Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach

This study aims to investigate the hydrodynamic-morphological interactions on a microtidal intermediate-dissipative beach under low to moderate wave energy conditions using field measurements during two climatic seasons. The separate contributions of currents, sea-swell waves, and infragravity waves...

Full description

Autores:
Melissa Guerrero, Anlly
Otero, Luis
Ospino, Silvio
Cueto, Jairo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13969
Acceso en línea:
https://hdl.handle.net/11323/13969
https://repositorio.cuc.edu.co/
Palabra clave:
Morphodynamics
Hydrodynamics
Suspended sediment transport
Acoustic backscatter
Intermediate-dissipative beach
Microtidal beach
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_43e670f33601ac4997d7c08990ae5b03
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13969
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
title Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
spellingShingle Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
Morphodynamics
Hydrodynamics
Suspended sediment transport
Acoustic backscatter
Intermediate-dissipative beach
Microtidal beach
title_short Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
title_full Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
title_fullStr Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
title_full_unstemmed Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
title_sort Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beach
dc.creator.fl_str_mv Melissa Guerrero, Anlly
Otero, Luis
Ospino, Silvio
Cueto, Jairo
dc.contributor.author.none.fl_str_mv Melissa Guerrero, Anlly
Otero, Luis
Ospino, Silvio
Cueto, Jairo
dc.subject.proposal.eng.fl_str_mv Morphodynamics
Hydrodynamics
Suspended sediment transport
Acoustic backscatter
Intermediate-dissipative beach
Microtidal beach
topic Morphodynamics
Hydrodynamics
Suspended sediment transport
Acoustic backscatter
Intermediate-dissipative beach
Microtidal beach
description This study aims to investigate the hydrodynamic-morphological interactions on a microtidal intermediate-dissipative beach under low to moderate wave energy conditions using field measurements during two climatic seasons. The separate contributions of currents, sea-swell waves, and infragravity waves to high- and low-frequency sediment fluxes were analyzed. The infragravity wave energy was more relevant near the swash zone than in other areas. Although the currents are the primary suspended sediment transport mechanism, the results suggest that the waves are an important driver of sediment suspension from the seabed. The results indicate that Sea-Swell (SS) waves and cross-shore currents are the prevailing hydrodynamic factors in nearshore sediment transport, and the cross-shore suspended sediment transport rates are higher than those in alongshore transport. The submerged bar intensified during the wet season (1–4 November 2018) when the wave height intensities were lower, contrary to the dry season (24–25 March 2018). Significant accretion nearshore was identified (in the subaerial beach) during the wet season when the suspended sediments were greater, the SS-wave heights nearshore were lower, and sediment flux was directed onshore. A notorious erosion was distinguished during the dry season. The most representative volume changes occurred during the dry season (with high erosion), which is attributed to the high SS-wave energy.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-07-06
dc.date.accessioned.none.fl_str_mv 2025-01-28T22:15:26Z
dc.date.available.none.fl_str_mv 2025-01-28T22:15:26Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Guerrero, A.M.; Otero, L.; Ospino, S.; Cueto, J. Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach. J. Mar. Sci. Eng. 2024, 12, 1141. https:// doi.org/10.3390/jmse12071141
dc.identifier.issn.none.fl_str_mv 2077-1312
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13969
dc.identifier.doi.none.fl_str_mv 10.3390/jmse12071141
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Guerrero, A.M.; Otero, L.; Ospino, S.; Cueto, J. Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach. J. Mar. Sci. Eng. 2024, 12, 1141. https:// doi.org/10.3390/jmse12071141
2077-1312
10.3390/jmse12071141
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13969
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Journal of marine science and engineering
dc.relation.references.none.fl_str_mv 1. Biausque, M.; Senechal, N. Seasonal morphological response of an open sandy beach to winter wave conditions: The example of Biscarrosse beach, SW France. Geomorphology 2019, 332, 157–169. [CrossRef]
2. Bagnold, R.A. Sand movement by waves: Some small-scale experiments with sand of very low density. J. Inst. Civ. Eng. 1947, 27, 447–469. [CrossRef]
3. Wright, L.D.; Thom, B.G. Coastal depositional landforms: A morphodynamic approach. Prog. Phys. Geogr. 1977, 1, 412–459. [CrossRef]
4. Brand, E.; Montreuil, A.; Houthuys, R.; Chen, M. Relating Hydrodynamic Forcing and Topographic Response for Tide-Dominated Sandy Beaches. J. Mar. Sci. Eng. 2020, 3, 151. [CrossRef]
5. Aagaard, T.; Hughes, M.; Baldock, T.; Greenwood, B.; Kroon, A.; Power, H. Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Mar. Geol. 2012, 326, 154–165. [CrossRef]
6. Trowbridge, J.; Elgar, S. Turbulence Measurements in the Surf Zone. J. Phys. Oceanogr. 2001, 31, 2403–2417. [CrossRef]
7. Ruessink, B.G. Observations of turbulence within a natural surf zone. J. Phys. Oceanogr. 2010, 40, 2696–2712. [CrossRef]
8. Conley, D.C.; Beach, R.A. Cross-shore sediment transport partitioning in the nearshore during a storm event. J. Geophys. Res. 2003, 108, C06011. [CrossRef]
9. Aagaard, T.; Greenwood, B. Oscillatory infragravity wave contribution to surf zone sediment transport-the role of advection. Mar. Geol. 2008, 251, 1–14. [CrossRef]
10. Aagaard, T.; Hughes, M. Breaker turbulence and sediment suspension in the surf zone. Mar. Geol. 2010, 271, 250–259. [CrossRef]
11. Vidal, C.; Losada, M.A.; Medina, R.; Losada, Í. Modelos de Morfodinámica de Playas. Ing. Del Agua 1995, 2, 55–74. [CrossRef]
