Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps
Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performanc...
- Autores:
-
De-La-Hoz-Franco, Emiro
De la Hoz Correa, Eduardo Miguel
Ortiz, Andrés
Ortega, Julio
Martínez Álvarez, Antonio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4197
- Acceso en línea:
- https://hdl.handle.net/11323/4197
https://repositorio.cuc.edu.co/
- Palabra clave:
- Feature selection
Growing self-srganising maps
IDS
Multi-objective optimization
Network anomaly detection
Unsupervised clustering
Selección de características
Crecientes mapas auto-organizados.
IDS
Optimización multiobjetivo
Detección de anomalías de red
Agrupamiento sin supervisión
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_420aaf715a4b07b97f04a3b466c52596 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4197 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
dc.title.translated.spa.fl_str_mv |
Selección de funciones mediante optimización de objetivos múltiples: aplicación a la detección de anomalías de red mediante mapas jerárquicos autoorganizados Modelo de selección de características mediante optimización multiobjetivo: aplicado a la detección de anomalías de red, basada en Mapas Auto-organizativos Jerárquicos |
title |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
spellingShingle |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps Feature selection Growing self-srganising maps IDS Multi-objective optimization Network anomaly detection Unsupervised clustering Selección de características Crecientes mapas auto-organizados. IDS Optimización multiobjetivo Detección de anomalías de red Agrupamiento sin supervisión |
title_short |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
title_full |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
title_fullStr |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
title_full_unstemmed |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
title_sort |
Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps |
dc.creator.fl_str_mv |
De-La-Hoz-Franco, Emiro De la Hoz Correa, Eduardo Miguel Ortiz, Andrés Ortega, Julio Martínez Álvarez, Antonio |
dc.contributor.author.spa.fl_str_mv |
De-La-Hoz-Franco, Emiro De la Hoz Correa, Eduardo Miguel Ortiz, Andrés Ortega, Julio Martínez Álvarez, Antonio |
dc.subject.spa.fl_str_mv |
Feature selection Growing self-srganising maps IDS Multi-objective optimization Network anomaly detection Unsupervised clustering Selección de características Crecientes mapas auto-organizados. IDS Optimización multiobjetivo Detección de anomalías de red Agrupamiento sin supervisión |
topic |
Feature selection Growing self-srganising maps IDS Multi-objective optimization Network anomaly detection Unsupervised clustering Selección de características Crecientes mapas auto-organizados. IDS Optimización multiobjetivo Detección de anomalías de red Agrupamiento sin supervisión |
description |
Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014-08-11 |
dc.date.accessioned.none.fl_str_mv |
2019-05-17T14:23:23Z |
dc.date.available.none.fl_str_mv |
2019-05-17T14:23:23Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
09507051 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4197 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
09507051 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4197 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
Knowledge-Based Systems |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0950705114002950 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/16b29adc-7fb5-4314-8320-cf534f1f1b32/download https://repositorio.cuc.edu.co/bitstreams/c0975c80-aef7-4de6-9962-4d38404e91a2/download https://repositorio.cuc.edu.co/bitstreams/6307b7b2-4e78-439f-8881-c1b0dd510c84/download https://repositorio.cuc.edu.co/bitstreams/469f17f4-9ff9-49e2-b6c3-71e35203da25/download https://repositorio.cuc.edu.co/bitstreams/323325a8-dfdf-456c-b7ab-24e0a801fe10/download |
bitstream.checksum.fl_str_mv |
8f1f5c0b7ff06ee9be714f9201df9635 934f4ca17e109e0a05eaeaba504d7ce4 8a4605be74aa9ea9d79846c1fba20a33 42f4ac162962b8f9bf0e51abb6eeb42a d3d7ce1285b7704b29e7f3c72f3df7a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166601092890624 |
