Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece

Over time the process of incremental deformationDie-less has been developed in many ways to meet the needs of flexible production with no invest-ment in tooling and low production costs. Two of their configurations are the SPIF (Single point incremental forming) and DPIF (Double point Incremental fo...

Full description

Autores:
Benítez Lozano, Adrián José
Páramo Bermúdez, Gabriel Jaime
Bustamante Correa, Frank Alexander
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2563
Acceso en línea:
https://hdl.handle.net/11323/2563
https://doi.org/10.17981/ingecuc.11.2.2015.07
https://repositorio.cuc.edu.co/
Palabra clave:
Incremental sheet forming
Forming die
Computerized numerical control (CNC)
Computer aided manufacturing (CAM)
Computer aided design (CAD) die-less SPIF-DPIF
Aluminum Alloy 1100
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_42c8eba808589fc2764034c588c1219f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2563
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
title Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
spellingShingle Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
Incremental sheet forming
Forming die
Computerized numerical control (CNC)
Computer aided manufacturing (CAM)
Computer aided design (CAD) die-less SPIF-DPIF
Aluminum Alloy 1100
title_short Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
title_full Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
title_fullStr Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
title_full_unstemmed Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
title_sort Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpiece
dc.creator.fl_str_mv Benítez Lozano, Adrián José
Páramo Bermúdez, Gabriel Jaime
Bustamante Correa, Frank Alexander
dc.contributor.author.spa.fl_str_mv Benítez Lozano, Adrián José
Páramo Bermúdez, Gabriel Jaime
Bustamante Correa, Frank Alexander
dc.subject.spa.fl_str_mv Incremental sheet forming
Forming die
Computerized numerical control (CNC)
Computer aided manufacturing (CAM)
Computer aided design (CAD) die-less SPIF-DPIF
Aluminum Alloy 1100
topic Incremental sheet forming
Forming die
Computerized numerical control (CNC)
Computer aided manufacturing (CAM)
Computer aided design (CAD) die-less SPIF-DPIF
Aluminum Alloy 1100
description Over time the process of incremental deformationDie-less has been developed in many ways to meet the needs of flexible production with no invest-ment in tooling and low production costs. Two of their configurations are the SPIF (Single point incremental forming) and DPIF (Double point Incremental form-ing) technique. The aim of this study is to compare both techniques with the purpose of exposing their advan-tages and disadvantages in the production of industri-al parts, as well as to inform about Die-less as an alter-native manufacturing process. Experiments with the exhaust pipe cover of a vehicle are performed, the main process parameters are described, and formed work-pieces without evidence of defects are achieved. Signif-icant differences between the two techniques in terms of production times and accuracy to the original model are also detected. Finally, it is suggested when is more convenient to use each of these.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015-09-28
dc.date.accessioned.none.fl_str_mv 2019-02-15T23:26:01Z
dc.date.available.none.fl_str_mv 2019-02-15T23:26:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Benitez Lozano, A., Páramo Bermudez, G., & Bustamante Correa, F. (2015). Análisis comparativo entre las variantes SPIF y DPIF del proceso de conformado die-less en una pieza para automotores. INGE CUC, 11(2), 68-73. https://doi.org/10.17981/ingecuc.11.2.2015.07
dc.identifier.issn.spa.fl_str_mv 0122-6517, 2382-4700 electrónico
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2563
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.11.2.2015.07
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.11.2.2015.07
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Benitez Lozano, A., Páramo Bermudez, G., & Bustamante Correa, F. (2015). Análisis comparativo entre las variantes SPIF y DPIF del proceso de conformado die-less en una pieza para automotores. INGE CUC, 11(2), 68-73. https://doi.org/10.17981/ingecuc.11.2.2015.07
0122-6517, 2382-4700 electrónico
10.17981/ingecuc.11.2.2015.07
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/2563
https://doi.org/10.17981/ingecuc.11.2.2015.07
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 11, Núm. 2 (2015)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] S. Matsubara, “Incremental Backward Bulge Forming of a Sheet Metal with a Hemispherical Head Tool,” J. J.S.T.P., vol. 35, no. 406, pp. 1311 – 1316, 1994.
[2] G. Páramo Bermúdez and A. Benítez Lozano, “Deformación incremental de lámina sin matriz (DIELESS) como alternativa viable a procesos de conformación de lámina convencionales,” INGE CUC, vol. 9, no. 1, pp. 115–128, Jul. 2013.
[3] A. García and G. Páramo, “Análisis del comportamiento y caracterización del Single Point Incremental Forming utilizando tecnología de control numérico para un caso de estudio en un componente del mobiliario de exteriores”, M.S thesis, Dept. Ing. Mec., Univ. EAFIT, Medellín, Colombia, 2011.
