Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach

Using hubs in distribution networks is an efficient approach. In this paper, a model for the location-allocation problem is designed within the framework of the queuing network in which services have several levels, and customers must go through these levels to complete the service. The purpose of t...

Full description

Autores:
Syah, Rahmad
Elveny, Marischa
Soerjati, Enni
Grimaldo Guerrero, John William
Read Jowad, Rawya
Suksatan, Wanich
Aravindhan, Surendar
Yuryevna Voronkova, Olga
Mavaluru, Dinesh
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9430
Acceso en línea:
https://hdl.handle.net/11323/9430
https://doi.org/10.2478/fcds-2022-0010
https://repositorio.cuc.edu.co/
Palabra clave:
Hub
Reinforced epsilon constraint method
Multilevel services
Queue theory
Multi-objective optimization
Location-assignment
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_43d5fd7b576a894438918d4b69f0445b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9430
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
title Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
spellingShingle Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
Hub
Reinforced epsilon constraint method
Multilevel services
Queue theory
Multi-objective optimization
Location-assignment
title_short Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
title_full Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
title_fullStr Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
title_full_unstemmed Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
title_sort Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approach
dc.creator.fl_str_mv Syah, Rahmad
Elveny, Marischa
Soerjati, Enni
Grimaldo Guerrero, John William
Read Jowad, Rawya
Suksatan, Wanich
Aravindhan, Surendar
Yuryevna Voronkova, Olga
Mavaluru, Dinesh
dc.contributor.author.spa.fl_str_mv Syah, Rahmad
Elveny, Marischa
Soerjati, Enni
Grimaldo Guerrero, John William
Read Jowad, Rawya
Suksatan, Wanich
Aravindhan, Surendar
Yuryevna Voronkova, Olga
Mavaluru, Dinesh
dc.subject.proposal.eng.fl_str_mv Hub
Reinforced epsilon constraint method
Multilevel services
Queue theory
Multi-objective optimization
Location-assignment
topic Hub
Reinforced epsilon constraint method
Multilevel services
Queue theory
Multi-objective optimization
Location-assignment
description Using hubs in distribution networks is an efficient approach. In this paper, a model for the location-allocation problem is designed within the framework of the queuing network in which services have several levels, and customers must go through these levels to complete the service. The purpose of the model is to locate an appropriate number of facilities among potential locations and allocate customers. The model is presented as a multi-objective nonlinear mixed-integer programming model. The objective functions include the summation of the customer and the waiting time in the system and the waiting time in the system and minimizing the maximum possibility of unemployment in the facility. To solve the model, the technique of accurate solution of the epsilon constraint method is used for multi-objective optimization, and Pareto solutions of the problem will be calculated. Moreover, the sensitivity analysis of the problem is performed, and the results demonstrate sensitivity to customer demand rate. Based on the results obtained, it can be concluded that the proposed model is able to greatly summate the customer and the waiting time in the system and reduce the maximum probability of unemployment at several levels of all facilities. The model can also be further developed by choosing vehicles for each customer.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-04T14:25:14Z
dc.date.available.none.fl_str_mv 2022-08-04T14:25:14Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Syah,R.,Elveny,M.,Soerjati,E.,Guerrero,J.,Jowad,R.,Suksatan,W.,Aravindhan,S.,Voronkova,O. & Mavaluru,D.(2022).Optimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach. Foundations of Computing and Decision Sciences,47(2) 177-192. https://doi.org/10.2478/fcds-2022-0010
dc.identifier.issn.spa.fl_str_mv 0867-6356
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9430
dc.identifier.url.spa.fl_str_mv https://doi.org/10.2478/fcds-2022-0010
dc.identifier.doi.spa.fl_str_mv 10.2478/fcds-2022-0010
dc.identifier.eissn.spa.fl_str_mv 2300-3405
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Syah,R.,Elveny,M.,Soerjati,E.,Guerrero,J.,Jowad,R.,Suksatan,W.,Aravindhan,S.,Voronkova,O. & Mavaluru,D.(2022).Optimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach. Foundations of Computing and Decision Sciences,47(2) 177-192. https://doi.org/10.2478/fcds-2022-0010
0867-6356
10.2478/fcds-2022-0010
2300-3405
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9430
https://doi.org/10.2478/fcds-2022-0010
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Foundations of Computing and Decision Sciences
dc.relation.references.spa.fl_str_mv [1] Li, K., Li, X., Qiao, D., Ding, Y., & Wang, L. Message Queue Optimization Model Based on Periodic Execution and Category Priority. In Journal of Physics: Conference Series (Vol. 1486, No. 2, p. 022046). IOP Publishing, 2020, April.