12. IOC. 2022. Available online: https://iocaribe.ioc-unesco.org/en/member-countries/colombia (accessed on 15 May 2022).
13. Aagaard, T.; Greenwood, B.; Hughes, M. Sediment transport on dissipative, intermediate and reflective beaches. Earth Sci. Rev. 2013, 124, 32–50. [CrossRef]
14. Restrepo, J.; Otero, L.; Casas, A.; Henao, A.; Gutiérrez, J. Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island Archipelago (Caribbean of Colombia). Ocean Coast. Manag. 2012, 69, 133–142. [CrossRef]
15. Pérez, R.; Ortiz, R.; Bejarano, A.; Otero, D.; Restrepo, L.; Franco, A. Sea breeze in the Colombian Caribbean coast. Atmosfera 2018, 31, 389–406. [CrossRef]
16. Otero, L.; Ortiz-Royero, J.; Ruiz-Merchán, J.; Higgins, A.; Henriquez, S. Storms or cold fronts: What is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Nat. Hazards Earth Syst. Sci. 2016, 16, 391–401. [CrossRef]
17. Cueto, J.; Otero, L. Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches. Appl. Ocean Res. 2020, 101, 102283. [CrossRef]
18. Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter- decadal hasta la escala diurna por ciencias de la tierra. Rev. Acad. Colomb. Cienc. 2004, 107, 201–222
19. Conde-Frias, M.; Otero, L.; Restrepo, J.; Ortiz, J.; Ruiz, J.; Osorio, A. Experimental analysis of infragravity waves in two eroded microtidal beaches. Acta Oceanol. Sin. 2017, 36, 31–43.
20. Anfuso, G.; Rangel-Buitrago, N.; Correa Arango, I.D. Evolution of Sandspits along the Caribbean Coast of Colombia: Natural and Human Influences. In Sand and Gravel Spits. Coastal Research Library; Randazzo, G., Jackson, D., Cooper, J., Eds.; Springer: Cham, Switzerland, 2015.
21. IDEAM, TIEMPO Y CLIMA. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/cartilla-pronostico-pleamaresbajamares-costa-atlantica-colombiana?p_p_id=110_INSTANCE_sgxGOQ77WWFo&p_p_lifecycle=0&p_p_state=normal&p_p_ mode=view&p_p_col_id=column-1&p_p_col_count=1 (accessed on 6 June 2022).
22. Blott, S.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [CrossRef]
23. Holthuijsen, L. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007.
24. Roelvink, J.A.; Stive, M.J.F. Bar generating cross-shore flow mechanisms on a beach. J. Geophys. Res. 1989, 94, 4785–4800. [CrossRef]
25. Masselink, G.; Hughes, M.G.; Knight, J. Introduction to Coastal Processes and Geomorphology, 2nd ed.; Hodder Education: London, UK, 2011.
26. Battjes, J.A.; Janssen, J.P.F.M. Energy loss and set-up due to breaking of random waves. Coast. Eng. 1978, 1978, 569–587
27. Fabbri, S.; Giambastiani, M.S.; Sistilli, F.; Scarelli, F.; Gabbianelli, G. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 2017, 295, 436–451. [CrossRef]
28. Mullison, J. Backscatter estimation using broadband acoustic Doppler current profilers-Updated. In Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference, Durham, NH, USA, 9–12 July 2017; pp. 9–12.
29. Lohrmann, A. Monitoring Sediment Concentration with Acoustic Backscattering Instruments. Technical Report 03, Nortek AS. Available online: https://www.nortekgroup.com/assets/documents/Monitoring-sediment-concentration-with-acousticbackscattering-instruments.pdf (accessed on 20 June 2022).
30. Gartner, J.W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar. Geol. 2004, 211, 169–187. [CrossRef]
31. Vandebroek, E.; Claeys, S.; Plancke, Y.; Verwaest, T.; Mostaert, F. Agenda for the Future—Hydrodynamics and Sediment Dynamics in the Schelde Estuary: Sub Report 11—Factual Data Report for Frame-Measurements at Drempel van Frederik in December 2015 and January 2016; Version 3.0. FHR Reports, 14_024_11; Flanders Hydraulics Research & Antea Group: Antwerp, Belgium, 2017.
32. Ainslie, M.A.; McColm, J.G. A simplified formula for viscous and chemical absorption in seawater. J. Acoust. Soc. Am. 1998, 103, 1671–1672. [CrossRef]
33. Deines, K.L. Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers. In Proceedings of the IEEE Sixth Working Conference on Current Measurement, San Diego, CA, USA, 13 March 1999.
34. Campbell Scientific (CANADA) Corp. OBS-3A Turbidity and Temperature Monitoring System. Operator’s Manual. Available online: https://s.campbellsci.com/documents/ca/manuals/obs-3a_man.pdf (accessed on 20 February 2019).
