Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate

This paper presents the mechanical behaviour of concrete mixes made with recycled aggregate by replacing the natural aggregate with crushed concrete from pavement demolition. The purpose of this study was to determine the feasibility of using recycled aggregate from pavement demolition to make new c...

Full description

Autores:
Sabău, Marian
Remolina Duran, Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8493
Acceso en línea:
https://hdl.handle.net/11323/8493
https://doi.org/10.1007/s42947-021-00012-6
https://repositorio.cuc.edu.co/
Palabra clave:
Pavement demolition
Recycled concrete aggregate
Compressive strength
Regression analysis
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_4466fb5404fcfe2707461456f7a37dd4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8493
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
title Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
spellingShingle Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
Pavement demolition
Recycled concrete aggregate
Compressive strength
Regression analysis
title_short Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
title_full Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
title_fullStr Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
title_full_unstemmed Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
title_sort Prediction of compressive strength of general-use concrete mixes with recycled concrete aggregate
dc.creator.fl_str_mv Sabău, Marian
Remolina Duran, Jesús
dc.contributor.author.spa.fl_str_mv Sabău, Marian
Remolina Duran, Jesús
dc.subject.spa.fl_str_mv Pavement demolition
Recycled concrete aggregate
Compressive strength
Regression analysis
topic Pavement demolition
Recycled concrete aggregate
Compressive strength
Regression analysis
description This paper presents the mechanical behaviour of concrete mixes made with recycled aggregate by replacing the natural aggregate with crushed concrete from pavement demolition. The purpose of this study was to determine the feasibility of using recycled aggregate from pavement demolition to make new concrete for pavement applications. Considering a control mix without recycled aggregate (RCA0) designed for a compressive strength of 34 MPa, two types of concrete mixes with 50% (RCA50) and 100% (RCA100) replacement percentage of natural coarse aggregate by recycled aggregate were made. The resulting concrete specimens were tested at three different curing ages, 7, 14, and 28 days. The results of this study showed that the compressive and flexural strengths decreased for all two mixes as the recycled aggregate content increased, while the density was slightly affected. A new model based on multiple linear regression analysis of the data from this study and other 14 studies from the literature was developed. The model can be used to predict the compressive strength of general-use concrete mixes with recycled aggregate (20–40 MPa) considering both the recycled aggregate content and the curing age of concrete. A good correlation was found between the compressive strength and the two parameters investigated. Given the predictions of this model, it is recommended not to use more than 30% recycled concrete aggregate in the production of new concrete in order not to affect its strength.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-27T13:40:33Z
dc.date.available.none.fl_str_mv 2021-07-27T13:40:33Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8493
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s42947-021-00012-6
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8493
https://doi.org/10.1007/s42947-021-00012-6
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv UNEP, Common Carbon Metric: Protocol for Measuring Energy Use and Reporting Greenhouse Gas Emissions from Building Operations, 2010. https://europa.eu/capacity4dev/unep/document/common-carbon-metric-buildings. Accessed 12 Mar 2018.
Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012
de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete. Springer London. https://doi.org/10.1007/978-1-4471-4540-0
Silva, R. V., de Brito, J., & Dhir, R. K. (2017). Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production, 143, 598–614. https://doi.org/10.1016/j.jclepro.2016.12.070
Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate—A review. Journal of Cleaner Production, 112, 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057
Lye, C.-Q., Dhir, R. K., & Ghataora, G. S. (2016). Shrinkage of recycled aggregate concrete. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 169, 867–891. https://doi.org/10.1680/jstbu.15.00138
EPA, OSWER Innovation Project Success Story: Deconstruction, 2009. https://www.epa.gov/sites/production/files/2016-03/documents/innovation_project_success_story_deconstruct.pdf. Accessed 12 Mar 2018.
S. Vadera, P. Woolas, C. Flint, I. Pearson, M. Hodge, W. Jordan, M. Davies, Strategy for sustainable construction, 2008. http://webarchive.nationalarchives.gov.uk/+/http:/www.bis.gov.uk/files/file46535.pdf. Accessed 12 Mar 2018.
