Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine

In reciprocating internal combustion engines, the calculation of the heat transfer coefficient (HTC) is essential to estimate the heat transfer during combustion in the combustion chamber. The HTC calculation takes into account fluid flow and combustion processes and varies as a function of crank an...

Full description

Autores:
zareei, javad
Nuñez Alvarez, Jose R.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13322
Acceso en línea:
https://hdl.handle.net/11323/13322
https://repositorio.cuc.edu.co/
Palabra clave:
Injector
Nozzle
Heat transfer coefficient
Diesel
Hydrogen
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_420a78a59a10fce0889a9302c3c8414e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13322
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
title Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
spellingShingle Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
Injector
Nozzle
Heat transfer coefficient
Diesel
Hydrogen
title_short Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
title_full Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
title_fullStr Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
title_full_unstemmed Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
title_sort Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine
dc.creator.fl_str_mv zareei, javad
Nuñez Alvarez, Jose R.
dc.contributor.author.none.fl_str_mv zareei, javad
Nuñez Alvarez, Jose R.
dc.subject.proposal.eng.fl_str_mv Injector
Nozzle
Heat transfer coefficient
Diesel
Hydrogen
topic Injector
Nozzle
Heat transfer coefficient
Diesel
Hydrogen
description In reciprocating internal combustion engines, the calculation of the heat transfer coefficient (HTC) is essential to estimate the heat transfer during combustion in the combustion chamber. The HTC calculation takes into account fluid flow and combustion processes and varies as a function of crank angle and location within the chamber. The mean HTC value is commonly used to calculate the thermo-mechanical analysis of various combustion chamber components. In this study, dynamic grids for the intake port, exhaust port and chamber are created in the chamber modelling section of the AVL-Fire software. The intake and combustion processes are then simulated and the calculated pressure data are compared with experimental data at 2800 rpm with 1, 3 and 6 hole injectors. Finally, the distribution of HTC over the chamber walls was evaluated using a time step method. The research also included verification of the HTC results with theoretical data obtained by Woschni and Hohenberg. In addition, with the decreasing availability of fossil fuels and the need for lower exhaust emissions from diesel engines, the use of blends of diesel and hydrogen fuel has become widespread. In this engine, a mixture of 10 % hydrogen and 90 % diesel fuel is used. The final results show that the heat transfer coefficient increases by approximately 1.72 % when hydrogen is added to diesel fuel due to the number of collisions between hydrogen and other fuel components.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-13T12:53:45Z
dc.date.available.none.fl_str_mv 2024-09-13T12:53:45Z
2026-05-20
dc.date.issued.none.fl_str_mv 2024-05-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Javad Zareei, Jose R. Nuñez Alvarez, Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine, International Journal of Hydrogen Energy, Volume 67, 2024, Pages 1148-1156, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.11.175.
dc.identifier.issn.spa.fl_str_mv 0360-3199
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13322
dc.identifier.doi.none.fl_str_mv 10.1016/j.ijhydene.2023.11.175.
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Javad Zareei, Jose R. Nuñez Alvarez, Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine, International Journal of Hydrogen Energy, Volume 67, 2024, Pages 1148-1156, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.11.175.
0360-3199
10.1016/j.ijhydene.2023.11.175.
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13322
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Hydrogen Energy
dc.relation.references.spa.fl_str_mv [1] Alkhareef H, Farad A, Salem M, Piao F, Yusing H, Yang Z. Development of ultra-low emissions gas turbine combustor system. University College London; 2017.
[2] SivaPrasad K, Rao SS, Raju VR. Enhancement of mixture homogeneity for DI-CI engine to achieve Homogeneous Charge Compression Ignition (HCCI) combustion characteristics: a numerical approach. Energy Sources, Part A Recovery, Util Environ Eff 2022 Jun 15;44(2):4318–33.
[3] Weeks RW, Moskwa JJ. Automotive engine modeling for real-time control using matlab/simulink. SAE Trans 1995 Jan 1:295–309.
[4] Manikandan M, Saraswati S, Ananthakrishnan K. CFD analysis of fluid flow inside a pentroof combustion chamber with different piston shapes. Int J Veh Des 2017;73 (4):281–99.