[4] M. Amino, M. Mizoguchi, Y. Terauchi, and T. Maki, “Current Status of ‘Die-less’ Amino’s Incremental Forming,” Procedia Eng., vol. 81, pp. 54–62, 2014. DOI: 10.1016/j. proeng.2014.09.128
[5] P. Roux, “Machine for shaping sheet metal,” US2945528 A, 14-Jan-1960.
[6] E. Leszak, “Apparatus and process for incremental dieless forming,” US3342051 A, 19-Sep-1967.
[7] H. Iseki, K. Kato, And S. Sakamoto, “Flexible and Incremental Sheet Metal Bulging using a Path-Controlled Spherical Roller.,” Trans. Japan Soc. Mech. Eng. Ser. C, vol. 58, no. 554, pp. 3147–3155, Jan. 1992. DOI: 10.1299/kikaic.58.3147
[8] I. Paniti, “A novel, single-robot based two sided incremental sheet forming system,” in 45th International Symposium on Robotics, ISR 2014 and 8th German Conference on Robotics, ROBOTIK 2014, pp. 547-553, 2014.
[9] P. Gabriel and B. Adrian, “Developing an experimental case in aluminum foils 1100 to determine the maximum angle of formability in a piece by Die-less-SPIF process,” IOP Conf. Ser. Mater. Sci. Eng., vol. 65, no. 1, p. 1-10, Jul. 2014. DOI:10.1088/1757-899X/65/1/012027
[10] S. Arango Botero and P. Arena Espinosa, “Estudio del comportamiento de lámina metálica en el proceso incremental die-less forming en dos puntos de apoyo (herramienta y molde),” M.S thesis, Dept. Ing. Prod., Univ. EAFIT, Medellín, Colombia, 2011.
[11] S. Kalpakjian and S. R. Schmid, Manufactura, Ingeniería y Tecnología, 5th ed. Mexico:Pearson, 2008.
[12] W. Smith, Ciencia e ingeniería de materiales, 3rd ed. España: McGrawHill, 2004.
[13] T. B. Stoughton and J. W. Yoon, “A new approach for failure criterion for sheet metals,” Int. J. Plast., vol. 27, no. 3, pp. 440–459, Mar. 2011. DOI: 10.1016/j.ijplas.2010.07.004
[14] C. Vallellano, D. Morales, A. J. Martinez, and F. J. Garcia-Lomas, “On the Use of Concave-Side Rule and Critical-Distance Methods to Predict the Influence of Bending on Sheet-Metal Formability,” Int. J. Mater. Form., vol. 3, no. S1, pp. 1167–1170, Jun. 2010. DOI: 10.1007/s12289-010-0980-0
[15] M. B. Silva and P. A. F. Martins, “Two-Point Incremental Forming with Partial Die: Theory and Experimentation,” J. Mater. Eng. Perform. vol. 22, no. 4, pp. 1018– 1027, Oct. 2012. DOI: 10.1007/S11665-012-0400-3
[16] J. H. Wu and Q. C. Wang, “Comparison of the Geometric Accuracy by DSIF Tool-path with SPIF Tool-path,” Appl. Mech. Mater., vol. 494–495, pp. 497–501, Feb. 2014.DOI: 10.4028/www.scientific.net/AMM.494- 495.497
[17] J. Smith, R. Malhotra, W. K. Liu, and J. Cao, “Deformation mechanics in single-point and accumulative double-sided incremental forming,” Int. J. Adv. Manuf. Technol., vol. 69, no. 5–8, pp. 1185–1201, Jun. 2013.. DOI: 10.1007/S00170-013-5053-3
[18] C. Radu, I. Cristea, E. Herghelegiu, and S. Tabacu, “Improving the Accuracy of Parts Manufactured by Single Point Incremental Forming,” Appl. Mech. Mater., vol. 332, pp. 443–448, Jul. 2013. DOI: 10.4028/ www.scientific.net/AMM.332.443
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/544
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dfc6aec7-0789-4182-a40d-7ce12265456c/download
https://repositorio.cuc.edu.co/bitstreams/c4c2b9ac-eafd-4e5e-b4c7-35a2d1fd6d71/download
https://repositorio.cuc.edu.co/bitstreams/c768a1c7-0485-42d6-accd-c666c3d37559/download
https://repositorio.cuc.edu.co/bitstreams/a69810fa-85a0-4aef-9bf9-d87d6d9abbc4/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
71b620fe296b2be8c81a8e4eb20169a8
92cd55f89e3110102218011a142deca0
d3f4cbd5c4cda0c03ba7414dc279765e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760707879829504