[2] Darestani, S. A., & Hemmati, M. Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system. Computers & Industrial Engineering, 136, 277-292, 2019.
[3] Chen, X., Xu, C., Wang, M., Wu, Z., Zhong, L., & Grieco, L. A. Augmented Queuebased Transmission and Transcoding Optimization for Livecast Services Based on Cloud-Edge-Crowd Integration. IEEE Transactions on Circuits and Systems for Video Technology, 2020.
[4] Aboolian, R.,Berman, O.and Drezner,Z. The multiple server center location problem. Annals of Operations Research, 167(1), pp.337-352, 2009.
[5] Aghaei,J., Amjady,N.and Shayanfar, H.A. Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method. Applied Soft Computing, 11(4), pp.3846-3858, 2011.
[6] Araz, O.M., Fowler,J.W.and Nafarrate, A.R. Optimizing service times for a public health emergency using a genetic algorithm: Locating dispensing sites and allocating medical staff.IIE Transactions on Healthcare Systems Engineering, 4(4), pp.178-190, 2014.
[7] Bhat, U.N. An Introduction to Queueing Theory:Modeling and Analysis in Applications, 2nd edition, Birkhäuser Basel, 2015.
[8] Cooper, L. Location-allocation problems. Operations Research,11, 331–344, 1963.
[9] Cooper, R.B. Introduction to Queuing Theory. 2nd Edition, New York: Elsevier North Holland, 1981.
[10] Daskin.M.S. Network and discrete location:models, algorithms, and applications.John Wiley & Sons, 2011.
[11] Hajipour, V.,Fattahi, P.,Tavana, M. and Di Caprio, D. Multi-objective multi-layer congested facility location-allocation problem optimization with Pareto-based metaheuristics.Applied Mathematical Modelling,40(7), pp.4948-4969, 2016.
[12] Harewood,S.I. Emergency ambulance deployment in Barbados: a multi-objective approach.Journal of the Operational Research Society,53(2), pp. 185-192, 2002.
[13] Heragu, S.S. Facilities design.CRC Press, 2008.
[14] Hodgson, M.J. A Flow-Capturing Location-Allocation Model.Geographical Analysis, 22(3), pp. 270-279, 1990.
[15] Larson, R.C. A hypercube queuing model for facility location and redistricting in urban emergency services, Computers and Operations Research, 1:67-95, 1974.
[16] Marianov, V. and Serra, D. Hierarchical location-allocation models for congested systems.European Journal of Operational Research, 135(1), pp. 195-208, 2001.
[17] Mavrotas, G. Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems.Appl Math Comput, 2 13:455-465,2009.
[18] Myerson, P. Supply chain and logistics management made easy.methods and applications for planning operations, integration.control and improvement, and network design.Pearson Education, 2015.
[19] Owen,S.H. and Daskin, M.S. Strategic facility location:A review.European Journal of operational research,111(3), pp.423447, 1998.
[20] Pasandideh,S.H.R. and Niaki,S.T.A. Genetic application in a facility location problem with random demand within queuing framework.Journal of Intelligent Manufacturing, 23(3), pp.651-659, 2012.
[21] Pasandideh.S.H.R., Niaki.S.T.A. and Hajipour, V. A multi-objective facility location model with batch arrivals:two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing, 24(2), pp.331-348, 2013.
[22] Porter, A.L. Forecasting and management of technology (Vol. 18).John Wiley & Sons, 1991.
[23] Rahmati,S.H.A., Hajipour, V.and Niaki, S.T.A. A soft-computing Pareto-based metaheuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing.13(4) pp. 1728-1740, 2013.
[24] ReVelle,C.S.and Eiselt, H.A. Location analysis: A synthesis and survey. European Journal of Operational Research, 165(1),pp.1-19, 2005.
[25] Syam, S.S. A multiple server location-allocation model for service system design. Computers & Operations Research, 35(7), pp.2248-2265, 2008.
[26] Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh,S.,Talei zadeh, A.A., Hajipour,V.and Mahmoudi, A. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems.Engineering Optimization, 49(1), pp. 136- 160, 2017.
[27] Wang, Q., Batta, R. and Rump.C.M. Algorithms for a facility location problem with stochastic customer demand and immobile servers.Annals of operations Research,111(1-4), pp.17-34, 2002.
[28] Fakhrzad, M. B., Amir M. G., and Farzaneh B., "A mathematical model for P-hub median location problem to multiple assignments between non-hub to hub nodes under fuzzy environment." JOURNAL OF MANAGEMENT AND ACCOUNTING STUDIES 3, no. 02 : 61-67, 2015.
[29] Fatemeh, T., and Mahmoud V., "Green reverse supply chain management with locationrouting-inventory decisions with simultaneous pickup and delivery." Journal of Research in Science, Engineering and Technology 9, no. 02: 78-107,2021.
[30] Hasani, A., Mokhtari, H., & Fattahi, M. A multi-objective optimization approach for green and resilient supply chain network design: a real-life Case Study. Journal of Cleaner Production, 278, pp. 123199, 2021.
[31] Luo, L., Li, H., Wang, J., & Hu, J. Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach. Applied Mathematical Modelling, 89, pp. 49-72, 2021.
[32] Fonseca, J. D., Commenge, J. M., Camargo, M., Falk, L., & Gil, I. D. Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach. Applied Energy, 290, 116746, 2021.
[33] Mohammed, A., Naghshineh, B., Spiegler, V., & Carvalho, H. Conceptualising a supply and demand resilience methodology: A hybrid DEMATEL-TOPSIS-possibilistic multiobjective optimization approach. Computers & Industrial Engineering, 160, p. 107589, 2021.
[34] Wang, C. H., & Chen, N. A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths. Transportation, 48(4), pp. 1967-1986, 2021.
[36] Ghasemi, P., & Khalili-Damghani, K. A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning. Mathematics and computers in simulation, 179, pp. 69-95, 2021.
[37] Khalili-Damghani, K., Tavana, M., & Ghasemi, P. A stochastic bi-objective simulation–optimization model for cascade disaster location-allocation-distribution problems. Annals of Operations Research, pp. 1-39, 2021.
dc.relation.citationendpage.spa.fl_str_mv 192
dc.relation.citationstartpage.spa.fl_str_mv 177
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 47
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Walter de Gruyter GmbH
dc.publisher.place.spa.fl_str_mv Germany
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://sciendo.com/es/article/10.2478/fcds-2022-0010
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5f7e1f54-5e8e-4c34-828f-08c6d2170eac/download
https://repositorio.cuc.edu.co/bitstreams/961099e4-d69d-4735-96d7-4862e0620ff3/download
https://repositorio.cuc.edu.co/bitstreams/e13be655-96cf-43e3-baf4-5eb70db8af0c/download
https://repositorio.cuc.edu.co/bitstreams/5b2646db-2ee5-42a8-9e15-78f1a355aa4e/download
bitstream.checksum.fl_str_mv e01a4147bac9c8364c4f596498e7bb84
e30e9215131d99561d40d6b0abbe9bad
b1bcd07a1db5268ab54f0e4073898d4c
17b6222225502c77e646d4973b024ece
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760695855808512
spelling Syah, RahmadElveny, MarischaSoerjati, EnniGrimaldo Guerrero, John WilliamRead Jowad, RawyaSuksatan, WanichAravindhan, SurendarYuryevna Voronkova, OlgaMavaluru, Dinesh2022-08-04T14:25:14Z2022-08-04T14:25:14Z2022Syah,R.,Elveny,M.,Soerjati,E.,Guerrero,J.,Jowad,R.,Suksatan,W.,Aravindhan,S.,Voronkova,O. & Mavaluru,D.(2022).Optimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach. Foundations of Computing and Decision Sciences,47(2) 177-192. https://doi.org/10.2478/fcds-2022-00100867-6356https://hdl.handle.net/11323/9430https://doi.org/10.2478/fcds-2022-001010.2478/fcds-2022-00102300-3405Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Using hubs in distribution networks is an efficient approach. In this paper, a model for the location-allocation problem is designed within the framework of the queuing network in which services have several levels, and customers must go through these levels to complete the service. The purpose of the model is to locate an appropriate number of facilities among potential locations and allocate customers. The model is presented as a multi-objective nonlinear mixed-integer programming model. The objective functions include the summation of the customer and the waiting time in the system and the waiting time in the system and minimizing the maximum possibility of