[5] Szpica D, Mieczkowski G, Borawski A, Leisis V, Diliunas S, Pilkaite T. The computational fluid dynamics (CFD) analysis of the pressure sensor used in pulseoperated low-pressure gas-phase solenoid valve measurements. Sensors 2021 Dec 11;21(24):8287.
[6] Gainey B, Gohn J, Yan Z, Malik K, Boldaji MR, Lawler B. HCCI with wet ethanol: investigating the charge cooling effect of a high latent heat of vaporization fuel in LTC. SAE Technical Paper; 2019 Sep 9.
[7] Yan Z, Gainey B, Lawler B. A parametric modeling study of thermal barrier coatings in low-temperature combustion engines. Appl Therm Eng 2022 Jan 5;200:117687.
[8] Cho S, Song C, Kim N, Oh S, Han D, Min K. Influence of the wall temperatures of the combustion chamber and intake ports on the charge temperature and knock characteristics in a spark-ignited engine. Appl Therm Eng 2021 Jan 5;182:116000.
[9] Luo K, Huang Y, Han Z, Li Y, Shi Y, Liu W, Tang C. Low-speed performance compensation of a turbocharged natural gas engine by intake strategy optimization. Fuel 2022 Sep 15;324:124748.
[10] Devetyarov RR. The formation of soot on the walls of the diesel combustion chamber and its effect on heat transfer in the cylinder. In: IOP conference series: materials science and engineering, vol. 862. IOP Publishing; 2020 May 1, 062072. 6.
[11] Hagena OF. Nucleation and growth of clusters in expanding nozzle flows. Surf Sci 1981 May 1;106(1–3):101–16.
[12] Geng L, Wang Y, Wang J, Wei Y, Lee CF. Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics. Energy Sci Eng 2020 Feb;8(2):312–26.
[13] Gentz G, Thelen B, Gholamisheeri M, Litke P, Brown A, Hoke J, Toulson E. A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl Therm Eng 2015 Apr 25;81:399–411.
[14] Devetyarov RR. The formation of soot on the walls of the diesel combustion chamber and its effect on heat transfer in the cylinder. In: IOP conference series: materials science and engineering, vol. 862. IOP Publishing; 2020 May 1, 062072. 6.
[15] Parra CA. Heat transfer investigations in a modern diesel engine (Doctoral dissertation, University of bath).
[16] Fonseca L, Olmeda P, Novella R, Valle RM. Internal combustion engine heat transfer and wall temperature modeling: an overview. Arch Comput Methods Eng 2020 Nov;27(5):1661–79.
[17] Liu Z, Liu J. Investigation of the effect of altitude on in-cylinder heat transfer in heavy-duty diesel engines based on an empirical model. J Energy Resour Technol 2022 Nov 1;144(11):112303.
[18] Satar I, Daud WR, Kim BH, Somalu MR, Ghasemi M. Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose. Energy 2017 Nov 15;139:1188–96.
[19] Gholinia M, Pourfallah M, Chamani HR. Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Stud Therm Eng 2018 Sep 1;12:497–509.
[20] Margot X, Quintero P, Gomez-Soriano ´ J, Escalona J. Implementation of 1D–3D integrated model for thermal prediction in internal combustion engines. Appl Therm Eng 2021 Jul 25;194:117034.
[21] Prakash O, Singh SN. Experimental and numerical study of mixed convection with surface radiation heat transfer in an air-filled ventilated cavity. Int J Therm Sci 2022 Jan 1;171:107169.
[22] Koren C, Vicquelin R, Gicquel O. Multiphysics simulation combining large-eddy simulation, wall heat conduction and radiative energy transfer to predict wall temperature induced by a confined premixed swirling flame. Flow, Turbul Combust 2018 Jul;101(1):77–102.
[23] Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst S. Heat transfer in premixed spark ignition engines part I: identification of the factors influencing heat transfer. Energy 2016;116:380–91.
[24] Ghasemi M, Qazani MR, Lennon CW, Sedighi M. Analysis and prediction of microbial fuel cell behaviour using MLP and SVR. J Taiwan Inst Chem Eng 2023 Oct 1;151:105101.
[25] Mohammadi M, Sedighi M, Natarajan R, Hassan SH, Ghasemi M. Microbial fuel cell for oilfield produced water treatment and reuse: modelling and process optimization. Kor J Chem Eng 2021 Jan;38:72–80.
[26] Zareei J, Rohani A. Optimization and study of performance parameters in an engine fueled with hydrogen. Int J Hydrogen Energy 2020 Jan 1;45(1):322–36.
[27] Zareei J, Rohani A, Alvarez JR. The effect of EGR and hydrogen addition to natural gas on performance and exhaust emissions in a diesel engine by AVL fire multidomain simulation, GPR model, and multi-objective genetic algorithm. Int J Hydrogen Energy 2022 Jun 12;47(50):21565–81.
[28] Akal D, Oztuna ¨ S, Büyükakın MK. A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int J Hydrogen Energy 2020 Dec 9;45(60):35257–68.
[29] Zareei JA, Haseeb M, Ghadamkheir K, Farkhondeh SA, Yazdani A, Ershov K. The effect of hydrogen addition to compressed natural gas on performance and emissions of a DI diesel engine by a numerical study. Int J Hydrogen Energy 2020 Nov 27;45(58):34241–53.
[30] Jafary T, Daud WR, Ghasemi M, Bakar MH, Sedighi M, Kim BH, CarmonaMartínez AA, Jahim JM, Ismail M. Clean hydrogen production in a full biological microbial electrolysis cell. Int J Hydrogen Energy 2019 Nov 22;44(58):30524–31.
[31] Shadidi B, Najafi G, Yusaf T. A review of hydrogen as a fuel in internal combustion engines. Energies 2021 Sep 29;14(19):6209.
[32] Fayyazbakhsh A, Bell ML, Zhu X, Mei X, Koutný M, Hajinajaf N, Zhang Y. Engine emissions with air pollutants and greenhouse gases and their control technologies. J Clean Prod 2022 Sep 22:134260.
[33] Thangaraja J, Kannan C. Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels-A review. Appl Energy 2016 Oct 15;180:169–84.
[34] Hoang AT, Le MX, Niˇzeti´c S, Huang Z, Agbulut ˘ Ü, Veza I, Said Z, Le AT, Tran VD, Nguyen XP. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: a control comparison between biodiesel and diesel fuel. Fuel 2022 Oct 15;326:124981.
[35] Fayad MA. Effect of renewable fuel and injection strategies on combustion characteristics and gaseous emissions in diesel engines. Energy Sources, Part A Recovery, Util Environ Eff 2020 Feb 16;42(4):460–70.
[36] Nayak SK, Mishra PC, Noor MM. Simultaneous reduction of nitric oxide and smoke opacity in TDI dual fuel engine fuelled with calophyllum-diesel blends and waste wood chip gas for modified inlet valve and injector nozzle geometry. Energy 2019 Dec 15;189:116238.
[37] Wen T, Zhan H, Zhang D. Flow boiling heat transfer in mini channel with serrated fins: experimental investigation and development of new correlation. Int J Heat Mass Tran 2019 Jan 1;128:1081–94.
[38] Modest MF, Haworth DC. Radiative heat transfer in turbulent combustion systems: theory and applications. Springer; 2016 Jan 6.
[39] Galperin B, Kantha LH, Hassid S, Rosati A. A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci 1988 Jan 1;45(1).
[40] Zhang GJ. Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J Geophys Res Atmos 2002 Jul 27; 107(D14). ACL-12.
[41] Taylor CF, Toong TY. Heat transfer in internal-combustion engines. ASME; 1957.
[42] Stone R. Introduction to internal combustion engines. 1999.
[43] Annand WJD. Heat transfer in the cylinder and porting. The thermodynamics and gas dynamics of internal combustion engines, vol. II. London: Oxford University Press; 1986.
[44] Woschni G. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical paper; 1967.
[45] Taghavifar H, Taghavifar H, Mardani A, Mohebbi A, Khalilarya S. A numerical investigation on the wall heat flux in a di diesel engine fueled with n-heptane using a coupled CFD and ANN approach. Fuel 2015;140:227–36.
[46] Kang X, Liu Z, Ge Y, Gao X, Li Y. CFD analysis and conjugate heat transfer modeling of ionic compressors. Int J Hydrogen Energy 2023 Aug 9. [47] Sihling K, Woschni G. Experimental investigation of the instantaneous heat transfer in the cylinder of a high speed diesel engine. SAE Technical Paper; 1979.
[47] Sihling K, Woschni G. Experimental investigation of the instantaneous heat transfer in the cylinder of a high speed diesel engine. SAE Technical Paper; 1979.
[48] Mohammadi A, Yaghoubi M. Estimation of instantaneous local heat transfer coefficient in spark-ignition engines. Int J Therm Sci 2010;49(7):1309–17.
[49] Avl Fire. Combustion, “Avl Fire ® version 2013.”. 2013.
[50] Coosemans R, Dekeyser W, Baelmans M. Turbulent kinetic energy in 2D isothermal interchange-dominated scrape-off layer E× B drift turbulence: governing equation and relation to particle transport. Phys Plasmas 2021 Jan 1;(1):28.
[51] Ahsan M. Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment. Beni-Suef Univer J Basic Appl Sci 2014 Dec 1;3(4):269–77.
[52] Avl Fire. Wall Film module, “Avl Fire ® version 2013,”. 2013.
[53] Abidi SH, Hasan MM. Variation of turbulent kinetic energy due to dimples in intake manifold for diesel engine. Case Stud Therm Eng 2021 Oct 1;27:101299.
[54] Mejia AH, Brouwer J, Mac Kinnon M. Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure. Int J Hydrogen Energy 2020 Mar 18; 45(15):8810–26.
[55] Kanimozhi B, Alsehli M, Elfasakhany A, Veeman D, Balaji S, Kumar TP, Sekar M. Effects of oxyhydrogen on the CI engine fueled with the biodiesel blends: a performance, combustion and emission characteristics study. Int J Hydrogen Energy 2022 Oct 30;47(88):37668–76.
dc.relation.citationendpage.spa.fl_str_mv 1156
dc.relation.citationstartpage.spa.fl_str_mv 1148
dc.relation.citationvolume.spa.fl_str_mv 67
dc.rights.eng.fl_str_mv © 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0360319923059220?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/66e4be6f-ac65-461b-8130-446539388302/download
https://repositorio.cuc.edu.co/bitstreams/ee61015a-93ba-45b0-8539-5e6720609d67/download
https://repositorio.cuc.edu.co/bitstreams/367e3fa0-f668-4c46-b270-9528e1cb1c8e/download
https://repositorio.cuc.edu.co/bitstreams/b086dbe8-ab34-42a9-8173-e1c9cbe404f0/download
bitstream.checksum.fl_str_mv 1cd5daaffb725c69588aafa7f5158ba4
2f9959eaf5b71fae44bbf9ec84150c7a
58ceeed31ce1949230fc2e42846a7c59
aad67abd1467d3aa35810471d587905d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166807501930496
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfzareei, javadNuñez Alvarez, Jose R.2024-09-13T12:53:45Z2026-05-202024-09-13T12:53:45Z2024-05-20Javad Zareei, Jose R. Nuñez Alvarez, Analysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine, International Journal of Hydrogen Energy, Volume 67, 2024, Pages 1148-1156, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2023.11.175.0360-3199https://hdl.handle.net/11323/1332210.1016/j.ijhydene.2023.11.175.Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In reciprocating internal combustion engines, the calculation of the heat transfer coefficient (HTC) is essential to estimate the heat transfer during combustion in the combustion chamber. The HTC calculation takes into account fluid flow and combustion processes and varies as a function of crank angle and location within the chamber. The mean HTC value is commonly used to calculate the thermo-mechanical analysis of various combustion chamber components. In this study, dynamic grids for the intake port, exhaust port and chamber are created in the chamber modelling section of the AVL-Fire software. The intake and combustion processes are then simulated and the calculated pressure data are compared with experimental data at 2800 rpm with 1, 3 and 6 hole injectors. Finally, the distribution of HTC over the chamber walls was evaluated using a time step method. The research also included verification of the HTC results with theoretical data obtained by Woschni and Hohenberg. In addition, with the decreasing availability of fossil fuels and the need for lower exhaust emissions from diesel engines, the use of blends of diesel and hydrogen fuel has become widespread. In this engine, a mixture of 10 % hydrogen and 90 % diesel fuel is used. The final results show that the heat transfer coefficient increases by approximately 1.72 % when hydrogen is added to diesel fuel due to the number of collisions between hydrogen and other fuel components.9 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0360319923059220?via%3DihubAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engineArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85International Journal of Hydrogen Energy[1] Alkhareef H, Farad A, Salem M, Piao F, Yusing H, Yang Z. Development of ultra-low emissions gas turbine combustor system. University College London; 2017.[2] SivaPrasad K, Rao SS, Raju VR. Enhancement of mixture homogeneity for DI-CI engine to achieve Homogeneous Charge Compression Ignition (HCCI) combustion characteristics: a numerical approach. Energy Sources, Part A Recovery, Util Environ Eff 2022 Jun 15;44(2):4318–33.[3] Weeks RW, Moskwa JJ. Automotive engine modeling for real-time control using matlab/simulink. SAE Trans 1995 Jan 1:295–309.[4] Manikandan M, Saraswati S, Ananthakrishnan K. CFD analysis of fluid flow inside a pentroof combustion chamber with different piston shapes. Int J Veh Des 2017;73 (4):281–99.[5] Szpica D, Mieczkowski G, Borawski A, Leisis V, Diliunas S, Pilkaite T. The computational fluid dynamics (CFD) analysis of the pressure sensor used in pulseoperated low-pressure gas-phase solenoid valve measurements. Sensors 2021 Dec 11;21(24):8287.[6] Gainey B, Gohn J, Yan Z, Malik K, Boldaji MR, Lawler B. HCCI with wet ethanol: investigating the charge cooling effect of a high latent heat of vaporization fuel in LTC. SAE Technical Paper; 2019 Sep 9.[7] Yan Z, Gainey B, Lawler B. A parametric modeling study of thermal barrier coatings in low-temperature combustion engines. Appl Therm Eng 2022 Jan 5;200:117687.[8] Cho S, Song C, Kim N, Oh S, Han D, Min K. Influence of the wall temperatures of the combustion chamber and intake ports on the charge temperature and knock characteristics in a spark-ignited engine. Appl Therm Eng 2021 Jan 5;182:116000.[9] Luo K, Huang Y, Han Z, Li Y, Shi Y, Liu W, Tang C. Low-speed performance compensation of a turbocharged natural gas engine by intake strategy optimization. Fuel 2022 Sep 15;324:124748.[10] Devetyarov RR. The formation of soot on the walls of the diesel combustion chamber and its effect on heat transfer in the cylinder. In: IOP conference series: materials science and engineering, vol. 862. IOP Publishing; 2020 May 1, 062072. 6.[11] Hagena OF. Nucleation and growth of clusters in expanding nozzle flows. Surf Sci 1981 May 1;106(1–3):101–16.[12] Geng L, Wang Y, Wang J, Wei Y, Lee CF. Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics. Energy Sci Eng 2020 Feb;8(2):312–26.[13] Gentz G, Thelen B, Gholamisheeri M, Litke P, Brown A, Hoke J, Toulson E. A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl Therm Eng 2015 Apr 25;81:399–411.[14] Devetyarov RR. The formation of soot on the walls of the diesel combustion chamber and its effect on heat transfer in the cylinder. In: IOP conference series: materials science and engineering, vol. 862. IOP Publishing; 2020 May 1, 062072. 6.[15] Parra CA. Heat transfer investigations in a modern diesel engine (Doctoral dissertation, University of bath).[16] Fonseca L, Olmeda P, Novella R, Valle RM. Internal combustion engine heat transfer and wall temperature modeling: an overview. Arch Comput Methods Eng 2020 Nov;27(5):1661–79.[17] Liu Z, Liu J. Investigation of the effect of altitude on in-cylinder heat transfer in heavy-duty diesel engines based on an empirical model. J Energy Resour Technol 2022 Nov 1;144(11):112303.[18] Satar I, Daud WR, Kim BH, Somalu MR, Ghasemi M. Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose. Energy 2017 Nov 15;139:1188–96.[19] Gholinia M, Pourfallah M, Chamani HR. Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Stud Therm Eng 2018 Sep 1;12:497–509.[20] Margot X, Quintero P, Gomez-Soriano ´ J, Escalona J. Implementation of 1D–3D integrated model for thermal prediction in internal combustion engines. Appl Therm Eng 2021 Jul 25;194:117034.[21] Prakash O, Singh SN. Experimental and numerical study of mixed convection with surface radiation heat transfer in an air-filled ventilated cavity. Int J Therm Sci 2022 Jan 1;171:107169.[22] Koren C, Vicquelin R, Gicquel O. Multiphysics simulation combining large-eddy simulation, wall heat conduction and radiative energy transfer to predict wall temperature induced by a confined premixed swirling flame. Flow, Turbul Combust 2018 Jul;101(1):77–102.[23] Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst S. Heat transfer in premixed spark ignition engines part I: identification of the factors influencing heat transfer. Energy 2016;116:380–91.[24] Ghasemi M, Qazani MR, Lennon CW, Sedighi M. Analysis and prediction of microbial fuel cell behaviour using MLP and SVR. J Taiwan Inst Chem Eng 2023 Oct 1;151:105101.[25] Mohammadi M, Sedighi M, Natarajan R, Hassan SH, Ghasemi M. Microbial fuel cell for oilfield produced water treatment and reuse: modelling and process optimization. Kor J Chem Eng 2021 Jan;38:72–80.[26] Zareei J, Rohani A. Optimization and study of performance parameters in an engine fueled with hydrogen. Int J Hydrogen Energy 2020 Jan 1;45(1):322–36.[27] Zareei J, Rohani A, Alvarez JR. The effect of EGR and hydrogen addition to natural gas on performance and exhaust emissions in a diesel engine by AVL fire multidomain simulation, GPR model, and multi-objective genetic algorithm. Int J Hydrogen Energy 2022 Jun 12;47(50):21565–81.[28] Akal D, Oztuna ¨ S, Büyükakın MK. A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int J Hydrogen Energy 2020 Dec 9;45(60):35257–68.[29] Zareei JA, Haseeb M, Ghadamkheir K, Farkhondeh SA, Yazdani A, Ershov K. The effect of hydrogen addition to compressed natural gas on performance and emissions of a DI diesel engine by a numerical study. Int J Hydrogen Energy 2020 Nov 27;45(58):34241–53.[30] Jafary T, Daud WR, Ghasemi M, Bakar MH, Sedighi M, Kim BH, CarmonaMartínez AA, Jahim JM, Ismail M. Clean hydrogen production in a full biological microbial electrolysis cell. Int J Hydrogen Energy 2019 Nov 22;44(58):30524–31.[31] Shadidi B, Najafi G, Yusaf T. A review of hydrogen as a fuel in internal combustion engines. Energies 2021 Sep 29;14(19):6209.[32] Fayyazbakhsh A, Bell ML, Zhu X, Mei X, Koutný M, Hajinajaf N, Zhang Y. Engine emissions with air pollutants and greenhouse gases and their control technologies. J Clean Prod 2022 Sep 22:134260.[33] Thangaraja J, Kannan C. Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels-A review. Appl Energy 2016 Oct 15;180:169–84.[34] Hoang AT, Le MX, Niˇzeti´c S, Huang Z, Agbulut ˘ Ü, Veza I, Said Z, Le AT, Tran VD, Nguyen XP. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: a control comparison between biodiesel and diesel fuel. Fuel 2022 Oct 15;326:124981.[35] Fayad MA. Effect of renewable fuel and injection strategies on combustion characteristics and gaseous emissions in diesel engines. Energy Sources, Part A Recovery, Util Environ Eff 2020 Feb 16;42(4):460–70.[36] Nayak SK, Mishra PC, Noor MM. Simultaneous reduction of nitric oxide and smoke opacity in TDI dual fuel engine fuelled with calophyllum-diesel blends and waste wood chip gas for modified inlet valve and injector nozzle geometry. Energy 2019 Dec 15;189:116238.[37] Wen T, Zhan H, Zhang D. Flow boiling heat transfer in mini channel with serrated fins: experimental investigation and development of new correlation. Int J Heat Mass Tran 2019 Jan 1;128:1081–94.[38] Modest MF, Haworth DC. Radiative heat transfer in turbulent combustion systems: theory and applications. Springer; 2016 Jan 6.[39] Galperin B, Kantha LH, Hassid S, Rosati A. A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci 1988 Jan 1;45(1).[40] Zhang GJ. Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J Geophys Res Atmos 2002 Jul 27; 107(D14). ACL-12.[41] Taylor CF, Toong TY. Heat transfer in internal-combustion engines. ASME; 1957.[42] Stone R. Introduction to internal combustion engines. 1999.[43] Annand WJD. Heat transfer in the cylinder and porting. The thermodynamics and gas dynamics of internal combustion engines, vol. II. London: Oxford University Press; 1986.[44] Woschni G. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical paper; 1967.[45] Taghavifar H, Taghavifar H, Mardani A, Mohebbi A, Khalilarya S. A numerical investigation on the wall heat flux in a di diesel engine fueled with n-heptane using a coupled CFD and ANN approach. Fuel 2015;140:227–36.[46] Kang X, Liu Z, Ge Y, Gao X, Li Y. CFD analysis and conjugate heat transfer modeling of ionic compressors. Int J Hydrogen Energy 2023 Aug 9. [47] Sihling K, Woschni G. Experimental investigation of the instantaneous heat transfer in the cylinder of a high speed diesel engine. SAE Technical Paper; 1979.[47] Sihling K, Woschni G. Experimental investigation of the instantaneous heat transfer in the cylinder of a high speed diesel engine. SAE Technical Paper; 1979.[48] Mohammadi A, Yaghoubi M. Estimation of instantaneous local heat transfer coefficient in spark-ignition engines. Int J Therm Sci 2010;49(7):1309–17.[49] Avl Fire. Combustion, “Avl Fire ® version 2013.”. 2013.[50] Coosemans R, Dekeyser W, Baelmans M. Turbulent kinetic energy in 2D isothermal interchange-dominated scrape-off layer E× B drift turbulence: governing equation and relation to particle transport. Phys Plasmas 2021 Jan 1;(1):28.[51] Ahsan M. Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment. Beni-Suef Univer J Basic Appl Sci 2014 Dec 1;3(4):269–77.[52] Avl Fire. Wall Film module, “Avl Fire ® version 2013,”. 2013.[53] Abidi SH, Hasan MM. Variation of turbulent kinetic energy due to dimples in intake manifold for diesel engine. Case Stud Therm Eng 2021 Oct 1;27:101299.[54] Mejia AH, Brouwer J, Mac Kinnon M. Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure. Int J Hydrogen Energy 2020 Mar 18; 45(15):8810–26.[55] Kanimozhi B, Alsehli M, Elfasakhany A, Veeman D, Balaji S, Kumar TP, Sekar M. Effects of oxyhydrogen on the CI engine fueled with the biodiesel blends: a performance, combustion and emission characteristics study. Int J Hydrogen Energy 2022 Oct 30;47(88):37668–76.1156114867InjectorNozzleHeat transfer coefficientDieselHydrogenPublicationORIGINALAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine.pdfAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine.pdfArtículoapplication/pdf3986334https://repositorio.cuc.edu.co/bitstreams/66e4be6f-ac65-461b-8130-446539388302/download1cd5daaffb725c69588aafa7f5158ba4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/ee61015a-93ba-45b0-8539-5e6720609d67/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine.pdf.txtAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine.pdf.txtExtracted texttext/plain47265https://repositorio.cuc.edu.co/bitstreams/367e3fa0-f668-4c46-b270-9528e1cb1c8e/download58ceeed31ce1949230fc2e42846a7c59MD53THUMBNAILAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine.pdf.jpgAnalysis of the effect of the number of injector nozzles on the pressure and heat transfer coefficient in a hydrogen-diesel mixture diesel engine.pdf.jpgGenerated Thumbnailimage/jpeg15101https://repositorio.cuc.edu.co/bitstreams/b086dbe8-ab34-42a9-8173-e1c9cbe404f0/downloadaad67abd1467d3aa35810471d587905dMD5411323/13322oai:repositorio.cuc.edu.co:11323/133222024-09-17 14:12:07.959https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.restrictedhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=