spelling Benítez Lozano, Adrián JoséPáramo Bermúdez, Gabriel JaimeBustamante Correa, Frank Alexander2019-02-15T23:26:01Z2019-02-15T23:26:01Z2015-09-28Benitez Lozano, A., Páramo Bermudez, G., & Bustamante Correa, F. (2015). Análisis comparativo entre las variantes SPIF y DPIF del proceso de conformado die-less en una pieza para automotores. INGE CUC, 11(2), 68-73. https://doi.org/10.17981/ingecuc.11.2.2015.070122-6517, 2382-4700 electrónicohttps://hdl.handle.net/11323/2563https://doi.org/10.17981/ingecuc.11.2.2015.0710.17981/ingecuc.11.2.2015.072382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Over time the process of incremental deformationDie-less has been developed in many ways to meet the needs of flexible production with no invest-ment in tooling and low production costs. Two of their configurations are the SPIF (Single point incremental forming) and DPIF (Double point Incremental form-ing) technique. The aim of this study is to compare both techniques with the purpose of exposing their advan-tages and disadvantages in the production of industri-al parts, as well as to inform about Die-less as an alter-native manufacturing process. Experiments with the exhaust pipe cover of a vehicle are performed, the main process parameters are described, and formed work-pieces without evidence of defects are achieved. Signif-icant differences between the two techniques in terms of production times and accuracy to the original model are also detected. Finally, it is suggested when is more convenient to use each of these.A través de los tiempos el proceso de deformación incremental Dieless ha sido desarrollado de numerosas formas a fin de atender las necesidades de producción flexible con nula inversión en herramentales y bajos costos de producción. Dos de sus configuraciones son la técnica SPIF (Single point incremental forming) y DPIF (Double point Incremental forming). El objetivo del presente trabajo es comparar ambas técnicas con el propósito de exponer sus ventajas y desventajas en la producción de piezas industriales, así como dar a conocer a Dieless como un proceso manufacturero alternativo. Se realizan experimentaciones con la cubierta del tubo de escape de un vehículo, se describen los principales parámetros del proceso, y se logran piezas conformes sin evidencias de defectos. También se detectan diferencias significativas entre ambas técnicas en cuanto a los tiempos de producción y exactitud con el modelo original. Finalmente, se sugiere cuándo es más conveniente usar cada una de éstasBenítez Lozano, Adrián JoséPáramo Bermúdez, Gabriel JaimeBustamante Correa, Frank Alexanderapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 11, Núm. 2 (2015)INGE CUCINGE CUC[1] S. Matsubara, “Incremental Backward Bulge Forming of a Sheet Metal with a Hemispherical Head Tool,” J. J.S.T.P., vol. 35, no. 406, pp. 1311 – 1316, 1994.[2] G. Páramo Bermúdez and A. Benítez Lozano, “Deformación incremental de lámina sin matriz (DIELESS) como alternativa viable a procesos de conformación de lámina convencionales,” INGE CUC, vol. 9, no. 1, pp. 115–128, Jul. 2013.[3] A. García and G. Páramo, “Análisis del comportamiento y caracterización del Single Point Incremental Forming utilizando tecnología de control numérico para un caso de estudio en un componente del mobiliario de exteriores”, M.S thesis, Dept. Ing. Mec., Univ. EAFIT, Medellín, Colombia, 2011.[4] M. Amino, M. Mizoguchi, Y. Terauchi, and T. Maki, “Current Status of ‘Die-less’ Amino’s Incremental Forming,” Procedia Eng., vol. 81, pp. 54–62, 2014. DOI: 10.1016/j. proeng.2014.09.128[5] P. Roux, “Machine for shaping sheet metal,” US2945528 A, 14-Jan-1960.[6] E. Leszak, “Apparatus and process for incremental dieless forming,” US3342051 A, 19-Sep-1967.[7] H. Iseki, K. Kato, And S. Sakamoto, “Flexible and Incremental Sheet Metal Bulging using a Path-Controlled Spherical Roller.,” Trans. Japan Soc. Mech. Eng. Ser. C, vol. 58, no. 554, pp. 3147–3155, Jan. 1992. DOI: 10.1299/kikaic.58.3147[8] I. Paniti, “A novel, single-robot based two sided incremental sheet forming system,” in 45th International Symposium on Robotics, ISR 2014 and 8th German Conference on Robotics, ROBOTIK 2014, pp. 547-553, 2014.[9] P. Gabriel and B. Adrian, “Developing an experimental case in aluminum foils 1100 to determine the maximum angle of formability in a piece by Die-less-SPIF process,” IOP Conf. Ser. Mater. Sci. Eng., vol. 65, no. 1, p. 1-10, Jul. 2014. DOI:10.1088/1757-899X/65/1/012027[10] S. Arango Botero and P. Arena Espinosa, “Estudio del comportamiento de lámina metálica en el proceso incremental die-less forming en dos puntos de apoyo (herramienta y molde),” M.S thesis, Dept. Ing. Prod., Univ. EAFIT, Medellín, Colombia, 2011.[11] S. Kalpakjian and S. R. Schmid, Manufactura, Ingeniería y Tecnología, 5th ed. Mexico:Pearson, 2008.[12] W. Smith, Ciencia e ingeniería de materiales, 3rd ed. España: McGrawHill, 2004.[13] T. B. Stoughton and J. W. Yoon, “A new approach for failure criterion for sheet metals,” Int. J. Plast., vol. 27, no. 3, pp. 440–459, Mar. 2011. DOI: 10.1016/j.ijplas.2010.07.004[14] C. Vallellano, D. Morales, A. J. Martinez, and F. J. Garcia-Lomas, “On the Use of Concave-Side Rule and Critical-Distance Methods to Predict the Influence of Bending on Sheet-Metal Formability,” Int. J. Mater. Form., vol. 3, no. S1, pp. 1167–1170, Jun. 2010. DOI: 10.1007/s12289-010-0980-0[15] M. B. Silva and P. A. F. Martins, “Two-Point Incremental Forming with Partial Die: Theory and Experimentation,” J. Mater. Eng. Perform. vol. 22, no. 4, pp. 1018– 1027, Oct. 2012. DOI: 10.1007/S11665-012-0400-3[16] J. H. Wu and Q. C. Wang, “Comparison of the Geometric Accuracy by DSIF Tool-path with SPIF Tool-path,” Appl. Mech. Mater., vol. 494–495, pp. 497–501, Feb. 2014.DOI: 10.4028/www.scientific.net/AMM.494- 495.497[17] J. Smith, R. Malhotra, W. K. Liu, and J. Cao, “Deformation mechanics in single-point and accumulative double-sided incremental forming,” Int. J. Adv. Manuf. Technol., vol. 69, no. 5–8, pp. 1185–1201, Jun. 2013.. DOI: 10.1007/S00170-013-5053-3[18] C. Radu, I. Cristea, E. Herghelegiu, and S. Tabacu, “Improving the Accuracy of Parts Manufactured by Single Point Incremental Forming,” Appl. Mech. Mater., vol. 332, pp. 443–448, Jul. 2013. DOI: 10.4028/ www.scientific.net/AMM.332.443211INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/544Incremental sheet formingForming dieComputerized numerical control (CNC)Computer aided manufacturing (CAM)Computer aided design (CAD) die-less SPIF-DPIFAluminum Alloy 1100Comparative analysis between the SPIF and DPIF variants for die-less forming process for an automotive workpieceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/dfc6aec7-0789-4182-a40d-7ce12265456c/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALComparative Analysis between the SPIF and DPIF Variants for Die-less Forming Process for an Automotive Workpiece.pdfComparative Analysis between the SPIF and DPIF Variants for Die-less Forming Process for an Automotive Workpiece.pdfapplication/pdf1112336https://repositorio.cuc.edu.co/bitstreams/c4c2b9ac-eafd-4e5e-b4c7-35a2d1fd6d71/download71b620fe296b2be8c81a8e4eb20169a8MD51THUMBNAILComparative Analysis between the SPIF and DPIF Variants for Die-less Forming Process for an Automotive Workpiece.pdf.jpgComparative Analysis between the SPIF and DPIF Variants for Die-less Forming Process for an Automotive Workpiece.pdf.jpgimage/jpeg60934https://repositorio.cuc.edu.co/bitstreams/c768a1c7-0485-42d6-accd-c666c3d37559/download92cd55f89e3110102218011a142deca0MD54TEXTComparative Analysis between the SPIF and DPIF Variants for Die-less Forming Process for an Automotive Workpiece.pdf.txtComparative Analysis between the SPIF and DPIF Variants for Die-less Forming Process for an Automotive Workpiece.pdf.txttext/plain26620https://repositorio.cuc.edu.co/bitstreams/a69810fa-85a0-4aef-9bf9-d87d6d9abbc4/downloadd3f4cbd5c4cda0c03ba7414dc279765eMD5511323/2563oai:repositorio.cuc.edu.co:11323/25632024-09-17 10:44:00.396open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=