35. De Bakker, A.T.M.; Brinkkemper, J.A.; van der Steen, F.; Tissier, M.F.S.; Ruessink, B.G. Cross-shore sand transport by infragravity waves as a function of beach steepness. J. Geophys. Res. Earth Surf. 2016, 121, 1786–1799. [CrossRef]
36. Svendsen, I.A.; Madsen, P.A.; Hansen, J.B. Wave characteristics in the surf zone. Coast. Eng. 1978, 520–539. [CrossRef]
37. Ruju, A.; Lara, J.; Losada, I. Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. Coast. Eng. 2012, 68, 44–55. [CrossRef]
38. De Bakker, A.; Herbers, T.; Smit, P.; Tissier, M.; Ruessink, B.G. Nonlinear infragravity-wave interactions on a gently sloping laboratory beach. J. Phys. Oceanogr. 2015, 45, 589–605. [CrossRef]
39. Ruessink, B.G.; Houwman, K.T.; Hoekstra, P. The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Mar. Geol. 1998, 152, 295–324. [CrossRef]
40. Guza, R.T.; Thornton, E.B. Ascend/descend oscillations on a natural beach. J. Geophys. Res. 1982, 87, 483–491. [CrossRef]
41. DIMAR, 2020. Cecoldo. Repositorio Digital Marítimo, Fluvial and Costero. Available online: https://cecoldodigital.dimar.mil. co/view/divisions/ISSN/ (accessed on 5 November 2022).
42. Janssen, T.T.; Battjes, J.A. Long waves induced by short-wave groups over a sloping bottom. J. Geophys. Res. 2003, 108, 3252. [CrossRef]
43. Battjes, J.A.; Bakkenes, H.J.; Janssen, T.T.; van Dongeren, A.R. Shoaling of subharmonic gravity waves. J. Geophys. Res. 2004, 109, C02009. [CrossRef]
44. Masselink, G. Group bound long waves as a source of infragravity energy in the surf zone. Cont. Shelf Res. 1995, 15, 1525–1547. [CrossRef]
45. Baldock, T.E. Dissipation of incident forced long waves in the surf zone-Implications for the concept of “bound” wave release at short wave breaking. Coast. Eng. 2012, 60, 276–285. [CrossRef]
46. Contardo, S.; Symonds, G. Infragravity response to variable wave forcing in the nearshore. J. Geophys. Res. Ocean. 2013, 118, 7095–7106. [CrossRef]
47. Symonds, G.; Huntley, D.A.; Bowen, A.J. Two-dimensional surf beat: Long wave generation by a time-varying breakpoint. J. Geophys. Res. 1982, 87, 492. [CrossRef]
48. Pomeroy, A.; Lowe, R.; Symonds, G.; Van Dongeren, A.; Moore, C. The dynamics of infragravity wave transformation over a fringing reef. J. Geophys. Res. 2012, 117, C11022. [CrossRef]
49. Van Dongeren, A.; Battjes, J.; Janssen, T.; van Noorloos, J.; Steenhauer, K.; Steenbergen, G.; Reniers, A. Shoaling and shoreline dissipation of low-frequency waves. J. Geophys. Res. 2007, 112, C02011. [CrossRef]
50. De Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G. Shoreline dissipation of infragravity waves. Cont. Shelf Res. 2014, 72, 73–82. [CrossRef]
51. Komar, P. Beach Processes and Sedimentation, 2nd ed.; Prentice-Hall: Englewood-Cliffs, NJ, USA, 1998.
52. Elgar, S.; Raubenheimer, B.; Guza, R.T. Current Meter Performance in the Surf Zone*. J. Atmos. Ocean. Technol. 2001, 18, 1735–1746. [CrossRef]
53. Beach, R.A.; Sternberg, R.W. Infragravity driven suspended sediment transport in the swash, inner and outer surf zone. In Proceedings of the Specialty Conference on Quantitative Approaches to Coastal Sediment, Seattle, WA, USA, 25–27 June 1991; pp. 114–128.
54. Russell, P.E. Mechanisms for beach erosion during storms. Cont. Shelf Res. 1993, 13, 1243–1265. [CrossRef]
55. Ortiz, J.; Otero, L.; Restrepo, J.; Ruiz, J.; Cadena, M. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Nat. Hazards Earth Syst. Sci. 2013, 11, 2797–2804. [CrossRef]
56. Battjes, J.A. Surf-Zone Dynamics. Annual Review of Fluid Mechanics. Ann. Rev. Fluid Mech. 1988, 20, 257–293. [CrossRef]
57. Brand, E.; Montreuil, A.; Dan, S.; Chen, M. Macro-tidal beach morphology in relation to nearshore wave conditions and suspended sediment concentrations at Mariakerke, Belgium. Reg. Stud. Mar. Sci. 2018, 24, 97–106. [CrossRef]
58. Bocard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R Use R; Springer Science + Business Media: New York, NY, USA, 2011; pp. 115–140.
59. Brand, E.; Montreuil, A.-L.; Chen, M. The effect of turbulence and particle size on suspended sediment concentration measurements in the intertidal zone. In Coastal Sediments; Tampa: St. Pete, FL, USA, 2019
60. Battisto, G.M.; Friedrichs, C.T.; Miller, H.C.; Resio, D.T. Response of OBS to Mixed Grain Size Suspensions during Sandy Duck’97. In Proceedings of the 4th International Symposium on Coasting Engineering and Science of Coastal Sediment Processes, Hauppauge, NY, USA, 21–23 June 1999; Volume 99, pp. 297–312.
61. Brand, E.; Chen, M.; Montreuil, A.L. Optimizing measurements of sediment transport in the intertidal zone. Earth-Sci. Rev. 2020, 200, 103029. [CrossRef]
62. Merckelbach, L.; Ridderinkhof, H. Estimating suspended sediment concentration using backscatter from an acoustic Doppler profiling current meter at a site with strong tidal currents. Ocean Dyn. 2006, 56, 153–168. [CrossRef]
63. Nauw, J.J.; Merckelbach, L.M.; Ridderinkhof, H.; van Aken, H.M. Long-term ferrybased observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. J. Sea Res. 2014, 87, 17–29. [CrossRef]
64. Ding, Y.; Styles, R.; Kim, S.; Permenter, R.; Frey, A. Cross-Shore Sediment Transport for Modeling Long-Term Shoreline Evolution. J. Waterw. Port Coast. Ocean. Eng. 2020, 147, 4. [CrossRef]
65. Masselink, G.; Black, K.P. Magnitude and cross-shore distribution of bed return flow measured on natural beaches. Coast. Eng. 1995, 25, 165–190. [CrossRef]
66. Aagaard, T.; Black, K.P.; Greenwood, B. Cross-shore sediment transport in the surf zone: A field-based parameterization. Mar. Geol. 2002, 185, 283–302. [CrossRef]
67. Masselink, G.; Austin, M.J.; O’Hare, T.J.; Russell, P.E. Geometry and dynamics of wave ripples in the nearshore zone of a coarse sandy beach. J. Geophys. Res. 2007, 112, C10022. [CrossRef]
68. Aagaard, T.; Greenwood, B. Suspended sediment transport and the role of Infragravity waves in a barred surf zone. Mar. Geol. 1994, 118, 2348. [CrossRef]
69. Black, K.; Vincent, C. High-resolution field measurements and numerical modelling of intra-wave sediment suspension on plane beds under shoaling waves. Coast. Eng. 2001, 42, 173–197. [CrossRef]
70. Van Rijn, L.C. Prediction of dune erosion due to storms. Coast. Eng. 2009, 56, 441–457. [CrossRef]
71. Choi, J.; Roh, M.; Hwang, H. Observing the laboratory interaction of undertow and nonlinear wave motion over barred and nonbarred beaches to determine beach profile evolution in the surf zone. J. Coast. Res. 2018, 34, 1449–1459.
72. Van Rijn, L.C. Principles of Sedimentation and Erosion Engineering in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherlands, 2012; Available online: www.aquapublications.nl (accessed on 20 February 2019).
73. Meyer, R.D. A Model Study of Wave Action on Beaches; Department of Civil Engineering, University of California: Berkeley, CA, USA, 1936
74. Saville, T. Model studies of sand transport along an infinitely straight beach. Am. Geophys. Union Trans. 1950, 31, 555–556
75. Masselink, G.; Russell, P.; Turner, I.; Blenkinsopp, C. Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar. Geology. 2009, 267, 18–35. [CrossRef]
76. Johnson, J.W. Scale effects in hydraulic models involving wave motion. Trans Amer. Geophys. Union 1949, 30, 517–525
77. Masselink, G.; Russell, P.; Blenkinsopp, C.; Turner, I. Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Mar. Geol. 2010, 274, 50–68. [CrossRef]
78. Larson, M.; Kraus, N.C. Sbeach: Numerical Model for Simulating Storm-Induced Beach Change; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1989.
79. Jackson, N.L. Evaluation of criteria for predicting erosion and accretion on an estuarine sand beach, Delaware Bay, Jew Jersey. Estuaries 1999, 22, 215–223. [CrossRef]
80. Dall, H.J.; Merrifield, M.A.; Bevis, M. Steep beach morphology changes due to energetic wave forcing. Mar. Geol. 2000, 162, 443–458. [CrossRef]
81. Ruggiero, P.; Walstra, D.J.R.; Gelfenbaum, G.; van Ormondt, M. Seasonal-scale nearshore morphological evolution: Field observations and numericl modeling. Coast. Eng. 2009, 56, 1153–1172. [CrossRef]
82. Gallagher, E.L.; Elgar, S.; Guza, R.T. Observations of sand bar evolution on a natural beach. J. Geophys. Res. 1998, 103, 3203–3215. [CrossRef]
83. Masselink, G.; Pattiaratchi, C.B. Seasonal changes in beach morphology along the sheltered coastline of Perth, Western Australia. Mar. Geol. 2001, 172, 243–263. [CrossRef]
84. Quartel, S.; Kroon, A.; Ruessink, B.G. Seasonal accretion and erosion patterns of a microtidal sandy beach. Mar. Geol. 2008, 250, 19–33. [CrossRef]
85. Nordstrom, K.F. Estuarine Beaches: An Introduction to Physical and Human Factors Affecting Use and Management of Beaches in Estuaries, Lagoons, Bays and Fjords; Elsevier Applied Science: London, UK, 1992; p. 217.
86. Jiang, S.; Dickey, T.D.; Steinberg, D.K.; Madin, L.P. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 608–636. [CrossRef]
87. Ghaffari, P.; Azizpour, J.; Noranian, M.; Chegini, V.; Tavakoli, V.; Shah-Hosseini, M. Estimating suspended sediment concentrations using a broadband ADCP in Mahshahr tidal channel. Ocean Sci. Discuss. 2011, 8, 1601–1630.
88. Nortek. Welcome to the Nortek Support Center. Available online: https://support.nortekgroup.com/hc/en-us/categories/3600 01447411-Manuals (accessed on 15 September 2022).
89. Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K. Laboratory and field evaluations of the LISST- 100 instrument for suspended particle size determinations. Mar. Geol. 2001, 175, 199–219. [CrossRef]
90. Thorne, P.D.; Vincent, C.E.; Hardcastle, P.J.; Rehman, S.; Pearson, N. Measuring suspended sediment concentration using acoustic backscatter devices. Mar. Geol. 1991, 98, 7–16. [CrossRef]
dc.relation.citationendpage.none.fl_str_mv 30
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 7
dc.relation.citationvolume.none.fl_str_mv 12
dc.rights.eng.fl_str_mv © 2024 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2024 by the authors. Licensee MDPI, Basel, Switzerland.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 30 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Switzerland
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv https://www.mdpi.com/2077-1312/12/7/1141
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/36b957f1-8ae9-45c1-b04b-5fadf01e3415/download
https://repositorio.cuc.edu.co/bitstreams/48cd9cc1-a768-4907-8de4-0793600cac58/download
https://repositorio.cuc.edu.co/bitstreams/fa0d7261-9c55-4b20-b164-70190db1b125/download
https://repositorio.cuc.edu.co/bitstreams/c6c46500-c53b-401a-8f85-5eb35e58aa9a/download
bitstream.checksum.fl_str_mv bd3636265d47767e89edaf7ee328a79c
73a5432e0b76442b22b026844140d683
8a1a307196cd704f0715aa8a57f1c66b
67c04ed5e2b7c4da431016d4540ba1ac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166805457207296
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Melissa Guerrero, AnllyOtero, LuisOspino, SilvioCueto, Jairo2025-01-28T22:15:26Z2025-01-28T22:15:26Z2024-07-06Guerrero, A.M.; Otero, L.; Ospino, S.; Cueto, J. Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach. J. Mar. Sci. Eng. 2024, 12, 1141. https:// doi.org/10.3390/jmse120711412077-1312https://hdl.handle.net/11323/1396910.3390/jmse12071141Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study aims to investigate the hydrodynamic-morphological interactions on a microtidal intermediate-dissipative beach under low to moderate wave energy conditions using field measurements during two climatic seasons. The separate contributions of currents, sea-swell waves, and infragravity waves to high- and low-frequency sediment fluxes were analyzed. The infragravity wave energy was more relevant near the swash zone than in other areas. Although the currents are the primary suspended sediment transport mechanism, the results suggest that the waves are an important driver of sediment suspension from the seabed. The results indicate that Sea-Swell (SS) waves and cross-shore currents are the prevailing hydrodynamic factors in nearshore sediment transport, and the cross-shore suspended sediment transport rates are higher than those in alongshore transport. The submerged bar intensified during the wet season (1–4 November 2018) when the wave height intensities were lower, contrary to the dry season (24–25 March 2018). Significant accretion nearshore was identified (in the subaerial beach) during the wet season when the suspended sediments were greater, the SS-wave heights nearshore were lower, and sediment flux was directed onshore. A notorious erosion was distinguished during the dry season. The most representative volume changes occurred during the dry season (with high erosion), which is attributed to the high SS-wave energy.30 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/2077-1312/12/7/1141Interactions between hydrodynamic forcing, suspended sediment transport, and morphology in a microtidal intermediate-dissipative beachArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of marine science and engineering1. Biausque, M.; Senechal, N. Seasonal morphological response of an open sandy beach to winter wave conditions: The example of Biscarrosse beach, SW France. Geomorphology 2019, 332, 157–169. [CrossRef]2. Bagnold, R.A. Sand movement by waves: Some small-scale experiments with sand of very low density. J. Inst. Civ. Eng. 1947, 27, 447–469. [CrossRef]3. Wright, L.D.; Thom, B.G. Coastal depositional landforms: A morphodynamic approach. Prog. Phys. Geogr. 1977, 1, 412–459. [CrossRef]4. Brand, E.; Montreuil, A.; Houthuys, R.; Chen, M. Relating Hydrodynamic Forcing and Topographic Response for Tide-Dominated Sandy Beaches. J. Mar. Sci. Eng. 2020, 3, 151. [CrossRef]5. Aagaard, T.; Hughes, M.; Baldock, T.; Greenwood, B.; Kroon, A.; Power, H. Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Mar. Geol. 2012, 326, 154–165. [CrossRef]6. Trowbridge, J.; Elgar, S. Turbulence Measurements in the Surf Zone. J. Phys. Oceanogr. 2001, 31, 2403–2417. [CrossRef]7. Ruessink, B.G. Observations of turbulence within a natural surf zone. J. Phys. Oceanogr. 