The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice
Agricultural activity is characterized by an intensive use of capital and a considerable dependence on external financing. Access to credit is often limited by the scarcity of resources and lack of guarantees, seriously affecting the productivity and economic performance of agricultural exploitation...
- Autores:
-
Silva, Jesús
Varela, Noel
Pineda Lezama, Omar Bonerge
Martínez Sierra, David
Molina Romero, Jainer Enrique
Virviescas Peña, John Anderson
Munera Ramirez, Rubén Dario
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5135
- Acceso en línea:
- http://hdl.handle.net/11323/5135
https://repositorio.cuc.edu.co/
- Palabra clave:
- Agricultural financing
Multicriteria programming
Sustainability rice farming
Decision making
Goals programming
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_43ea8abbc97e8eb30f563792e0ce70fe |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5135 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
title |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
spellingShingle |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice Agricultural financing Multicriteria programming Sustainability rice farming Decision making Goals programming |
title_short |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
title_full |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
title_fullStr |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
title_full_unstemmed |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
title_sort |
The Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice |
dc.creator.fl_str_mv |
Silva, Jesús Varela, Noel Pineda Lezama, Omar Bonerge Martínez Sierra, David Molina Romero, Jainer Enrique Virviescas Peña, John Anderson Munera Ramirez, Rubén Dario |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Varela, Noel Pineda Lezama, Omar Bonerge Martínez Sierra, David Molina Romero, Jainer Enrique Virviescas Peña, John Anderson Munera Ramirez, Rubén Dario |
dc.subject.spa.fl_str_mv |
Agricultural financing Multicriteria programming Sustainability rice farming Decision making Goals programming |
topic |
Agricultural financing Multicriteria programming Sustainability rice farming Decision making Goals programming |
description |
Agricultural activity is characterized by an intensive use of capital and a considerable dependence on external financing. Access to credit is often limited by the scarcity of resources and lack of guarantees, seriously affecting the productivity and economic performance of agricultural exploitations. The objective of this paper is to assess the sustainability of agricultural production chain of rice in Latin America using multi-criteria analysis tools to facilitate decision-making through a benchmarking process to contribute to their economic sustainability. The implementation of the model in an exploitation typy depending on financing sources (conservative, intermediate, and innovative) has revealed the conflict between the goals, being the intermediate exploitation, which gets the best results. The conclusions show that the flexibilization of financing options positively affects the economic performance. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-08-08T15:06:33Z |
dc.date.available.none.fl_str_mv |
2019-08-08T15:06:33Z |
dc.date.issued.none.fl_str_mv |
2019-06-26 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-3-030-22808-8 978-3-030-22807-1 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/11323/5135 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-3-030-22808-8 978-3-030-22807-1 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
http://hdl.handle.net/11323/5135 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-22808-8_22 |
dc.relation.references.spa.fl_str_mv |
1. Rebolledo, M.C., et al.: Modelación del arroz en Latinoamérica: Estado del arte y base de datos para parametrización. Publications Office of the European Union, Luxembourg (2018) Google Scholar 2. Carrijo, D.R., Lundy, M.E., Linquist, B.A.: Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res. 203(1), 173–180 (2017) Google Scholar 3. Pérez, M.P., Cortiza, M.A.P.: Los rendimientos arroceros en cuba: propuesta de un sistema de acciones. Revista Economía y Desarrollo (Impresa) 152(2), 138–154 (2016) Google Scholar 4. Lezama, O.B.P., Izquierdo, N.V., Fernández, D.P., Dorta, R.L.G., Viloria, A., Marín, L.R.: Models of multivariate regression for labor accidents in different production sectors: comparative study. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 43–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_5 Google Scholar 5. Suárez, J.A., Beatón, P.A., Escalona, R.F., Montero, O.P.: Energy, environment and development in Cuba. Renew. Sustain. Energy Rev. 16(5), 2724–2731 (2012) Google Scholar 6. Sala, S., Ciuffo, B., Nijkamp, P.: A systemic framework for sustainability assessment. Ecol. Econ. 119(1), 314–325 (2015) Google Scholar 7. Singh, R.K., Murty, H.R., Gupta, S.K., Dikshit, A.K.: An overview of sustainability assessment methodologies. Ecol. Ind. 9(2), 189–212 (2009) Google Scholar 8. Varela, N., Fernandez, D., Pineda, O., Viloria, A.: Selection of the best regression model to explain the variables that influence labor accident case electrical company. J. Eng. Appl. Sci. 12(1), 2956–2962 (2017) Google Scholar 9. Yao, Z., Zheng, X., Liu, C., Lin, S., Zuo, Q., Butterbach-Bahl, K.: Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Sci. Rep. 7(1), 1–12 (2017) Google Scholar 10. Suárez, D.F.P., Román, R.M.S.: Consumo de água em arroz irrigado por inundação em sistema de multiplas entradas. IRRIGA 1(1), 78–95 (2016) Google Scholar 11. Stuart, A.M., et al.: The application of best management practices increases the profitability and sustainability of rice farming in the central plains of Thailand. Field Crops Res. 220(1), 78–87 (2018) Google Scholar 12. Aprianti, E., Shafigh, P., Bahri, S., Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes–a review. Constr. Build. Mater. 74(1), 176–187 (2015) Google Scholar 13. Gomes, A.D.S., Scivittaro, W.B., Petrini, J.A., Ferreira, L.H.G.: A água: distribuição, regulamentação e uso na agricultura, com enfase ao arroz irrigado. EMBRAPA Clima Temperado-Documentos (INFOTECA-E) (2018) Google Scholar 14. Donkor, E., Owusu, V.: Effects of land tenure systems on resource-use productivity and efficiency in Ghana’s rice industry. Afr. J. Agric. Resour. Econ. 9(4), 286–299 (2014) Google Scholar 15. Baloch, M.A., Thapa, G.B.: The effect of agricultural extension services: date farmers’ case in Balochistan, Pakistan. J. Saudi Soc. Agric. Sci. 17(3), 282–289 (2018) Google Scholar 16. Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 164–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93818-9_16 Google Scholar 17. Bezerra, B.G., Da Silva, B.B., Bezerra, J.R.C., Brandão, Z.N.: Evapotranspiração real obtida através da relação entre o coeficiente dual de cultura da FAO-56 e o NDVI. Revista Brasileira de Meteorologia 25(3), 404–414 (2010) Google Scholar 18. Diaz-Balteiro, L., González-Pachón, J., Romero, C.: Forest management with multiple criteria and multiple stakeholders: An application to two public forests in Spain. Scand. J. For. Res. 24(1), 87–93 (2009) Google Scholar 19. Hák, T., Janoušková, S., Moldan, B.: Sustainable development goals: a need for relevant indicators. Ecol. Ind. 60(1), 565–573 (2016) Google Scholar 20. Lampayan, R.M., Rejesus, R.M., Singleton, G.R., Bouman, B.A.: Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 170(1), 95–108 (2015) Google Scholar 21. Delgado, A., Blanco, F.M.: Modelo Multicriterio Para El Análisis De Alternativas De Financiamiento De Productores De Arroz En El Estado Portuguesa. Venezuela. Agroalimentaria 28(1), 35–48 (2009) Google Scholar |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Symposium on Neural Networks |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/beaa2c17-b868-4807-a216-7b2fc9487986/download https://repositorio.cuc.edu.co/bitstreams/f753e33a-b722-49a3-bdec-ce772f9b75c0/download https://repositorio.cuc.edu.co/bitstreams/7a2f934f-f10e-4097-8763-ca7fcd028792/download https://repositorio.cuc.edu.co/bitstreams/2fafcdc4-428b-4e0b-b872-1e53c906f0c0/download https://repositorio.cuc.edu.co/bitstreams/bef10553-3621-4929-8bcd-2a246df05b05/download |
bitstream.checksum.fl_str_mv |
42e9cfe1b71352d9f10b8b6f35002766 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 73de0487266884fde8150b5e345c674d a18c56bcbe3785541761cadd4537d676 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760656373776384 |
spelling |
Silva, JesúsVarela, NoelPineda Lezama, Omar BonergeMartínez Sierra, DavidMolina Romero, Jainer EnriqueVirviescas Peña, John AndersonMunera Ramirez, Rubén Dario2019-08-08T15:06:33Z2019-08-08T15:06:33Z2019-06-26978-3-030-22808-8978-3-030-22807-1http://hdl.handle.net/11323/5135Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Agricultural activity is characterized by an intensive use of capital and a considerable dependence on external financing. Access to credit is often limited by the scarcity of resources and lack of guarantees, seriously affecting the productivity and economic performance of agricultural exploitations. The objective of this paper is to assess the sustainability of agricultural production chain of rice in Latin America using multi-criteria analysis tools to facilitate decision-making through a benchmarking process to contribute to their economic sustainability. The implementation of the model in an exploitation typy depending on financing sources (conservative, intermediate, and innovative) has revealed the conflict between the goals, being the intermediate exploitation, which gets the best results. The conclusions show that the flexibilization of financing options positively affects the economic performance.Silva, JesúsVarela, NoelPineda Lezama, Omar BonergeMartínez Sierra, DavidMolina Romero, Jainer EnriqueVirviescas Peña, John AndersonMunera Ramirez, Rubén DarioengInternational Symposium on Neural Networkshttps://doi.org/10.1007/978-3-030-22808-8_221. Rebolledo, M.C., et al.: Modelación del arroz en Latinoamérica: Estado del arte y base de datos para parametrización. Publications Office of the European Union, Luxembourg (2018) Google Scholar 2. Carrijo, D.R., Lundy, M.E., Linquist, B.A.: Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res. 203(1), 173–180 (2017) Google Scholar 3. Pérez, M.P., Cortiza, M.A.P.: Los rendimientos arroceros en cuba: propuesta de un sistema de acciones. Revista Economía y Desarrollo (Impresa) 152(2), 138–154 (2016) Google Scholar 4. Lezama, O.B.P., Izquierdo, N.V., Fernández, D.P., Dorta, R.L.G., Viloria, A., Marín, L.R.: Models of multivariate regression for labor accidents in different production sectors: comparative study. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 43–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_5 Google Scholar 5. Suárez, J.A., Beatón, P.A., Escalona, R.F., Montero, O.P.: Energy, environment and development in Cuba. Renew. Sustain. Energy Rev. 16(5), 2724–2731 (2012) Google Scholar 6. Sala, S., Ciuffo, B., Nijkamp, P.: A systemic framework for sustainability assessment. Ecol. Econ. 119(1), 314–325 (2015) Google Scholar 7. Singh, R.K., Murty, H.R., Gupta, S.K., Dikshit, A.K.: An overview of sustainability assessment methodologies. Ecol. Ind. 9(2), 189–212 (2009) Google Scholar 8. Varela, N., Fernandez, D., Pineda, O., Viloria, A.: Selection of the best regression model to explain the variables that influence labor accident case electrical company. J. Eng. Appl. Sci. 12(1), 2956–2962 (2017) Google Scholar 9. Yao, Z., Zheng, X., Liu, C., Lin, S., Zuo, Q., Butterbach-Bahl, K.: Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Sci. Rep. 7(1), 1–12 (2017) Google Scholar 10. Suárez, D.F.P., Román, R.M.S.: Consumo de água em arroz irrigado por inundação em sistema de multiplas entradas. IRRIGA 1(1), 78–95 (2016) Google Scholar 11. Stuart, A.M., et al.: The application of best management practices increases the profitability and sustainability of rice farming in the central plains of Thailand. Field Crops Res. 220(1), 78–87 (2018) Google Scholar 12. Aprianti, E., Shafigh, P., Bahri, S., Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes–a review. Constr. Build. Mater. 74(1), 176–187 (2015) Google Scholar 13. Gomes, A.D.S., Scivittaro, W.B., Petrini, J.A., Ferreira, L.H.G.: A água: distribuição, regulamentação e uso na agricultura, com enfase ao arroz irrigado. EMBRAPA Clima Temperado-Documentos (INFOTECA-E) (2018) Google Scholar 14. Donkor, E., Owusu, V.: Effects of land tenure systems on resource-use productivity and efficiency in Ghana’s rice industry. Afr. J. Agric. Resour. Econ. 9(4), 286–299 (2014) Google Scholar 15. Baloch, M.A., Thapa, G.B.: The effect of agricultural extension services: date farmers’ case in Balochistan, Pakistan. J. Saudi Soc. Agric. Sci. 17(3), 282–289 (2018) Google Scholar 16. Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 164–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93818-9_16 Google Scholar 17. Bezerra, B.G., Da Silva, B.B., Bezerra, J.R.C., Brandão, Z.N.: Evapotranspiração real obtida através da relação entre o coeficiente dual de cultura da FAO-56 e o NDVI. Revista Brasileira de Meteorologia 25(3), 404–414 (2010) Google Scholar 18. Diaz-Balteiro, L., González-Pachón, J., Romero, C.: Forest management with multiple criteria and multiple stakeholders: An application to two public forests in Spain. Scand. J. For. Res. 24(1), 87–93 (2009) Google Scholar 19. Hák, T., Janoušková, S., Moldan, B.: Sustainable development goals: a need for relevant indicators. Ecol. Ind. 60(1), 565–573 (2016) Google Scholar 20. Lampayan, R.M., Rejesus, R.M., Singleton, G.R., Bouman, B.A.: Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 170(1), 95–108 (2015) Google Scholar 21. Delgado, A., Blanco, F.M.: Modelo Multicriterio Para El Análisis De Alternativas De Financiamiento De Productores De Arroz En El Estado Portuguesa. Venezuela. Agroalimentaria 28(1), 35–48 (2009) Google ScholarCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agricultural financingMulticriteria programmingSustainability rice farmingDecision makingGoals programmingThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of RicePre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice.pdfThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice.pdfapplication/pdf527303https://repositorio.cuc.edu.co/bitstreams/beaa2c17-b868-4807-a216-7b2fc9487986/download42e9cfe1b71352d9f10b8b6f35002766MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f753e33a-b722-49a3-bdec-ce772f9b75c0/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/7a2f934f-f10e-4097-8763-ca7fcd028792/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice.pdf.jpgThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice.pdf.jpgimage/jpeg42461https://repositorio.cuc.edu.co/bitstreams/2fafcdc4-428b-4e0b-b872-1e53c906f0c0/download73de0487266884fde8150b5e345c674dMD55TEXTThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice.pdf.txtThe Goal Programming as a Tool for Measuring the Sustainability of Agricultural Production Chains of Rice.pdf.txttext/plain30797https://repositorio.cuc.edu.co/bitstreams/bef10553-3621-4929-8bcd-2a246df05b05/downloada18c56bcbe3785541761cadd4537d676MD5611323/5135oai:repositorio.cuc.edu.co:11323/51352024-09-16 16:34:17.352http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |