical study in Shenzhen. Journal of Engineering, Design and Technology, 6(3), 227-236. https://doi.org/10.1108/17260530810918252 Waste, S., & Response, E. (2000). OSWER Innovation Project Success Story:, 1-4. World Construction Aggregates - Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Tre. (s. f.). Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020 Xiao, J., & Zhang, G. (s. f.). Research and Modification on Recycled Aggregates, (1), 2-9. Yanik, K. (s. f.). Report: Global demand for aggregates to rise. Recuperado 6 de diciembre de 2017, a partir de http://www.pitandquarry.com/report-global-demand-for-aggregates-to-rise/ Youcai, Z., & Sheng, H. (2017). General Introduction of Construction and Demolition Waste. En Pollution Control and Resource Recovery (pp. 1-14). Elsevier. 154 https://doi.org/10.1016/B978-0-12-811754-5.00001-4 Zaharieva, R., Buyle-Bodin, F., Skoczylas, F., & Wirquin, E. (2003). Assessment of the surface permeation properties of recycled aggregate concrete. Cement and Concrete Composites, 25(2), 223-232. https://doi.org/10.1016/S0958-9465(02)00010-0PublicationORIGINAL1140886779.pdf1140886779.pdfapplication/pdf2987461https://repositorio.cuc.edu.co/bitstreams/70aef153-3149-4227-a03a-cc442783395b/download3ec44bae7744d9d5ba31c8348be0d8f4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/e79554cd-3521-4b9a-82f8-02dc9c107c08/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL1140886779.pdf.jpg1140886779.pdf.jpgimage/jpeg28272https://repositorio.cuc.edu.co/bitstreams/1972059d-8deb-41d0-9df7-419c546872f5/download63b7c19e6346e27c47da1565215da3faMD55TEXT1140886779.pdf.txt1140886779.pdf.txttext/plain239244https://repositorio.cuc.edu.co/bitstreams/0ab610a5-6a6d-474a-94fe-47340003c6c1/downloadac1a763b651245a1b6fd0065f5d40fb2MD5611323/247oai:repositorio.cuc.edu.co:11323/2472024-09-17 14:13:36.956open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=