BRE Environmental Consultancy, Sustainable Construction - Simple ways to make it happen, 2008. https://www.bre.co.uk/filelibrary/rpts/sustainable_construction_simpleways_to_make_it_happen.pd . Accessed 12 Mar 2018.
Camacol Bogotá y Cundinamarca, Acuerdo de Construcción Sostenible, 2016. https://ww2.camacolcundinamarca.co/images/Camacol/documentos-interes/ACUERDO-construccion-sostenible-2016.pdf. Accessed 12 Mar 2018.
Secretaria Distrital de Ambiente, Resolución No. 01115 - Por medio de la cual se adoptan los lineamientos técnico- ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el distrito capital, 2012. http://www.ambientebogota.gov.co/en/c/document_library/get_file?uuid=fb032331-8198-4f1b-8461-b6f398c6df40&groupId=10157. Accessed 12 Mar 2018.
Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721–740. https://doi.org/10.1016/j.conbuildmat.2016.11.029
Vishnu, T. B., & Singh, K. L. (2020). A study on the suitability of solid waste materials in pavement construction: A review. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-020-0273-z
Barritt, J. (2016). An overview on recycling and waste in construction. Proceedings of the Institution of Civil Engineers-Construction Materials., 169, 49–53. https://doi.org/10.1680/coma.15.00006
Rodríguez-Robles, D., García-González, J., Juan-Valdés, A., Morán-del Pozo, J. M., & Guerra-Romero, M. I. (2015). Effect of mixed recycled aggregates on mechanical properties of recycled concrete. Magazine of Concrete Research, 67, 247–256. https://doi.org/10.1680/macr.14.00217
McGinnis, M. J., Davis, M., de la Rosa, A., Weldon, B. D., & Kurama, Y. C. (2017). Quantified sustainability of recycled concrete aggregates. Magazine of Concrete Research, 69, 1203–1211. https://doi.org/10.1680/jmacr.16.00338
Ho, N. Y., Lee, Y. P. K., Lim, W. F., Chew, K. C., Low, G. L., & Ting, S. K. (2015). Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Magazine of Concrete Research, 67, 633–644. https://doi.org/10.1680/macr.14.00212
Lima, A. S., & Cabral, A. E. B. (2013). Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza (CE). Engenharia Sanitária e Ambiental, 18, 169–176. https://doi.org/10.1590/S1413-41522013000200009
del Río Merino, M., Izquierdo Gracia, P., & Weis Azevedo, I. S. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste Management & Research, 28, 118–129. https://doi.org/10.1177/0734242X09103841
Jindal, A., & G.D. Ransinchung R.N. . (2018). Behavioural study of pavement quality concrete containing construction, industrial and agricultural wastes. International Journal of Pavement Research Technol., 11, 488–501. https://doi.org/10.1016/j.ijprt.2018.03.007
Pepe, M. (2015). A conceptual model for designing recycled aggregate concrete for structural applications, springer international publishing. Cham. https://doi.org/10.1007/978-3-319-26473-8
Thomas, C., Setién, J., & Polanco, J. A. (2016). Structural recycled aggregate concrete made with precast wastes. Construction and Building Materials, 114, 536–546. https://doi.org/10.1016/j.conbuildmat.2016.03.203
Letelier, V., Tarela, E., Osses, R., Cárdenas, J. P., & Moriconi, G. (2017). Mechanical properties of concrete with recycled aggregates and waste glass. Structural Concrete, 18, 40–53. https://doi.org/10.1002/suco.201500143
Cheng, A., Hsu, H.-M., Chao, S.-J., & Lin, K.-L. (2011). Experimental study on properties of pervious concrete made with recycled aggregate. Int. J. Pavement Res. Technol., 4, 104–110
Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34, 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8