2010, 40, 2696–2712. [CrossRef]8. Conley, D.C.; Beach, R.A. Cross-shore sediment transport partitioning in the nearshore during a storm event. J. Geophys. Res. 2003, 108, C06011. [CrossRef]9. Aagaard, T.; Greenwood, B. Oscillatory infragravity wave contribution to surf zone sediment transport-the role of advection. Mar. Geol. 2008, 251, 1–14. [CrossRef]10. Aagaard, T.; Hughes, M. Breaker turbulence and sediment suspension in the surf zone. Mar. Geol. 2010, 271, 250–259. [CrossRef]11. Vidal, C.; Losada, M.A.; Medina, R.; Losada, Í. Modelos de Morfodinámica de Playas. Ing. Del Agua 1995, 2, 55–74. [CrossRef]12. IOC. 2022. Available online: https://iocaribe.ioc-unesco.org/en/member-countries/colombia (accessed on 15 May 2022).13. Aagaard, T.; Greenwood, B.; Hughes, M. Sediment transport on dissipative, intermediate and reflective beaches. Earth Sci. Rev. 2013, 124, 32–50. [CrossRef]14. Restrepo, J.; Otero, L.; Casas, A.; Henao, A.; Gutiérrez, J. Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island Archipelago (Caribbean of Colombia). Ocean Coast. Manag. 2012, 69, 133–142. [CrossRef]15. Pérez, R.; Ortiz, R.; Bejarano, A.; Otero, D.; Restrepo, L.; Franco, A. Sea breeze in the Colombian Caribbean coast. Atmosfera 2018, 31, 389–406. [CrossRef]16. Otero, L.; Ortiz-Royero, J.; Ruiz-Merchán, J.; Higgins, A.; Henriquez, S. Storms or cold fronts: What is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Nat. Hazards Earth Syst. Sci. 2016, 16, 391–401. [CrossRef]17. Cueto, J.; Otero, L. Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches. Appl. Ocean Res. 2020, 101, 102283. [CrossRef]18. Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter- decadal hasta la escala diurna por ciencias de la tierra. Rev. Acad. Colomb. Cienc. 2004, 107, 201–22219. Conde-Frias, M.; Otero, L.; Restrepo, J.; Ortiz, J.; Ruiz, J.; Osorio, A. Experimental analysis of infragravity waves in two eroded microtidal beaches. Acta Oceanol. Sin. 2017, 36, 31–43.20. Anfuso, G.; Rangel-Buitrago, N.; Correa Arango, I.D. Evolution of Sandspits along the Caribbean Coast of Colombia: Natural and Human Influences. In Sand and Gravel Spits. Coastal Research Library; Randazzo, G., Jackson, D., Cooper, J., Eds.; Springer: Cham, Switzerland, 2015.21. IDEAM, TIEMPO Y CLIMA. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/cartilla-pronostico-pleamaresbajamares-costa-atlantica-colombiana?p_p_id=110_INSTANCE_sgxGOQ77WWFo&p_p_lifecycle=0&p_p_state=normal&p_p_ mode=view&p_p_col_id=column-1&p_p_col_count=1 (accessed on 6 June 2022).22. Blott, S.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [CrossRef]23. Holthuijsen, L. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007.24. Roelvink, J.A.; Stive, M.J.F. Bar generating cross-shore flow mechanisms on a beach. J. Geophys. Res. 1989, 94, 4785–4800. [CrossRef]25. Masselink, G.; Hughes, M.G.; Knight, J. Introduction to Coastal Processes and Geomorphology, 2nd ed.; Hodder Education: London, UK, 2011.26. Battjes, J.A.; Janssen, J.P.F.M. Energy loss and set-up due to breaking of random waves. Coast. Eng. 1978, 1978, 569–58727. Fabbri, S.; Giambastiani, M.S.; Sistilli, F.; Scarelli, F.; Gabbianelli, G. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 2017, 295, 436–451. [CrossRef]28. Mullison, J. Backscatter estimation using broadband acoustic Doppler current profilers-Updated. In Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference, Durham, NH, USA, 9–12 July 2017; pp. 9–12.29. Lohrmann, A. Monitoring Sediment Concentration with Acoustic Backscattering Instruments. Technical Report 03, Nortek AS. Available online: https://www.nortekgroup.com/assets/documents/Monitoring-sediment-concentration-with-acousticbackscattering-instruments.pdf (accessed on 20 June 2022).30. Gartner, J.W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar. Geol. 2004, 211, 169–187. [CrossRef]31. Vandebroek, E.; Claeys, S.; Plancke, Y.; Verwaest, T.; Mostaert, F. Agenda for the Future—Hydrodynamics and Sediment Dynamics in the Schelde Estuary: Sub Report 11—Factual Data Report for Frame-Measurements at Drempel van Frederik in December 2015 and January 2016; Version 3.0. FHR Reports, 14_024_11; Flanders Hydraulics Research & Antea Group: Antwerp, Belgium, 2017.32. Ainslie, M.A.; McColm, J.G. A simplified formula for viscous and chemical absorption in seawater. J. Acoust. Soc. Am. 1998, 103, 1671–1672. [CrossRef]33. Deines, K.L. Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers. In Proceedings of the IEEE Sixth Working Conference on Current Measurement, San Diego, CA, USA, 13 March 1999.34. Campbell Scientific (CANADA) Corp. OBS-3A Turbidity and Temperature Monitoring System. Operator’s Manual. Available online: https://s.campbellsci.com/documents/ca/manuals/obs-3a_man.pdf (accessed on 20 February 2019).35. De Bakker, A.T.M.; Brinkkemper, J.A.; van der Steen, F.; Tissier, M.F.S.; Ruessink, B.G. Cross-shore sand transport by infragravity waves as a function of beach steepness. J. Geophys. Res. Earth Surf. 2016, 121, 1786–1799. [CrossRef]36. Svendsen, I.A.; Madsen, P.A.; Hansen, J.B. Wave characteristics in the surf zone. Coast. Eng. 1978, 520–539. [CrossRef]37. Ruju, A.; Lara, J.; Losada, I. Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. Coast. Eng. 2012, 68, 44–55. [CrossRef]38. De Bakker, A.; Herbers, T.; Smit, P.; Tissier, M.; Ruessink, B.G. Nonlinear infragravity-wave interactions on a gently sloping laboratory beach. J. Phys. Oceanogr. 