Hazardous elements and amorphous nanoparticles in historical estuary coal mining area

In Brazil, intense coal exploitation activities have led to environmental deterioration, including soil mortification, water contamination, loss of ecosystem, and atmospheric contamination. In addition, considerable quantities of sulfur-rich residues are left behind in the mining area; these residue...

Full description

Autores:
Duarte Gonzalez, Ana Lucia
Da Boit Martinello, Katia
Silva Oliveira, Marcos Leandro
Calesso Teixeira, Elba
Schneider, Ismael Luis
Silva Oliveira, Luis Felipe
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1800
Acceso en línea:
https://hdl.handle.net/11323/1800
https://repositorio.cuc.edu.co/
Palabra clave:
Brazilian coal mining
Environmental impacts
Minerals
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_440ea17de81af6ff8bbf4c32eacd4184
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1800
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
title Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
spellingShingle Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
Brazilian coal mining
Environmental impacts
Minerals
title_short Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
title_full Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
title_fullStr Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
title_full_unstemmed Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
title_sort Hazardous elements and amorphous nanoparticles in historical estuary coal mining area
dc.creator.fl_str_mv Duarte Gonzalez, Ana Lucia
Da Boit Martinello, Katia
Silva Oliveira, Marcos Leandro
Calesso Teixeira, Elba
Schneider, Ismael Luis
Silva Oliveira, Luis Felipe
dc.contributor.author.spa.fl_str_mv Duarte Gonzalez, Ana Lucia
Da Boit Martinello, Katia
Silva Oliveira, Marcos Leandro
Calesso Teixeira, Elba
Schneider, Ismael Luis
Silva Oliveira, Luis Felipe
dc.subject.eng.fl_str_mv Brazilian coal mining
Environmental impacts
Minerals
topic Brazilian coal mining
Environmental impacts
Minerals
description In Brazil, intense coal exploitation activities have led to environmental deterioration, including soil mortification, water contamination, loss of ecosystem, and atmospheric contamination. In addition, considerable quantities of sulfur-rich residues are left behind in the mining area; these residues pose grave environmental issues as they undergo sulfide oxidation reactions. When sulfur oxides come in contact with water, extreme acid leachate is produced with great proportions of sulfate, and hazardous elements (HEs), which are identified as coal drainage (CMD). CMD is an environmental pollution challenge, particularly in countries with historic or active coal mines. To prevent CMD formation or its migration, the source must be controlled; however, this may not be feasible at many locations. In such scenarios, the mine water should be collected, treated, and discharged. In this study, data from 2005 to 2010 was gathered on the geochemistry of 11 CMD discharges from ten different mines. There are several concerns and questions on the formation of nanominerals in mine acid drainage and on their reactions and interfaces. The detailed mineralogical and geochemical data presented in this paper were derived from previous studies on the coal mine areas in Brazil. Oxyhydroxides, sulfates, and nanoparticles in these areas possibly go through structural transformations depending on their size and formation conditions. The geochemistry of Fe-precipitates (such as jarosite, goethite, and hematite) existent in the CMD-generating coal areas and those that could be considered as a potential source of hazardous elements (HEs) (e.g., Cr) were also studied because these precipitates are relatively stable in extremely low pH conditions. To simplify and improve poorly ordered iron, strontium, and aluminum phase characterization, field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), micro-Raman spectroscopy, and X-ray diffraction (XRD) and sequential extraction (SE) studies were executed on a set CMD samples from the Brazilian mines. This study aimed to investigate the role of both nanomineral and amorphous phase distribution throughout the reactive coal cleaning rejects profile and HEs removal from the water mine to provide holistic insights on the ecological risks posed by HEs, nanominerals, amorphous phases, and to assess sediments in complex environments such as estuaries.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-24T00:26:57Z