Silva, R. V., de Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 19, 825–849. https://doi.org/10.1080/19648189.2014.974831
Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
de Brito, J., & Alves, F. (2010). Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures, 43, 35–51. https://doi.org/10.1617/s11527-010-9595-7
Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for low-shrinkage concretes. Waste Management, 30, 655–659. https://doi.org/10.1016/j.wasman.2009.11.026
Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26, 437–447. https://doi.org/10.1016/j.conbuildmat.2011.06.043
Corbu, O., Puskás, A., Szilágyi, H., & Baeră, C. (2014). C16/20 concrete strength class design with recycled aggregates. Journal of Applied Engineering Science, 4(17), 13–19
Corbu, O., Puskás, A., Sandu, A. V., Ioani, A. M., Hussin, K., & Sandu, I. G. (2015). New concrete with recycled aggregates from leftover concrete. Applied Mechanics and Materials, 754–755, 389–394. https://doi.org/10.4028/www.scientific.net/AMM.754-755.389
Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44, 205–220. https://doi.org/10.1617/s11527-010-9620-x
Surya, M. K. R., & Lakshmy, V. VLp. (2013). Recycled Aggregate Concrete for Transportation Infrastructure. Procedia Social and Behavioral Sciences, 104, 1158–1167. https://doi.org/10.1016/j.sbspro.2013.11.212
Arora, S., & Singh, S. P. (2017). Fatigue strength and failure probability of concrete made with RCA. Magazine of Concrete Research, 69, 55–67. https://doi.org/10.1680/jmacr.15.00353
Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23, 1287–1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019
Limbachiya, M. C. (2010). Recycled aggregates: Production, properties and value-added sustainable applications. Journal Wuhan University of Technology, Materials Science Edition, 25, 1011–1016. https://doi.org/10.1007/s11595-010-0140-x
INVIAS. (2013). Pavimento de concreto hidráulico, in: Especificaciones Gen. Construcción Carreteras y Normas Ens. Para Mater. Carreteras, Instituto Nacional de Vías, 2013: pp. 1–74.
ASTM C33/C33M. (2016). Standard Specification for Concrete Aggregates. ASTM International. https://doi.org/10.1520/C0033_C0033M-16E01
ASTM C29/C29M. (2017). Standard test method for bulk density (“Unit Weight”) and voids in aggregate. ASTM International. https://doi.org/10.1520/C0029_C0029M-17A
ASTM C127. (2015). Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate. ASTM International. https://doi.org/10.1520/C0127-15
ASTM C128. (2015). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International. https://doi.org/10.1520/C0128-15
ASTM C566. (2019). Standard test method for total evaporable moisture content of aggregate by drying. ASTM International. https://doi.org/10.1520/C0566-19
ASTM C136/C136M. (2019). Standard test method for sieve analysis of fine and coarse aggregates. ASTM International. https://doi.org/10.1520/C0136_C0136M-19
Argos, Cemento uso estructural - Ficha técnica, 2017. https://www.argos.co/Media/Colombia/images/FT-CEMENTO-USO-ESTRUCTURAL.pdf Accessed 13 Mar 2018.
ASTM C1157/C1157M. (2017). Standard performance specification for hydraulic cement. ASTM International. https://doi.org/10.1520/C1157_C1157M-17
ACI Committee 211. (2009). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2009), American Concrete Institute. Farmington Hills.
Kosmatka, S. H., & Wilson, M. L. (2016). Design and control of concrete mixtures. (16th ed.). Portland Cement Association.
Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26, 565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059
Paul, S. C. (2017). Data on optimum recycle aggregate content in production of new structural concrete. Data in Brief., 15, 987–992. https://doi.org/10.1016/j.dib.2017.11.012
ASTM C192/C192M. (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International. https://doi.org/10.1520/C0192_C0192M-16A
ASTM C39/C39M. (2018). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International. https://doi.org/10.1520/C0039_C0039M-18
ASTM C78/C78M. (2018). Standard test method for flexural strength of concrete (using simple beam with third-point loading. ASTM International. https://doi.org/10.1520/C0078_C0078M-18
Yong, P. C., & Teo, D. C. L. (2009). Utilisation of recycled aggregate as coarse aggregate in concrete. Journal of Civil Engineering, Science and Technology, 1, 1–6. https://doi.org/10.33736/jcest.60.2009
Akbarnezhad, A., Ong, K. C. G., Zhang, M. H., Tam, C. T., & Foo, T. W. J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25, 3469–3479. https://doi.org/10.1016/j.conbuildmat.2011.03.038
Pepe, M., Toledo Filho, R. D., Koenders, E. A. B., & Martinelli, E. (2014). Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials, 69, 124–132. https://doi.org/10.1016/j.conbuildmat.2014.06.084
Sheen, Y.-N., Wang, H.-Y., Juang, Y.-P., & Le, D.-H. (2013). Assessment on the engineering properties of ready-mixed concrete using recycled aggregates. Construction and Building Materials, 45, 298–305. https://doi.org/10.1016/j.conbuildmat.2013.03.072
Kou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032
Abd Elhakam, A., Mohamed, A. E., & Awad, E. (2012). Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Construction and Building Materials, 35, 421–427. https://doi.org/10.1016/j.conbuildmat.2012.04.013
Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 33, 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5
Hamad, B. S., & Dawi, A. H. (2017). Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates. Case Studies in Construction Materials, 7, 228–239. https://doi.org/10.1016/j.cscm.2017.08.006
Pradhan, S., Kumar, S., & Barai, S. V. (2020). Multi-scale characterisation of recycled aggregate concrete and prediction of its performance. Cement and Concrete Composites, 106, 103480. https://doi.org/10.1016/j.cemconcomp.2019.103480
Fan, Y., Xiao, J., & Tam, V. W. Y. (2014). Effect of old attached mortar on the creep of recycled aggregate concrete. Structural Concrete, 15, 169–178. https://doi.org/10.1002/suco.201300055
Sri Ravindrarajah, R., & Tam, C. T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37, 29–38. https://doi.org/10.1680/macr.1985.37.130.29
Li, C., Wang, F., Deng, X., Li, Y., & Zhao, S. (2019). Testing and prediction of the strength development of recycled-aggregate concrete with large particle natural aggregate. Materials (Basel)., 12, 1891. https://doi.org/10.3390/ma12121891
Geng, Y., Wang, Q., Wang, Y., & Zhang, H. (2019). Influence of service time of recycled coarse aggregate on the mechanical properties of recycled aggregate concrete. Materials and Structures, 52, 97. https://doi.org/10.1617/s11527-019-1395-0
Witczak, M. W., Kaloush, K., Pellinen, T., El-Basyouny, M., & Von Quintus, H. (2002). NCHRP Report 465: simple performance test for superpave mix design. Transportation Research Board-National Research Council.
Yang, K.-H., Chung, H.-S., & Ashour, A. F. (2008). Influence of type and replacement level of recycled aggregates on concrete properties. ACI Materials Journal, 105, 289–296
ASTM C204. (2017). Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International. https://doi.org/10.1520/C0204-17
ASTM C430. (2017). Standard test method for fineness of hydraulic cement by the 45-μm (No. 325) Sieve. ASTM International. https://doi.org/10.1520/C0430-17
ASTM C151/C151M. (2016). Standard test method for autoclave expansion of hydraulic cement. ASTM International. https://doi.org/10.1520/C0151_C0151M-16
ASTM C191. (2013). Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International. https://doi.org/10.1520/C0191
ASTM C1038/C1038M. (2014). Standard test method for expansion of hydraulic cement mortar bars stored in water. ASTM International. https://doi.org/10.1520/C1038_C1038M-14B
ASTM C109/C109M. (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International. https://doi.org/10.1520/C0109_C0109M-16A
Fonseca, N., de Brito, J., & Evangelista, L. (2011). The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites, 33, 637–643. https://doi.org/10.1016/j.cemconcomp.2011.04.002
Gómez-Soberón, J. M. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 32, 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0
Ozbakkaloglu, T., Gholampour, A., & Xie, T. (2018). Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content. Journal of Materials in Civil Engineering, 30, 04017275. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002142
Gholampour, A., & Ozbakkaloglu, T. (2018). Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Engineering Structures, 157, 224–234. https://doi.org/10.1016/j.engstruct.2017.12.015
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv International Journal of Pavement Research and Technology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s42947-021-00012-6
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6a270cab-1ee2-442e-916d-b9b8efd54574/download
https://repositorio.cuc.edu.co/bitstreams/432761df-4c3d-48fe-936b-887f72158908/download
https://repositorio.cuc.edu.co/bitstreams/deeb34a5-0c25-48a1-a246-095b20e130fb/download
https://repositorio.cuc.edu.co/bitstreams/df751a68-fe25-4463-9647-3cace1b6de60/download
https://repositorio.cuc.edu.co/bitstreams/7b800acb-6bff-4ea8-a934-156452663cdd/download
bitstream.checksum.fl_str_mv c146112966a3485683f888674ae7f008
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
7466014a77c1129b013bf7d5bb491555
53b9ed71721aac8f6438cfc2ea631af0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760828093825024
spelling Sabău, MarianRemolina Duran, Jesús2021-07-27T13:40:33Z2021-07-27T13:40:33Z2021https://hdl.handle.net/11323/8493https://doi.org/10.1007/s42947-021-00012-6Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the mechanical behaviour of concrete mixes made with recycled aggregate by replacing the natural aggregate with crushed concrete from pavement demolition. The purpose of this study was to determine the feasibility of using recycled aggregate from pavement demolition to make new concrete for pavement applications. Considering a control mix without recycled aggregate (RCA0) designed for a compressive strength of 34 MPa, two types of concrete mixes with 50% (RCA50) and 100% (RCA100) replacement percentage of natural coarse aggregate by recycled aggregate were made. The resulting concrete specimens were tested at three different curing ages, 7, 14, and 28 days. The results of this study showed that the compressive and flexural strengths decreased for all two mixes as the recycled aggregate content increased, while the density was slightly affected. A new model based on multiple linear regression analysis of the data from this study and other 14 studies from the literature was developed. The model can be used to predict the compressive strength of general-use concrete mixes with recycled aggregate (20–40 MPa) considering both the recycled aggregate content and the curing age of concrete. A good correlation was found between the compressive strength and the two parameters investigated. Given the predictions of this model, it is recommended not to use more than 30% recycled concrete aggregate in the production of new concrete in order not to affect its strength.Sabău, MarianRemolina Duran, Jesúsapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Pavement Research and Technologyhttps://link.springer.com/article/10.1007/s42947-021-00012-6Pavement demolitionRecycled concrete aggregateCompressive strengthRegression analysisPrediction of compressive strength of general-use concrete mixes with recycled concrete aggregateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionUNEP, Common Carbon Metric: Protocol for Measuring Energy Use and Reporting Greenhouse Gas Emissions from Building Operations, 2010. https://europa.eu/capacity4dev/unep/document/common-carbon-metric-buildings. Accessed 12 Mar 2018.Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete. Springer London. https://doi.org/10.1007/978-1-4471-4540-0Silva, R. V., de Brito, J., & Dhir, R. K. (2017). Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production, 143, 598–614. https://doi.org/10.1016/j.jclepro.2016.12.070Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate—A review. Journal of Cleaner Production, 112, 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057Lye, C.-Q., Dhir, R. K., & Ghataora, G. S. (2016). Shrinkage of recycled aggregate concrete. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 169, 867–891. https://doi.org/10.1680/jstbu.15.00138EPA, OSWER Innovation Project Success Story: Deconstruction, 2009. https://www.epa.gov/sites/production/files/2016-03/documents/innovation_project_success_story_deconstruct.pdf. Accessed 12 Mar 2018.S. Vadera, P. Woolas, C. Flint, I. Pearson, M. Hodge, W. Jordan, M. Davies, Strategy for sustainable construction, 2008. http://webarchive.nationalarchives.gov.uk/+/http:/www.bis.gov.uk/files/file46535.pdf. Accessed 12 Mar 2018.BRE Environmental Consultancy, Sustainable Construction - Simple ways to make it happen, 2008. https://www.bre.co.uk/filelibrary/rpts/sustainable_construction_simpleways_to_make_it_happen.pd . Accessed 12 Mar 2018.Camacol Bogotá y Cundinamarca, Acuerdo de Construcción Sostenible, 2016. https://ww2.camacolcundinamarca.co/images/Camacol/documentos-interes/ACUERDO-construccion-sostenible-2016.pdf. Accessed 12 Mar 2018.Secretaria Distrital de Ambiente, Resolución No. 01115 - Por medio de la cual se adoptan los lineamientos técnico- ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el distrito capital, 2012. http://www.ambientebogota.gov.co/en/c/document_library/get_file?uuid=fb032331-8198-4f1b-8461-b6f398c6df40&groupId=10157. Accessed 12 Mar 2018.Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721–740. https://doi.org/10.1016/j.conbuildmat.2016.11.029Vishnu, T. B., & Singh, K. L. (2020). A study on the suitability of solid waste materials in pavement construction: A review. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-020-0273-zBarritt, J. (2016). An overview on recycling and waste in construction. Proceedings of the Institution of Civil Engineers-Construction Materials., 169, 49–53. https://doi.org/10.1680/coma.15.00006Rodríguez-Robles, D., García-González, J., Juan-Valdés, A., Morán-del Pozo, J. M., & Guerra-Romero, M. I. (2015). Effect of mixed recycled aggregates on mechanical properties of recycled concrete. Magazine of Concrete Research, 67, 247–256. https://doi.org/10.1680/macr.14.00217McGinnis, M. J., Davis, M., de la Rosa, A., Weldon, B. D., & Kurama, Y. C. (2017). Quantified sustainability of recycled concrete aggregates. Magazine of Concrete Research, 69, 1203–1211. https://doi.org/10.1680/jmacr.16.00338Ho, N. Y., Lee, Y. P. K., Lim, W. F., Chew, K. C., Low, G. L., & Ting, S. K. (2015). Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Magazine of Concrete Research, 67, 633–644. https://doi.org/10.1680/macr.14.00212Lima, A. S., & Cabral, A. E. B. (2013). Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza (CE). Engenharia Sanitária e Ambiental, 18, 169–176. https://doi.org/10.1590/S1413-41522013000200009del Río Merino, M., Izquierdo Gracia, P., & Weis Azevedo, I. S. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste Management & Research, 28, 118–129. https://doi.org/10.1177/0734242X09103841Jindal, A., & G.D. Ransinchung R.N. . (2018). Behavioural study of pavement quality concrete containing construction, industrial and agricultural wastes. International Journal of Pavement Research Technol., 11, 488–501. https://doi.org/10.1016/j.ijprt.2018.03.007Pepe, M. (2015). A conceptual model for designing recycled aggregate concrete for structural applications, springer international publishing. Cham. https://doi.org/10.1007/978-3-319-26473-8Thomas, C., Setién, J., & Polanco, J. A. (2016). Structural recycled aggregate concrete made with precast wastes. Construction and Building Materials, 114, 536–546. https://doi.org/10.1016/j.conbuildmat.2016.03.203Letelier, V., Tarela, E., Osses, R., Cárdenas, J. P., & Moriconi, G. (2017). Mechanical properties of concrete with recycled aggregates and waste glass. Structural Concrete, 18, 40–53. https://doi.org/10.1002/suco.201500143Cheng, A., Hsu, H.-M., Chao, S.-J., & Lin, K.-L. (2011). Experimental study on properties of pervious concrete made with recycled aggregate. Int. J. Pavement Res. Technol., 4, 104–110Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34, 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8Silva, R. V., de Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 19, 825–849. https://doi.org/10.1080/19648189.2014.974831Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003de Brito, J., & Alves, F. (2010). Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures, 43, 35–51. https://doi.org/10.1617/s11527-010-9595-7Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for low-shrinkage concretes. Waste Management, 30, 655–659. https://doi.org/10.1016/j.wasman.2009.11.026Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26, 437–447. https://doi.org/10.1016/j.conbuildmat.2011.06.043Corbu, O., Puskás, A., Szilágyi, H., & Baeră, C. (2014). C16/20 concrete strength class design with recycled aggregates. Journal of Applied Engineering Science, 4(17), 13–19Corbu, O., Puskás, A., Sandu, A. V., Ioani, A. M., Hussin, K., & Sandu, I. G. (2015). New concrete with recycled aggregates from leftover concrete. Applied Mechanics and Materials, 754–755, 389–394. https://doi.org/10.4028/www.scientific.net/AMM.754-755.389Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44, 205–220. https://doi.org/10.1617/s11527-010-9620-xSurya, M. K. R., & Lakshmy, V. VLp. (2013). Recycled Aggregate Concrete for Transportation Infrastructure. Procedia Social and Behavioral Sciences, 104, 1158–1167. https://doi.org/10.1016/j.sbspro.2013.11.212Arora, S., & Singh, S. P. (2017). Fatigue strength and failure probability of concrete made with RCA. Magazine of Concrete Research, 69, 55–67. https://doi.org/10.1680/jmacr.15.00353Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23, 1287–1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019Limbachiya, M. C. (2010). Recycled aggregates: Production, properties and value-added sustainable applications. Journal Wuhan University of Technology, Materials Science Edition, 25, 1011–1016. https://doi.org/10.1007/s11595-010-0140-xINVIAS. (2013). Pavimento de concreto hidráulico, in: Especificaciones Gen. Construcción Carreteras y Normas Ens. Para Mater. Carreteras, Instituto Nacional de Vías, 2013: pp. 1–74.ASTM C33/C33M. (2016). Standard Specification for Concrete Aggregates. ASTM International. https://doi.org/10.1520/C0033_C0033M-16E01ASTM C29/C29M. (2017). Standard test method for bulk density (“Unit Weight”) and voids in aggregate. ASTM International. https://doi.org/10.1520/C0029_C0029M-17AASTM C127. (2015). Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate. ASTM International. https://doi.org/10.1520/C0127-15ASTM C128. (2015). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International. https://doi.org/10.1520/C0128-15ASTM C566. (2019). Standard test method for total evaporable moisture content of aggregate by drying. ASTM International. https://doi.org/10.1520/C0566-19ASTM C136/C136M. (2019). Standard test method for sieve analysis of fine and coarse aggregates. ASTM International. https://doi.org/10.1520/C0136_C0136M-19Argos, Cemento uso estructural - Ficha técnica, 2017. https://www.argos.co/Media/Colombia/images/FT-CEMENTO-USO-ESTRUCTURAL.pdf Accessed 13 Mar 2018.ASTM C1157/C1157M. (2017). Standard performance specification for hydraulic cement. ASTM International. https://doi.org/10.1520/C1157_C1157M-17ACI Committee 211. (2009). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2009), American Concrete Institute. Farmington Hills.Kosmatka, S. H., & Wilson, M. L. (2016). Design and control of concrete mixtures. (16th ed.). Portland Cement Association.Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26, 565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059Paul, S. C. (2017). Data on optimum recycle aggregate content in production of new structural concrete. Data in Brief., 15, 987–992. https://doi.org/10.1016/j.dib.2017.11.012ASTM C192/C192M. (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International. https://doi.org/10.1520/C0192_C0192M-16AASTM C39/C39M. (2018). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International. https://doi.org/10.1520/C0039_C0039M-18ASTM C78/C78M. (2018). Standard test method for flexural strength of concrete (using simple beam with third-point loading. ASTM International. https://doi.org/10.1520/C0078_C0078M-18Yong, P. C., & Teo, D. C. L. (2009). Utilisation of recycled aggregate as coarse aggregate in concrete. Journal of Civil Engineering, Science and Technology, 1, 1–6. https://doi.org/10.33736/jcest.60.2009Akbarnezhad, A., Ong, K. C. G., Zhang, M. H., Tam, C. T., & Foo, T. W. J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25, 3469–3479. https://doi.org/10.1016/j.conbuildmat.2011.03.038Pepe, M., Toledo Filho, R. D., Koenders, E. A. B., & Martinelli, E. (2014). Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials, 69, 124–132. https://doi.org/10.1016/j.conbuildmat.2014.06.084Sheen, Y.-N., Wang, H.-Y., Juang, Y.-P., & Le, D.-H. (2013). Assessment on the engineering properties of ready-mixed concrete using recycled aggregates. Construction and Building Materials, 45, 298–305. https://doi.org/10.1016/j.conbuildmat.2013.03.072Kou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032Abd Elhakam, A., Mohamed, A. E., & Awad, E. (2012). Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Construction and Building Materials, 35, 421–427. https://doi.org/10.1016/j.conbuildmat.2012.04.013Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 33, 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5Hamad, B. S., & Dawi, A. H. (2017). Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates. Case Studies in Construction Materials, 7, 228–239. https://doi.org/10.1016/j.cscm.2017.08.006Pradhan, S., Kumar, S., & Barai, S. V. (2020). Multi-scale characterisation of recycled aggregate concrete and prediction of its performance. Cement and Concrete Composites, 106, 103480. https://doi.org/10.1016/j.cemconcomp.2019.103480Fan, Y., Xiao, J., & Tam, V. W. Y. (2014). Effect of old attached mortar on the creep of recycled aggregate concrete. Structural Concrete, 15, 169–178. https://doi.org/10.1002/suco.201300055Sri Ravindrarajah, R., & Tam, C. T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37, 29–38. https://doi.org/10.1680/macr.1985.37.130.29Li, C., Wang, F., Deng, X., Li, Y., & Zhao, S. (2019). Testing and prediction of the strength development of recycled-aggregate concrete with large particle natural aggregate. Materials (Basel)., 12, 1891. https://doi.org/10.3390/ma12121891Geng, Y., Wang, Q., Wang, Y., & Zhang, H. (2019). Influence of service time of recycled coarse aggregate on the mechanical properties of recycled aggregate concrete. Materials and Structures, 52, 97. https://doi.org/10.1617/s11527-019-1395-0Witczak, M. W., Kaloush, K., Pellinen, T., El-Basyouny, M., & Von Quintus, H. (2002). NCHRP Report 465: simple performance test for superpave mix design. Transportation Research Board-National Research Council.Yang, K.-H., Chung, H.-S., & Ashour, A. F. (2008). Influence of type and replacement level of recycled aggregates on concrete properties. ACI Materials Journal, 105, 289–296ASTM C204. (2017). Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International. https://doi.org/10.1520/C0204-17ASTM C430. (2017). Standard test method for fineness of hydraulic cement by the 45-μm (No. 325) Sieve. ASTM International. https://doi.org/10.1520/C0430-17ASTM C151/C151M. (2016). Standard test method for autoclave expansion of hydraulic cement. ASTM International. https://doi.org/10.1520/C0151_C0151M-16ASTM C191. (2013). Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International. https://doi.org/10.1520/C0191ASTM C1038/C1038M. (2014). Standard test method for expansion of hydraulic cement mortar bars stored in water. ASTM International. https://doi.org/10.1520/C1038_C1038M-14BASTM C109/C109M. (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International. https://doi.org/10.1520/C0109_C0109M-16AFonseca, N., de Brito, J., & Evangelista, L. (2011). The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites, 33, 637–643. https://doi.org/10.1016/j.cemconcomp.2011.04.002Gómez-Soberón, J. M. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 32, 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0Ozbakkaloglu, T., Gholampour, A., & Xie, T. (2018). Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content. Journal of Materials in Civil Engineering, 30, 04017275. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002142Gholampour, A., & Ozbakkaloglu, T. (2018). Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Engineering Structures, 157, 224–234. https://doi.org/10.1016/j.engstruct.2017.12.015PublicationORIGINALPrediction of Compressive Strength of General.pdfPrediction of Compressive Strength of General.pdfapplication/pdf107956https://repositorio.cuc.edu.co/bitstreams/6a270cab-1ee2-442e-916d-b9b8efd54574/downloadc146112966a3485683f888674ae7f008MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/432761df-4c3d-48fe-936b-887f72158908/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/deeb34a5-0c25-48a1-a246-095b20e130fb/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPrediction of Compressive Strength of General.pdf.jpgPrediction of Compressive Strength of General.pdf.jpgimage/jpeg48417https://repositorio.cuc.edu.co/bitstreams/df751a68-fe25-4463-9647-3cace1b6de60/download7466014a77c1129b013bf7d5bb491555MD54TEXTPrediction of Compressive Strength of General.pdf.txtPrediction of Compressive Strength of General.pdf.txttext/plain1833https://repositorio.cuc.edu.co/bitstreams/7b800acb-6bff-4ea8-a934-156452663cdd/download53b9ed71721aac8f6438cfc2ea631af0MD5511323/8493oai:repositorio.cuc.edu.co:11323/84932024-09-17 14:06:22.444http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==