unemployment in the facility. To solve the model, the technique of accurate solution of the epsilon constraint method is used for multi-objective optimization, and Pareto solutions of the problem will be calculated. Moreover, the sensitivity analysis of the problem is performed, and the results demonstrate sensitivity to customer demand rate. Based on the results obtained, it can be concluded that the proposed model is able to greatly summate the customer and the waiting time in the system and reduce the maximum probability of unemployment at several levels of all facilities. The model can also be further developed by choosing vehicles for each customer.16 páginasapplication/pdfengWalter de Gruyter GmbHGermany© 2022 Rahmad Syah et al., published by Sciendo This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimizing the multi-level location-assignment problem in queue networks using a multi-objective optimization approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://sciendo.com/es/article/10.2478/fcds-2022-0010Foundations of Computing and Decision Sciences[1] Li, K., Li, X., Qiao, D., Ding, Y., & Wang, L. Message Queue Optimization Model Based on Periodic Execution and Category Priority. In Journal of Physics: Conference Series (Vol. 1486, No. 2, p. 022046). IOP Publishing, 2020, April.[2] Darestani, S. A., & Hemmati, M. Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system. Computers & Industrial Engineering, 136, 277-292, 2019.[3] Chen, X., Xu, C., Wang, M., Wu, Z., Zhong, L., & Grieco, L. A. Augmented Queuebased Transmission and Transcoding Optimization for Livecast Services Based on Cloud-Edge-Crowd Integration. IEEE Transactions on Circuits and Systems for Video Technology, 2020.[4] Aboolian, R.,Berman, O.and Drezner,Z. The multiple server center location problem. Annals of Operations Research, 167(1), pp.337-352, 2009.[5] Aghaei,J., Amjady,N.and Shayanfar, H.A. Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method. Applied Soft Computing, 11(4), pp.3846-3858, 2011.[6] Araz, O.M., Fowler,J.W.and Nafarrate, A.R. Optimizing service times for a public health emergency using a genetic algorithm: Locating dispensing sites and allocating medical staff.IIE Transactions on Healthcare Systems Engineering, 4(4), pp.178-190, 2014.[7] Bhat, U.N. An Introduction to Queueing Theory:Modeling and Analysis in Applications, 2nd edition, Birkhäuser Basel, 2015.[8] Cooper, L. Location-allocation problems. Operations Research,11, 331–344, 1963.[9] Cooper, R.B. Introduction to Queuing Theory. 2nd Edition, New York: Elsevier North Holland, 1981.[10] Daskin.M.S. Network and discrete location:models, algorithms, and applications.John Wiley & Sons, 2011.[11] Hajipour, V.,Fattahi, P.,Tavana, M. and Di Caprio, D. Multi-objective multi-layer congested facility location-allocation problem optimization with Pareto-based metaheuristics.Applied Mathematical Modelling,40(7), pp.4948-4969, 2016.[12] Harewood,S.I. Emergency ambulance deployment in Barbados: a multi-objective approach.Journal of the Operational Research Society,53(2), pp. 185-192, 2002.[13] Heragu, S.S. Facilities design.CRC Press, 2008.[14] Hodgson, M.J. A Flow-Capturing Location-Allocation Model.Geographical Analysis, 22(3), pp. 270-279, 1990.[15] Larson, R.C. A hypercube queuing model for facility location and redistricting in urban emergency services, Computers and Operations Research, 1:67-95, 1974.[16] Marianov, V. and Serra, D. Hierarchical location-allocation models for congested systems.European Journal of Operational Research, 135(1), pp. 195-208, 2001.[17] Mavrotas, G. Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems.Appl Math Comput, 2 13:455-465,2009.[18] Myerson, P. Supply chain and logistics management made easy.methods and applications for planning operations, integration.control and improvement, and network design.Pearson Education, 2015.[19] Owen,S.H. and Daskin, M.S. Strategic facility location:A review.European Journal of operational research,111(3), pp.423447, 1998.[20] Pasandideh,S.H.R. and Niaki,S.T.A. Genetic application in a facility location problem with random demand within queuing framework.Journal of Intelligent Manufacturing, 23(3), pp.651-659, 2012.[21] Pasandideh.S.H.R., Niaki.S.T.A. and Hajipour, V. A multi-objective facility location model with batch arrivals:two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing, 24(2), pp.331-348, 2013.[22] Porter, A.L. Forecasting and management of technology (Vol. 18).John Wiley & Sons, 1991.[23] Rahmati,S.H.A., Hajipour, V.and Niaki, S.T.A. A soft-computing Pareto-based metaheuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing.13(4) pp. 1728-1740, 2013.[24] ReVelle,C.S.and Eiselt, H.A. Location analysis: A synthesis and survey. European Journal of Operational Research, 165(1),pp.1-19, 2005.[25] Syam, S.S. A multiple server location-allocation model for service system design. Computers & Operations Research, 35(7), pp.2248-2265, 2008.[26] Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh,S.,Talei zadeh, A.A., Hajipour,V.and Mahmoudi, A. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems.Engineering Optimization, 49(1), pp. 136- 160, 2017.[27] Wang, Q., Batta, R. and Rump.C.M. Algorithms for a facility location problem with stochastic customer demand and immobile servers.Annals of operations Research,111(1-4), pp.17-34, 2002.[28] Fakhrzad, M. B., Amir M. G., and Farzaneh B., "A mathematical model for P-hub median location problem to multiple assignments between non-hub to hub nodes under fuzzy environment." JOURNAL OF MANAGEMENT AND ACCOUNTING STUDIES 3, no. 02 : 61-67, 2015.[29] Fatemeh, T., and Mahmoud V., "Green reverse supply chain management with locationrouting-inventory decisions with simultaneous pickup and delivery." Journal of Research in Science, Engineering and Technology 9, no. 02: 78-107,2021.[30] Hasani, A., Mokhtari, H., & Fattahi, M. A multi-objective optimization approach for green and resilient supply chain network design: a real-life Case Study. Journal of Cleaner Production, 278, pp. 123199, 2021.[31] Luo, L., Li, H., Wang, J., & Hu, J. Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach. Applied Mathematical Modelling, 89, pp. 49-72, 2021.[32] Fonseca, J. D., Commenge, J. M., Camargo, M., Falk, L., & Gil, I. D. Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach. Applied Energy, 290, 116746, 2021.[33] Mohammed, A., Naghshineh, B., Spiegler, V., & Carvalho, H. Conceptualising a supply and demand resilience methodology: A hybrid DEMATEL-TOPSIS-possibilistic multiobjective optimization approach. Computers & Industrial Engineering, 160, p. 107589, 2021.[34] Wang, C. H., & Chen, N. A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths. Transportation, 48(4), pp. 1967-1986, 2021.[36] Ghasemi, P., & Khalili-Damghani, K. A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning. Mathematics and computers in simulation, 179, pp. 69-95, 2021.[37] Khalili-Damghani, K., Tavana, M., & Ghasemi, P. A stochastic bi-objective simulation–optimization model for cascade disaster location-allocation-distribution problems. Annals of Operations Research, pp. 1-39, 2021.192177247HubReinforced epsilon constraint methodMultilevel servicesQueue theoryMulti-objective optimizationLocation-assignmentPublicationORIGINALOptimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach.pdfOptimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach.pdfapplication/pdf526807https://repositorio.cuc.edu.co/bitstreams/5f7e1f54-5e8e-4c34-828f-08c6d2170eac/downloade01a4147bac9c8364c4f596498e7bb84MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/961099e4-d69d-4735-96d7-4862e0620ff3/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTOptimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach.pdf.txtOptimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach.pdf.txttext/plain37111https://repositorio.cuc.edu.co/bitstreams/e13be655-96cf-43e3-baf4-5eb70db8af0c/downloadb1bcd07a1db5268ab54f0e4073898d4cMD53THUMBNAILOptimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach.pdf.jpgOptimizing the Multi-Level Location-Assignment Problem in Queue Networks Using a Multi-Objective Optimization Approach.pdf.jpgimage/jpeg11917https://repositorio.cuc.edu.co/bitstreams/5b2646db-2ee5-42a8-9e15-78f1a355aa4e/download17b6222225502c77e646d4973b024eceMD5411323/9430oai:repositorio.cuc.edu.co:11323/94302024-09-17 10:15:38.781https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Rahmad Syah et al., published by Sciendo This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==