2015, 45, 589–605. [CrossRef]39. Ruessink, B.G.; Houwman, K.T.; Hoekstra, P. The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Mar. Geol. 1998, 152, 295–324. [CrossRef]40. Guza, R.T.; Thornton, E.B. Ascend/descend oscillations on a natural beach. J. Geophys. Res. 1982, 87, 483–491. [CrossRef]41. DIMAR, 2020. Cecoldo. Repositorio Digital Marítimo, Fluvial and Costero. Available online: https://cecoldodigital.dimar.mil. co/view/divisions/ISSN/ (accessed on 5 November 2022).42. Janssen, T.T.; Battjes, J.A. Long waves induced by short-wave groups over a sloping bottom. J. Geophys. Res. 2003, 108, 3252. [CrossRef]43. Battjes, J.A.; Bakkenes, H.J.; Janssen, T.T.; van Dongeren, A.R. Shoaling of subharmonic gravity waves. J. Geophys. Res. 2004, 109, C02009. [CrossRef]44. Masselink, G. Group bound long waves as a source of infragravity energy in the surf zone. Cont. Shelf Res. 1995, 15, 1525–1547. [CrossRef]45. Baldock, T.E. Dissipation of incident forced long waves in the surf zone-Implications for the concept of “bound” wave release at short wave breaking. Coast. Eng. 2012, 60, 276–285. [CrossRef]46. Contardo, S.; Symonds, G. Infragravity response to variable wave forcing in the nearshore. J. Geophys. Res. Ocean. 2013, 118, 7095–7106. [CrossRef]47. Symonds, G.; Huntley, D.A.; Bowen, A.J. Two-dimensional surf beat: Long wave generation by a time-varying breakpoint. J. Geophys. Res. 1982, 87, 492. [CrossRef]48. Pomeroy, A.; Lowe, R.; Symonds, G.; Van Dongeren, A.; Moore, C. The dynamics of infragravity wave transformation over a fringing reef. J. Geophys. Res. 2012, 117, C11022. [CrossRef]49. Van Dongeren, A.; Battjes, J.; Janssen, T.; van Noorloos, J.; Steenhauer, K.; Steenbergen, G.; Reniers, A. Shoaling and shoreline dissipation of low-frequency waves. J. Geophys. Res. 2007, 112, C02011. [CrossRef]50. De Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G. Shoreline dissipation of infragravity waves. Cont. Shelf Res. 2014, 72, 73–82. [CrossRef]51. Komar, P. Beach Processes and Sedimentation, 2nd ed.; Prentice-Hall: Englewood-Cliffs, NJ, USA, 1998.52. Elgar, S.; Raubenheimer, B.; Guza, R.T. Current Meter Performance in the Surf Zone*. J. Atmos. Ocean. Technol. 2001, 18, 1735–1746. [CrossRef]53. Beach, R.A.; Sternberg, R.W. Infragravity driven suspended sediment transport in the swash, inner and outer surf zone. In Proceedings of the Specialty Conference on Quantitative Approaches to Coastal Sediment, Seattle, WA, USA, 25–27 June 1991; pp. 114–128.54. Russell, P.E. Mechanisms for beach erosion during storms. Cont. Shelf Res. 1993, 13, 1243–1265. [CrossRef]55. Ortiz, J.; Otero, L.; Restrepo, J.; Ruiz, J.; Cadena, M. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Nat. Hazards Earth Syst. Sci. 2013, 11, 2797–2804. [CrossRef]56. Battjes, J.A. Surf-Zone Dynamics. Annual Review of Fluid Mechanics. Ann. Rev. Fluid Mech. 1988, 20, 257–293. [CrossRef]57. Brand, E.; Montreuil, A.; Dan, S.; Chen, M. Macro-tidal beach morphology in relation to nearshore wave conditions and suspended sediment concentrations at Mariakerke, Belgium. Reg. Stud. Mar. Sci. 2018, 24, 97–106. [CrossRef]58. Bocard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R Use R; Springer Science + Business Media: New York, NY, USA, 2011; pp. 115–140.59. Brand, E.; Montreuil, A.-L.; Chen, M. The effect of turbulence and particle size on suspended sediment concentration measurements in the intertidal zone. In Coastal Sediments; Tampa: St. Pete, FL, USA, 201960. Battisto, G.M.; Friedrichs, C.T.; Miller, H.C.; Resio, D.T. Response of OBS to Mixed Grain Size Suspensions during Sandy Duck’97. In Proceedings of the 4th International Symposium on Coasting Engineering and Science of Coastal Sediment Processes, Hauppauge, NY, USA, 21–23 June 1999; Volume 99, pp. 297–312.61. Brand, E.; Chen, M.; Montreuil, A.L. Optimizing measurements of sediment transport in the intertidal zone. Earth-Sci. Rev. 2020, 200, 103029. [CrossRef]62. Merckelbach, L.; Ridderinkhof, H. Estimating suspended sediment concentration using backscatter from an acoustic Doppler profiling current meter at a site with strong tidal currents. Ocean Dyn. 2006, 56, 153–168. [CrossRef]63. Nauw, J.J.; Merckelbach, L.M.; Ridderinkhof, H.; van Aken, H.M. Long-term ferrybased observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. J. Sea Res. 2014, 87, 17–29. [CrossRef]64. Ding, Y.; Styles, R.; Kim, S.; Permenter, R.; Frey, A. Cross-Shore Sediment Transport for Modeling Long-Term Shoreline Evolution. J. Waterw. Port Coast. Ocean. Eng. 2020, 147, 4. [CrossRef]65. Masselink, G.; Black, K.P. Magnitude and cross-shore distribution of bed return flow measured on natural beaches. Coast. Eng. 1995, 25, 165–190. [CrossRef]66. Aagaard, T.; Black, K.P.; Greenwood, B. Cross-shore sediment transport in the surf zone: A field-based parameterization. Mar. Geol. 2002, 185, 283–302. [CrossRef]67. Masselink, G.; Austin, M.J.; O’Hare, T.J.; Russell, P.E. Geometry and dynamics of wave ripples in the nearshore zone of a coarse sandy beach. J. Geophys. Res. 2007, 112, C10022. [CrossRef]68. Aagaard, T.; Greenwood, B. Suspended sediment transport and the role of Infragravity waves in a barred surf zone. Mar. Geol. 1994, 118, 2348. [CrossRef]69. Black, K.; Vincent, C. High-resolution field measurements and numerical modelling of intra-wave sediment suspension on plane beds under shoaling waves. Coast. Eng. 2001, 42, 173–197. [CrossRef]70. Van Rijn, L.C. Prediction of dune erosion due to storms. Coast. Eng. 2009, 56, 441–457. [CrossRef]71. Choi, J.; Roh, M.; Hwang, H. Observing the laboratory interaction of undertow and nonlinear wave motion over barred and nonbarred beaches to determine beach profile evolution in the surf zone. J. Coast. Res. 2018, 34, 1449–1459.72. Van Rijn, L.C. Principles of Sedimentation and Erosion Engineering in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherlands, 2012; Available online: www.aquapublications.nl (accessed on 20 February 2019).73. Meyer, R.D. A Model Study of Wave Action on Beaches; Department of Civil Engineering, University of California: Berkeley, CA, USA, 193674. Saville, T. Model studies of sand transport along an infinitely straight beach. Am. Geophys. Union Trans. 1950, 31, 555–55675. Masselink, G.; Russell, P.; Turner, I.; Blenkinsopp, C. Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar. Geology. 2009, 267, 18–35. [CrossRef]76. Johnson, J.W. Scale effects in hydraulic models involving wave motion. Trans Amer. Geophys. Union 1949, 30, 517–52577. Masselink, G.; Russell, P.; Blenkinsopp, C.; Turner, I. Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Mar. Geol. 2010, 274, 50–68. [CrossRef]78. Larson, M.; Kraus, N.C. Sbeach: Numerical Model for Simulating Storm-Induced Beach Change; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1989.79. Jackson, N.L. Evaluation of criteria for predicting erosion and accretion on an estuarine sand beach, Delaware Bay, Jew Jersey. Estuaries 1999, 22, 215–223. [CrossRef]80. Dall, H.J.; Merrifield, M.A.; Bevis, M. Steep beach morphology changes due to energetic wave forcing. Mar. Geol. 2000, 162, 443–458. [CrossRef]81. Ruggiero, P.; Walstra, D.J.R.; Gelfenbaum, G.; van Ormondt, M. Seasonal-scale nearshore morphological evolution: Field observations and numericl modeling. Coast. Eng. 2009, 56, 1153–1172. [CrossRef]82. Gallagher, E.L.; Elgar, S.; Guza, R.T. Observations of sand bar evolution on a natural beach. J. Geophys. Res. 1998, 103, 3203–3215. [CrossRef]83. Masselink, G.; Pattiaratchi, C.B. Seasonal changes in beach morphology along the sheltered coastline of Perth, Western Australia. Mar. Geol. 2001, 172, 243–263. [CrossRef]84. Quartel, S.; Kroon, A.; Ruessink, B.G. Seasonal accretion and erosion patterns of a microtidal sandy beach. Mar. Geol. 2008, 250, 19–33. [CrossRef]85. Nordstrom, K.F. Estuarine Beaches: An Introduction to Physical and Human Factors Affecting Use and Management of Beaches in Estuaries, Lagoons, Bays and Fjords; Elsevier Applied Science: London, UK, 1992; p. 217.86. Jiang, S.; Dickey, T.D.; Steinberg, D.K.; Madin, L.P. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 608–636. [CrossRef]87. Ghaffari, P.; Azizpour, J.; Noranian, M.; Chegini, V.; Tavakoli, V.; Shah-Hosseini, M. Estimating suspended sediment concentrations using a broadband ADCP in Mahshahr tidal channel. Ocean Sci. Discuss. 2011, 8, 1601–1630.88. Nortek. Welcome to the Nortek Support Center. Available online: https://support.nortekgroup.com/hc/en-us/categories/3600 01447411-Manuals (accessed on 15 September 2022).89. Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K. Laboratory and field evaluations of the LISST- 100 instrument for suspended particle size determinations. Mar. Geol. 2001, 175, 199–219. [CrossRef]90. Thorne, P.D.; Vincent, C.E.; Hardcastle, P.J.; Rehman, S.; Pearson, N. Measuring suspended sediment concentration using acoustic backscatter devices. Mar. Geol. 1991, 98, 7–16. [CrossRef]301712MorphodynamicsHydrodynamicsSuspended sediment transportAcoustic backscatterIntermediate-dissipative beachMicrotidal beachPublicationORIGINALInteractions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach.pdfInteractions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach.pdfapplication/pdf9442499https://repositorio.cuc.edu.co/bitstreams/36b957f1-8ae9-45c1-b04b-5fadf01e3415/downloadbd3636265d47767e89edaf7ee328a79cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/48cd9cc1-a768-4907-8de4-0793600cac58/download73a5432e0b76442b22b026844140d683MD52TEXTInteractions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach.pdf.txtInteractions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach.pdf.txtExtracted texttext/plain100379https://repositorio.cuc.edu.co/bitstreams/fa0d7261-9c55-4b20-b164-70190db1b125/download8a1a307196cd704f0715aa8a57f1c66bMD53THUMBNAILInteractions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach.pdf.jpgInteractions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach.pdf.jpgGenerated Thumbnailimage/jpeg15440https://repositorio.cuc.edu.co/bitstreams/c6c46500-c53b-401a-8f85-5eb35e58aa9a/download67c04ed5e2b7c4da431016d4540ba1acMD5411323/13969oai:repositorio.cuc.edu.co:11323/139692025-01-29 04:02:49.26https://creativecommons.org/licenses/by/4.0/© 2024 by the authors. Licensee MDPI, Basel, Switzerland.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K