dc.date.available.none.fl_str_mv 2018-11-24T00:26:57Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Otros
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/other
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 16749871
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1800
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 16749871
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1800
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Admiraal, W., Tubbing, G.M.J., Breebaart, L., 1995. Effects of phytoplankton on metal partitioning in the lower river Rhine. Water Research 29, 3941e3946. Aleksander-Kwaterczak, U., Helios-Rybicka, E., 2009. Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland. Journal of Soils and Sediments 9, 13e22. Allen, Y., Calow, P., Baird, D.J., 1995. A mechanistic model of contaminant induced feeding inhibition in Daphnia magna. Environmental Toxicology & Chemistry 149, 1625e1630. Alpers, C.N., Majzlan, J., Bender, K.C., Bishop, J.L., Coleman, M.L., Dyar, M.D., McCleskey, R.B., Myneni, S.C.B., Nordstrom, D.K., Sobron, P., 2008. Chemistry and spectroscopy of iron-sulfate minerals from Iron Mountain, California, U.S.A. Geochimica et Cosmochimica Acta 72, A17. Antunes, S.C., Pereira, R., Goncalves, F., 2007. Evaluation of the potential toxicity (acute and chronic) of sediments from abandoned uranium mine ponds. Journal of Soils and Sediments 7, 368e376. Balachandran, K.K., Raj, C.M.L., Nair, M., Joseph, T., Sheeba, P., Venugopal, P., 2005. Heavy metal accumulation in a flow restricted, tropical estuary. Estuarine Coastal and Shelf Science 65, 361e370. Birch, G., Taylor, S., 1999. Source of heavy metals in sediments of the Port Jackson estuary, Australia. The Science of the Total Environment 227, 123e138. Bishop, J., Coleman, M., Sobron, P., Lane, M., Dyar, D., Schiffman, P., 2008. Sulfates on Mars: Comparison with spectral properties of analog sites. Geochimica et Cosmochimica Acta 72, A85. Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Lollar, B.S. (Ed.), Environmental Geochemistry. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 9. ElsevierePergamon, Oxford, pp. 149e204. Bonny, S., Jones, B., 2003. Canadian Journal of Earth Sciences 40, 1483. Brookins, D.G., 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlang, New York, p. 75p. Buckley, A.N., Wouterlood, H.J., Woods, R., 1989. The surface composition of natural sphalerites under oxidative leaching conditions. Hydrometallurgy 22, 39e56. Burton Jr., G.A., 2002. Sediment quality criteria in use around the world. Limnology 3, 65e75. Caraballo, M.A., Rötting, T.S., Nieto, J.M., Ayora, C., 2009. Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. American Mineralogist 94, 1029e1038. Chen, C.J., Jiang, W.T., 2008. An EXAFS and FTIR study on the sulfate and arsenate configurations of schwertmannite. Geochimica et Cosmochimica Acta 72, 152. Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P., 2004. Investigation of the microcharacteristics of PM2.5 in residual oil fly ash by analytical transmission electron microscopy. Environmental Science and Technology 38, 6553e6560. Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Second, Completely Revised and Extended Ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Dai, S., Zou, J., Jiang, Y., Ward, C.R., Wang, X., Li, T., et al., 2011a. Mineralogical and geochemical com- positions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology 94, 250e270. Dai, S., Wang, X., Seredin, V.V., Hower, J.C., Ward, C.R., O’Keefe, J.M.K., Li, T., Li, X., Liu, H., Xue, W., Zhao, L., 2011b. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: new data and genetic implications. International Journal of Coal Geology 90, 72e99. Dold, B., 2003a. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry 18, 1531e1540. Dold, B., 2003b. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration 80, 55e68. Drott, A., Lambertsson, L., Björn, E., Skyllberg, U., 2007. Importance of dissolved neutral sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 41, 2270e2276. Eggleton, J., Thomas, K.V., 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International 30, 973e980. España, J.S., Pamo, E.L., Santofimia, E., Aduvire, O., Reyes, J., Barettino, D., 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry 20, 1320e1356. Finkelman, R.B., 1994. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Processing Technology 39, 21. Fukushi, K., Sasaki, M., Sato, T., Yanese, N., Amano, H., Ikeda, H., 2003. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry 18, 1267e1278. Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S., Traina, S.J., 2004. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica et Cosmochimica Acta 68, 2119e2128. Galatto, S.L., Peterson, M., Alexandre, N.Z., da Costa, J.A.D., Izidoro, G., Sorato, L., Levati, M., 2009. Incorporação de resíduo do tratamento de drenagem ácida em massa de cerâmica vermelha. Cerâmica 55, 53e60. Giere, R., Blackford, M., Smith, K., 2006. TEM Study of PM2.5 Emitted from Coal and Tire Combustion in a Thermal Power Station. Environmental Science & Technology 40, 6235e6240. Guedes, A., Valentim, B., Prieto, A.C., Sanz, A., Flores, D., Noronha, F., 2008. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy. International Journal of Coal Geology 73, 359e370. Guillén, J., Bourrin, F., Palanques, A., Durrieu de Madron, X., Puig, P., Buscail, R., 2006. Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Marine Geology 234, 129e142. Hammarstrom, J.M., Seal, R.R., Meier, A.L., 2005. Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology 215, 407e431. Hammarstrom, J.M., Seal, R.R., Meier, A.L., Jackson, J.C., 2003. Weathering of sulfidic shale and copper mine waste: secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. Environmental Geology 45, 35e57. Kumpulainen, S., Carlson, L., Raisanen, M.L., 2007. Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry 22, 760e777. Lattuada, R.M., Menezes, C.T.B., Pavei, P.T., Peralba, M.C.R., Dos Santos, J.H.Z., 2009. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. Journal of Hazardous Materials 163, 531e537. Marcello, R.R., Galato, S., Peterson, M., Riella, H.G., Bernardin, A.M., 2008. Inorganic pigments made from the recycling of coal mine drainage treatment sludge. Journal of Environmental Management 88, 1280e1284. Mullet, M., Demoisson, F., Humbert, B., Michot, L.J., Vantelon, D., 2007. Aqueous Cr(VI) reduction by pyrite: Speciation and characterisation of the solid phases by X-ray photoelectron, Raman and X-ray absorption spectroscopies. Geochimica et Cosmochimica Acta 71, 3257e3271. Nielsen, U.G., Majzlan, J., Grey, C.P., 2008. Determination and Quantification of the Local Environments in Stoichiometric and Defects Jarosite bt Solid-State 2H NMR Spectroscopy. Chemistry of Materials 20, 2234e2241. Peretyazhko, T., Zachara, J.M., Boily, J.-F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D., 2009. Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology 262, 169e178. Pruvot, C., Douay, F., Fourrier, H., Waterlot, C., 2006. Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. Journal of Soils and Sediments 6, 215e220. Rallo, M., Lopez-Anton, M.A., Meij, R., Perry, R., Maroto-Valer, M.M., 2010. Study of mercury in by-products from a Dutch co-combustion power station. Journal of Hazardous Materials 174, 28e33. Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta 68, 1185e1197. Rodriguez-Iruretagoiena, A., de Vallejuelo, S.F.O., de Diego, A., de Leão, F.B., de Medeiros, D., Oliveira, M.L.S., Tafarel, S.R., Arana, G., Madariaga, J.M., Silva, L.F.O., 2016. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. The Science of the Total Environment 565, 721e729. Root, R.A., Dixit, S., Campbell, K.M., Jew, A.D., Hering, J.G., O’Day, P.A., 2007. Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta 71, 5782e5803. Sharma, V.K., Filip, J., Zboril, R., Varma, R.S., 2015. Natural inorganic nanoparticles - formation, fate, and toxicity in the environment. Chemical Society Reviews 47, 8410e8423. Schneider, I.L., Teixeira, E.C., Rodrigues, M.L.K., Rolim, S.B.A., 2014. Metal content and distribution in surface sediments in an industrial region. Annals of the Brazilian Academy of Sciences 86, 1043e1061. Schwertmann, U., Carlson, L., 2005. The pH-dependent transformation of schwertmannite to goethite at 25 C. Clay Minerals 40, 63e66. Silva, L.F.O., Oliveira, M.L.S., da Boit, K.M., Finkelman, R.B., 2009a. Characterization of Santa Catarina (Brazil) coal with respect to Human Health and Environmental Concerns. Environmental Geochemistry and Health 31, 475e485. Silva, L.F.O., Moreno, T., Querol, X., 2009b. An introductory TEM study of Fenanominerals within coal fly ash. The Science of the Total Environment 407, 4972e4974. Silva, L.F.O., Finkelman, R.B., Macias, F., Oliveira, M.L.S., 2009c. Self-Assemblage of Mineral Matter in some Brazilian Coal Mining. In: Proceedings of the: International Conference on Coal Science & Technology (ICCS&T), South Africa.Silva, L.F.O., Wollenschlager, M.A., 2010a. Preliminary study of Coal Mining Drainage and Environmental Health in the Santa Catarina region. Brazil Environmental Geochemistry and Health 33, 55e65. Silva, L.F.O., Izquierdo, M., Querol, X., Finkelman, R.B., Towler, M., Pérez-López, R., Macias, F., 2010b. Leaching of potential hazardous elements of Coal Cleaning Residues. Environmental Monitoring and Assessment 175, 109e126. Silva, L.F.O., Finkelman, R.B., Macias, F., Oliveira, M.L.S., 2010c. Mineral Matter in some Brazilian Coal Cleaning Residues. Environmental Monitoring and Assessment 175, 109e126. Silva, L.F.O., Guedes, A., de Vallejuelo, S.Fdez-Ortiz, Madariaga, J.M., 2010d. Multianalytical approach to characterize the minerals associated to coals and diagnose their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation. Fuel 94, 52e63. Stanton, M.R., Gemery-Hill, P.A., Shanks III, W.C., Taylor, C.D., 2008. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0e4.0. Applied Geochemistry 23, 136e147. Tiede, K., Hassellöv, M., Breitbarthc, E., Chaudhryb, Q., Boxall, A.B.A., 2009. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A 1216, 503e509. Valente, T.M., Gomes, C.L., 2009. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. The Science of the Total Environment 407, 1135e1152. Vaufleury, A.G., Pihan, F., 2002. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: Metal bioavailability and bioaccumulation. Environmental Toxicology & Chemistry 21, 820e827. Waychunas, G.A., 2009. Natural nanoparticle structure, properties and reactivity from X-ray studies. Powder Diffraction 24, 89e93. Wolfenden, S., Charnock, J.M., Hilton, J., Livens, F.R., Vaughan, D.J., 2005. Sulfide species as a sink for mercury in lake sediments. Environmental Science & Technology 39, 6644e6648. Wong, C.K.C., Cheung, R.Y.H., Wong, M.H., 1999. Toxicological assessment of coastal sediments in Hong Kong using a flagellate, Dunaliella tertiolecta. Environmental Pollution 105, 175e183. Zhang, L., Zhuo, Y., Chen, L., Xu, X., Chen, C., 2008. Mercury emissions from six coal -fired power plants in China. Fuel Processing Technology 89, 1033e1040. Zimmer, M.A., Lautz, L.K., 2014. Temporal and spatial response of hyporheic zone geochemistry to a storm event. Hydrological Processes 28, 2324e2337.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Geoscience Frontiers
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ce46195b-0c38-490c-8e65-a026232503fb/download
https://repositorio.cuc.edu.co/bitstreams/fd5eef3d-e1e4-479f-a89b-76a8c66b2b20/download
https://repositorio.cuc.edu.co/bitstreams/657f0a72-3d66-4038-9257-21cc95f2f509/download
https://repositorio.cuc.edu.co/bitstreams/85266d5a-11fc-426e-a88e-714c58a7bfa4/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b167e60e6a2b21abe7fd0d6d92b0dee3
beb4ede59b213e16784fafe6c422ea14
4a5d45ac99d5d25456e2d1d2d7e5d1ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760778450042880
spelling Duarte Gonzalez, Ana LuciaDa Boit Martinello, KatiaSilva Oliveira, Marcos LeandroCalesso Teixeira, ElbaSchneider, Ismael LuisSilva Oliveira, Luis Felipe2018-11-24T00:26:57Z2018-11-24T00:26:57Z201916749871https://hdl.handle.net/11323/1800Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In Brazil, intense coal exploitation activities have led to environmental deterioration, including soil mortification, water contamination, loss of ecosystem, and atmospheric contamination. In addition, considerable quantities of sulfur-rich residues are left behind in the mining area; these residues pose grave environmental issues as they undergo sulfide oxidation reactions. When sulfur oxides come in contact with water, extreme acid leachate is produced with great proportions of sulfate, and hazardous elements (HEs), which are identified as coal drainage (CMD). CMD is an environmental pollution challenge, particularly in countries with historic or active coal mines. To prevent CMD formation or its migration, the source must be controlled; however, this may not be feasible at many locations. In such scenarios, the mine water should be collected, treated, and discharged. In this study, data from 2005 to 2010 was gathered on the geochemistry of 11 CMD discharges from ten different mines. There are several concerns and questions on the formation of nanominerals in mine acid drainage and on their reactions and interfaces. The detailed mineralogical and geochemical data presented in this paper were derived from previous studies on the coal mine areas in Brazil. Oxyhydroxides, sulfates, and nanoparticles in these areas possibly go through structural transformations depending on their size and formation conditions. The geochemistry of Fe-precipitates (such as jarosite, goethite, and hematite) existent in the CMD-generating coal areas and those that could be considered as a potential source of hazardous elements (HEs) (e.g., Cr) were also studied because these precipitates are relatively stable in extremely low pH conditions. To simplify and improve poorly ordered iron, strontium, and aluminum phase characterization, field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), micro-Raman spectroscopy, and X-ray diffraction (XRD) and sequential extraction (SE) studies were executed on a set CMD samples from the Brazilian mines. This study aimed to investigate the role of both nanomineral and amorphous phase distribution throughout the reactive coal cleaning rejects profile and HEs removal from the water mine to provide holistic insights on the ecological risks posed by HEs, nanominerals, amorphous phases, and to assess sediments in complex environments such as estuaries.Duarte Gonzalez, Ana Lucia-65e722aa-11d9-4867-92f9-264e67960054-0Da Boit Martinello, Katia-332fc0f5-2d21-40f8-b210-63ad92c93b2a-0Silva Oliveira, Marcos Leandro-0000-0001-6044-8737-600Calesso Teixeira, Elba-abb31af3-2e67-484f-8a31-541e1cb66c18-0Schneider, Ismael Luis-0000-0002-6217-4183-600Silva Oliveira, Luis Felipe-5c1c9b54-f160-4f3c-bcd5-b9f532c778af-0engGeoscience FrontiersAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Brazilian coal miningEnvironmental impactsMineralsHazardous elements and amorphous nanoparticles in historical estuary coal mining areaOtrosTextinfo:eu-repo/semantics/otherhttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionAdmiraal, W., Tubbing, G.M.J., Breebaart, L., 1995. Effects of phytoplankton on metal partitioning in the lower river Rhine. Water Research 29, 3941e3946. Aleksander-Kwaterczak, U., Helios-Rybicka, E., 2009. Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland. Journal of Soils and Sediments 9, 13e22. Allen, Y., Calow, P., Baird, D.J., 1995. A mechanistic model of contaminant induced feeding inhibition in Daphnia magna. Environmental Toxicology & Chemistry 149, 1625e1630. Alpers, C.N., Majzlan, J., Bender, K.C., Bishop, J.L., Coleman, M.L., Dyar, M.D., McCleskey, R.B., Myneni, S.C.B., Nordstrom, D.K., Sobron, P., 2008. Chemistry and spectroscopy of iron-sulfate minerals from Iron Mountain, California, U.S.A. Geochimica et Cosmochimica Acta 72, A17. Antunes, S.C., Pereira, R., Goncalves, F., 2007. Evaluation of the potential toxicity (acute and chronic) of sediments from abandoned uranium mine ponds. Journal of Soils and Sediments 7, 368e376. Balachandran, K.K., Raj, C.M.L., Nair, M., Joseph, T., Sheeba, P., Venugopal, P., 2005. Heavy metal accumulation in a flow restricted, tropical estuary. Estuarine Coastal and Shelf Science 65, 361e370. Birch, G., Taylor, S., 1999. Source of heavy metals in sediments of the Port Jackson estuary, Australia. The Science of the Total Environment 227, 123e138. Bishop, J., Coleman, M., Sobron, P., Lane, M., Dyar, D., Schiffman, P., 2008. Sulfates on Mars: Comparison with spectral properties of analog sites. Geochimica et Cosmochimica Acta 72, A85. Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Lollar, B.S. (Ed.), Environmental Geochemistry. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 9. ElsevierePergamon, Oxford, pp. 149e204. Bonny, S., Jones, B., 2003. Canadian Journal of Earth Sciences 40, 1483. Brookins, D.G., 1988. Eh-pH Diagrams for Geochemistry. Springer-Verlang, New York, p. 75p. Buckley, A.N., Wouterlood, H.J., Woods, R., 1989. The surface composition of natural sphalerites under oxidative leaching conditions. Hydrometallurgy 22, 39e56. Burton Jr., G.A., 2002. Sediment quality criteria in use around the world. Limnology 3, 65e75. Caraballo, M.A., Rötting, T.S., Nieto, J.M., Ayora, C., 2009. Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. American Mineralogist 94, 1029e1038. Chen, C.J., Jiang, W.T., 2008. An EXAFS and FTIR study on the sulfate and arsenate configurations of schwertmannite. Geochimica et Cosmochimica Acta 72, 152. Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P., 2004. Investigation of the microcharacteristics of PM2.5 in residual oil fly ash by analytical transmission electron microscopy. Environmental Science and Technology 38, 6553e6560. Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Second, Completely Revised and Extended Ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Dai, S., Zou, J., Jiang, Y., Ward, C.R., Wang, X., Li, T., et al., 2011a. Mineralogical and geochemical com- positions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology 94, 250e270. Dai, S., Wang, X., Seredin, V.V., Hower, J.C., Ward, C.R., O’Keefe, J.M.K., Li, T., Li, X., Liu, H., Xue, W., Zhao, L., 2011b. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: new data and genetic implications. International Journal of Coal Geology 90, 72e99. Dold, B., 2003a. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry 18, 1531e1540. Dold, B., 2003b. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration 80, 55e68. Drott, A., Lambertsson, L., Björn, E., Skyllberg, U., 2007. Importance of dissolved neutral sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 41, 2270e2276. Eggleton, J., Thomas, K.V., 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International 30, 973e980. España, J.S., Pamo, E.L., Santofimia, E., Aduvire, O., Reyes, J., Barettino, D., 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry 20, 1320e1356. Finkelman, R.B., 1994. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Processing Technology 39, 21. Fukushi, K., Sasaki, M., Sato, T., Yanese, N., Amano, H., Ikeda, H., 2003. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry 18, 1267e1278. Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S., Traina, S.J., 2004. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica et Cosmochimica Acta 68, 2119e2128. Galatto, S.L., Peterson, M., Alexandre, N.Z., da Costa, J.A.D., Izidoro, G., Sorato, L., Levati, M., 2009. Incorporação de resíduo do tratamento de drenagem ácida em massa de cerâmica vermelha. Cerâmica 55, 53e60. Giere, R., Blackford, M., Smith, K., 2006. TEM Study of PM2.5 Emitted from Coal and Tire Combustion in a Thermal Power Station. Environmental Science & Technology 40, 6235e6240. Guedes, A., Valentim, B., Prieto, A.C., Sanz, A., Flores, D., Noronha, F., 2008. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy. International Journal of Coal Geology 73, 359e370. Guillén, J., Bourrin, F., Palanques, A., Durrieu de Madron, X., Puig, P., Buscail, R., 2006. Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Marine Geology 234, 129e142. Hammarstrom, J.M., Seal, R.R., Meier, A.L., 2005. Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology 215, 407e431. Hammarstrom, J.M., Seal, R.R., Meier, A.L., Jackson, J.C., 2003. Weathering of sulfidic shale and copper mine waste: secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. Environmental Geology 45, 35e57. Kumpulainen, S., Carlson, L., Raisanen, M.L., 2007. Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry 22, 760e777. Lattuada, R.M., Menezes, C.T.B., Pavei, P.T., Peralba, M.C.R., Dos Santos, J.H.Z., 2009. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. Journal of Hazardous Materials 163, 531e537. Marcello, R.R., Galato, S., Peterson, M., Riella, H.G., Bernardin, A.M., 2008. Inorganic pigments made from the recycling of coal mine drainage treatment sludge. Journal of Environmental Management 88, 1280e1284. Mullet, M., Demoisson, F., Humbert, B., Michot, L.J., Vantelon, D., 2007. Aqueous Cr(VI) reduction by pyrite: Speciation and characterisation of the solid phases by X-ray photoelectron, Raman and X-ray absorption spectroscopies. Geochimica et Cosmochimica Acta 71, 3257e3271. Nielsen, U.G., Majzlan, J., Grey, C.P., 2008. Determination and Quantification of the Local Environments in Stoichiometric and Defects Jarosite bt Solid-State 2H NMR Spectroscopy. Chemistry of Materials 20, 2234e2241. Peretyazhko, T., Zachara, J.M., Boily, J.-F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D., 2009. Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology 262, 169e178. Pruvot, C., Douay, F., Fourrier, H., Waterlot, C., 2006. Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. Journal of Soils and Sediments 6, 215e220. Rallo, M., Lopez-Anton, M.A., Meij, R., Perry, R., Maroto-Valer, M.M., 2010. Study of mercury in by-products from a Dutch co-combustion power station. Journal of Hazardous Materials 174, 28e33. Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta 68, 1185e1197. Rodriguez-Iruretagoiena, A., de Vallejuelo, S.F.O., de Diego, A., de Leão, F.B., de Medeiros, D., Oliveira, M.L.S., Tafarel, S.R., Arana, G., Madariaga, J.M., Silva, L.F.O., 2016. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. The Science of the Total Environment 565, 721e729. Root, R.A., Dixit, S., Campbell, K.M., Jew, A.D., Hering, J.G., O’Day, P.A., 2007. Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta 71, 5782e5803. Sharma, V.K., Filip, J., Zboril, R., Varma, R.S., 2015. Natural inorganic nanoparticles - formation, fate, and toxicity in the environment. Chemical Society Reviews 47, 8410e8423. Schneider, I.L., Teixeira, E.C., Rodrigues, M.L.K., Rolim, S.B.A., 2014. Metal content and distribution in surface sediments in an industrial region. Annals of the Brazilian Academy of Sciences 86, 1043e1061. Schwertmann, U., Carlson, L., 2005. The pH-dependent transformation of schwertmannite to goethite at 25 C. Clay Minerals 40, 63e66. Silva, L.F.O., Oliveira, M.L.S., da Boit, K.M., Finkelman, R.B., 2009a. Characterization of Santa Catarina (Brazil) coal with respect to Human Health and Environmental Concerns. Environmental Geochemistry and Health 31, 475e485. Silva, L.F.O., Moreno, T., Querol, X., 2009b. An introductory TEM study of Fenanominerals within coal fly ash. The Science of the Total Environment 407, 4972e4974. Silva, L.F.O., Finkelman, R.B., Macias, F., Oliveira, M.L.S., 2009c. Self-Assemblage of Mineral Matter in some Brazilian Coal Mining. In: Proceedings of the: International Conference on Coal Science & Technology (ICCS&T), South Africa.Silva, L.F.O., Wollenschlager, M.A., 2010a. Preliminary study of Coal Mining Drainage and Environmental Health in the Santa Catarina region. Brazil Environmental Geochemistry and Health 33, 55e65. Silva, L.F.O., Izquierdo, M., Querol, X., Finkelman, R.B., Towler, M., Pérez-López, R., Macias, F., 2010b. Leaching of potential hazardous elements of Coal Cleaning Residues. Environmental Monitoring and Assessment 175, 109e126. Silva, L.F.O., Finkelman, R.B., Macias, F., Oliveira, M.L.S., 2010c. Mineral Matter in some Brazilian Coal Cleaning Residues. Environmental Monitoring and Assessment 175, 109e126. Silva, L.F.O., Guedes, A., de Vallejuelo, S.Fdez-Ortiz, Madariaga, J.M., 2010d. Multianalytical approach to characterize the minerals associated to coals and diagnose their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation. Fuel 94, 52e63. Stanton, M.R., Gemery-Hill, P.A., Shanks III, W.C., Taylor, C.D., 2008. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0e4.0. Applied Geochemistry 23, 136e147. Tiede, K., Hassellöv, M., Breitbarthc, E., Chaudhryb, Q., Boxall, A.B.A., 2009. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A 1216, 503e509. Valente, T.M., Gomes, C.L., 2009. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. The Science of the Total Environment 407, 1135e1152. Vaufleury, A.G., Pihan, F., 2002. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: Metal bioavailability and bioaccumulation. Environmental Toxicology & Chemistry 21, 820e827. Waychunas, G.A., 2009. Natural nanoparticle structure, properties and reactivity from X-ray studies. Powder Diffraction 24, 89e93. Wolfenden, S., Charnock, J.M., Hilton, J., Livens, F.R., Vaughan, D.J., 2005. Sulfide species as a sink for mercury in lake sediments. Environmental Science & Technology 39, 6644e6648. Wong, C.K.C., Cheung, R.Y.H., Wong, M.H., 1999. Toxicological assessment of coastal sediments in Hong Kong using a flagellate, Dunaliella tertiolecta. Environmental Pollution 105, 175e183. Zhang, L., Zhuo, Y., Chen, L., Xu, X., Chen, C., 2008. Mercury emissions from six coal -fired power plants in China. Fuel Processing Technology 89, 1033e1040. Zimmer, M.A., Lautz, L.K., 2014. Temporal and spatial response of hyporheic zone geochemistry to a storm event. Hydrological Processes 28, 2324e2337.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ce46195b-0c38-490c-8e65-a026232503fb/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALHazardous elements and amorphous nanoparticles in historical estuary coal mining area.pdfHazardous elements and amorphous nanoparticles in historical estuary coal mining area.pdfapplication/pdf2847499https://repositorio.cuc.edu.co/bitstreams/fd5eef3d-e1e4-479f-a89b-76a8c66b2b20/downloadb167e60e6a2b21abe7fd0d6d92b0dee3MD53THUMBNAILHazardous elements and amorphous nanoparticles in historical estuary coal mining area.pdf.jpgHazardous elements and amorphous nanoparticles in historical estuary coal mining area.pdf.jpgimage/jpeg65571https://repositorio.cuc.edu.co/bitstreams/657f0a72-3d66-4038-9257-21cc95f2f509/downloadbeb4ede59b213e16784fafe6c422ea14MD55TEXTHazardous elements and amorphous nanoparticles in historical estuary coal mining area.pdf.txtHazardous elements and amorphous nanoparticles in historical estuary coal mining area.pdf.txttext/plain65422https://repositorio.cuc.edu.co/bitstreams/85266d5a-11fc-426e-a88e-714c58a7bfa4/download4a5d45ac99d5d25456e2d1d2d7e5d1edMD5611323/1800oai:repositorio.cuc.edu.co:11323/18002024-09-17 11:06:38.995open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=