spelling |
De-La-Hoz-Franco, EmiroDe la Hoz Correa, Eduardo MiguelOrtiz, AndrésOrtega, JulioMartínez Álvarez, Antonio2019-05-17T14:23:23Z2019-05-17T14:23:23Z2014-08-1109507051https://hdl.handle.net/11323/4197Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit.La selección de características es un problema importante y activo en los problemas de agrupación y clasificación. Al elegir un subconjunto de características adecuado, se permite una reducción de la dimensionalidad del conjunto de datos, lo que contribuye a disminuir la complejidad computacional de la clasificación y a mejorar el rendimiento del clasificador al evitar características redundantes o irrelevantes. Si bien la selección de características se puede definir formalmente como un problema de optimización con un solo objetivo, es decir, la precisión de clasificación obtenida mediante el uso del subconjunto de características seleccionado, en los últimos años, se han propuesto algunos enfoques de múltiples objetivos para este problema. Estas características bien seleccionadas no solo mejoran la precisión de la clasificación, sino también la capacidad de generalización en el caso de clasificadores supervisados, o contrarrestan el sesgo hacia un número mayor o menor de características que presentan algunos métodos utilizados para validar la agrupación / clasificación en el caso de clasificadores no supervisados. . La principal contribución de este documento es un enfoque de objetivos múltiples para la selección de características y su aplicación a un procedimiento de agrupación sin supervisión basado en mapas autoorganizados jerárquicos en crecimiento (GHSOM) que incluye un nuevo método para el etiquetado de unidades y una determinación eficiente de la unidad ganadora.De la Hoz, Emiro-will be generated-orcid-0000-0002-4926-7414-600De la Hoz Correa, Eduardo Miguel-will be generated-orcid-0000-0001-7468-6058-0Ortiz, Andrés-3743e2e5-f13e-4950-8c12-d42d0ab7ccfe-0Ortega, Julio-3b8c20e7-bbcc-4bbd-8ad8-37acc5756525-0Martínez Álvarez, Antonio-087cc84e-d8ac-4517-a024-7029d89fe579-0engUniversidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Knowledge-Based Systemshttps://www.sciencedirect.com/science/article/abs/pii/S0950705114002950Feature selectionGrowing self-srganising mapsIDSMulti-objective optimizationNetwork anomaly detectionUnsupervised clusteringSelección de característicasCrecientes mapas auto-organizados.IDSOptimización multiobjetivoDetección de anomalías de redAgrupamiento sin supervisiónFeature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising mapsSelección de funciones mediante optimización de objetivos múltiples: aplicación a la detección de anomalías de red mediante mapas jerárquicos autoorganizadosModelo de selección de características mediante optimización multiobjetivo: aplicado a la detección de anomalías de red, basada en Mapas Auto-organizativos JerárquicosArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALFeature Selection By Multi-Objective Optimisation.pdfFeature Selection By Multi-Objective Optimisation.pdfapplication/pdf236818https://repositorio.cuc.edu.co/bitstreams/16b29adc-7fb5-4314-8320-cf534f1f1b32/download8f1f5c0b7ff06ee9be714f9201df9635MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/c0975c80-aef7-4de6-9962-4d38404e91a2/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6307b7b2-4e78-439f-8881-c1b0dd510c84/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILFeature Selection By Multi-Objective Optimisation.pdf.jpgFeature Selection By Multi-Objective Optimisation.pdf.jpgimage/jpeg50986https://repositorio.cuc.edu.co/bitstreams/469f17f4-9ff9-49e2-b6c3-71e35203da25/download42f4ac162962b8f9bf0e51abb6eeb42aMD55TEXTFeature Selection By Multi-Objective Optimisation.pdf.txtFeature Selection By Multi-Objective Optimisation.pdf.txttext/plain2281https://repositorio.cuc.edu.co/bitstreams/323325a8-dfdf-456c-b7ab-24e0a801fe10/downloadd3d7ce1285b7704b29e7f3c72f3df7a3MD5611323/4197oai:repositorio.cuc.edu.co:11323/41972024-09-17 10:46:08.003http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |