Dual-axis solar tracker for using in photovoltaic systems

Improving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents...

Full description

Autores:
Robles Algarin, Carlos Arturo
Ospino Castro, Adalberto Jose
Naranjo Casas, Jose
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4606
Acceso en línea:
http://hdl.handle.net/11323/4606
https://repositorio.cuc.edu.co/
Palabra clave:
Digital signal processor
Dual-axis solar tracker
Inertial measurement unit
Solar panel
Solar radiation
Procesador de señal digital
Seguidor solar de doble eje
Unidad de medida inercial
Panel solar
Radiación solar
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_420116159a2de6171b8125658776ea03
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4606
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Dual-axis solar tracker for using in photovoltaic systems
dc.title.translated.spa.fl_str_mv Rastreador solar de doble eje para uso en sistemas fotovoltaicos.
title Dual-axis solar tracker for using in photovoltaic systems
spellingShingle Dual-axis solar tracker for using in photovoltaic systems
Digital signal processor
Dual-axis solar tracker
Inertial measurement unit
Solar panel
Solar radiation
Procesador de señal digital
Seguidor solar de doble eje
Unidad de medida inercial
Panel solar
Radiación solar
title_short Dual-axis solar tracker for using in photovoltaic systems
title_full Dual-axis solar tracker for using in photovoltaic systems
title_fullStr Dual-axis solar tracker for using in photovoltaic systems
title_full_unstemmed Dual-axis solar tracker for using in photovoltaic systems
title_sort Dual-axis solar tracker for using in photovoltaic systems
dc.creator.fl_str_mv Robles Algarin, Carlos Arturo
Ospino Castro, Adalberto Jose
Naranjo Casas, Jose
dc.contributor.author.spa.fl_str_mv Robles Algarin, Carlos Arturo
Ospino Castro, Adalberto Jose
Naranjo Casas, Jose
dc.subject.spa.fl_str_mv Digital signal processor
Dual-axis solar tracker
Inertial measurement unit
Solar panel
Solar radiation
Procesador de señal digital
Seguidor solar de doble eje
Unidad de medida inercial
Panel solar
Radiación solar
topic Digital signal processor
Dual-axis solar tracker
Inertial measurement unit
Solar panel
Solar radiation
Procesador de señal digital
Seguidor solar de doble eje
Unidad de medida inercial
Panel solar
Radiación solar
description Improving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents a new design of a dual-axis solar tracker system based on a real-time measurement of solar radiation in order to improve the conversion efficiency. As a first design stage, the dynamic models for solar radiation, solar panel and electromechanic system, were obtained using Matlab-Simulink. Then a control unit for capturing the signals from radiation sensors and an inertial measurement unit, was implemented in a High-Performance 16-Bit Digital Signal Controller DSPIC33FJ202MC. The acquired data are compared with a mathematical algorithm to calculate sun's position and set the control action to orient the panel. An embedded system with real-time sampling was developed. It does not rely on external databases and takes into account the relative position between the radiation sensor and solar panel to improve the efficiency of the system.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2019-05-21T13:29:00Z
dc.date.available.none.fl_str_mv 2019-05-21T13:29:00Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 13090127
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/4606
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 13090127
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/4606
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] A. Rezaee, “Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 65, pp. 1127-1138, November 2016. [2] M. Saadsaoud, H. Abbassi, S. Kermiche, and M. Ouada, “Study of Partial Shading Effects on Photovoltaic Arrays with Comprehensive Simulator for Global MPPT Control”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 413-420, 2016. [3] M. Amine, M. Ouassaid, and M. Maaroufi, “Single-Sensor Based MPPT for Photovoltaic Systems”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 570-576, 2016. [4] H. Bounechba, A. Bouzid, H. Snani, and A. Lashab, “Real time simulation of MPPT algorithms for PV energy system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 83, pp. 67-78, December 2016. [5] P. Kofinas, A. Dounis, G. Papadakis, and M. Assimakopoulos, “An Intelligent MPPT controller based on direct neural control for partially shaded PV system”, Energy and Buildings. Netherlands, vol. 90, pp. 51-64, March 2015. [6] Y. Chen, Y Jhang, and R. Liang, “A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems”, Solar Energy. United Kingdom, vol. 126, pp. 53- 63, March 2016. [7] A. Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions”, Applied Soft Computing. Netherlands, vol. 32, pp. 38-48, July 2015. [8] R. Pradhan, and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 64, pp. 792-803, January 2015. [9] L. Jiang, D. Maskell, and J. Patra, “A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions”, Energy and Buildings. Netherlands, vol. 58, pp. 227-236, March 2013. [10] F. Chen, and H. Yin, “Fabrication and laboratory-based performance testing of a building-integrated photovoltaicthermal roofing panel”, Applied Energy. United Kingdom, vol. 177, pp. 271-284, September 2016. [11] C. Lamnatou, J. Mondol, D. Chemisana, and C. Maurer, “Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 48, pp. 178-191, August 2015. [12] M. Buker, and S. Riffat, “Building integrated solar thermal collectors – A review”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 51, pp. 327-346, November 2015. [13] T. Yang, and A. Athienitis, “Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system”, Applied Energy. United Kingdom, vol. 159, pp. 70-79, December 2015. [14] J. Wu, B. Zhang, and L. Wang, “Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart”, Solar Energy. United Kingdom, vol. 127, pp. 36-47, April 2016. [15] I. Stamatescu, I. Făgărăşan, G. Stamatescu, N. Arghira, and S. Iliescu, “Design and Implementation of a Solartracking Algorithm”, Procedia Engineering. United Kingdom, vol. 69, pp. 500-507. [16] R. Vieira, F. Guerra, M. Vale, and M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 64, pp. 672-681, October 2016. [17] H. Fathabadi, “Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators”, Renewable Energy. United Kingdom, vol. 95, pp. 485-494, September 2016. [18] V. Poulek, A. Khudysh, and M. Libra, “Self powered solar tracker for Low Concentration PV (LCPV) systems”, Solar Energy. United Kingdom, vol. 127, pp. 109-112, April 2016. [19] Y. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies”, Renewable Energy. United Kingdom, vol. 72, pp. 88-98, December 2014. [20] H. Njoku, “Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria”, Energy. United Kingdom, vol. 95, pp. 504-516, January 2016. [21] W. Batayneh, A. Owais, and M. Nairoukh, “An intelligent fuzzy based tracking controller for a dual-axis solar PV system”, Automation in Construction. Netherlands, vol. 29, pp. 100-106, January 2013. [22] S. Yilmaz, H. Ozcalik, O. Dogmus, F. Dincer, O. Akgol, and M. Karaaslan, “Design of two axes sun tracking controller with analytically solar radiation calculations”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 43, pp. 997-1005, March 2015. [23] Y. El Mghouchi, A. El Bouardi, Z. Choulli, and T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment. Qatar, vol. 3, pp. 225-234, December 2014. [24] Ortiz E., “Approximation of a photovoltaic module model using fractional and integral polynomials”, 38 IEEE Photovoltaic Specialists Conference, Austin, pp. 2927- 2931, 3-8 June 2012.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal Of Renewable Energy Research
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/4606/1/Dual-Axis%20Solar%20Tracker.pdf
https://repositorio.cuc.edu.co/bitstream/11323/4606/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/4606/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/4606/5/Dual-Axis%20Solar%20Tracker.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/4606/6/Dual-Axis%20Solar%20Tracker.pdf.txt
bitstream.checksum.fl_str_mv bb2d37afe62983bbdbd7a7da932868c1
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
5b2864bfb5964efc8c6e9ca69852b4be
15707b8373aa5bf7b52433ea2883dd22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400232807923712
spelling Robles Algarin, Carlos Arturobf227ba18cb36f1fa995d2c7ba1c18b8Ospino Castro, Adalberto Jose850b33da8566317326fb6c2ccd472a4eNaranjo Casas, Josefa1448bd489ce18b163cd43fe6bad8143002019-05-21T13:29:00Z2019-05-21T13:29:00Z201713090127http://hdl.handle.net/11323/4606Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Improving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents a new design of a dual-axis solar tracker system based on a real-time measurement of solar radiation in order to improve the conversion efficiency. As a first design stage, the dynamic models for solar radiation, solar panel and electromechanic system, were obtained using Matlab-Simulink. Then a control unit for capturing the signals from radiation sensors and an inertial measurement unit, was implemented in a High-Performance 16-Bit Digital Signal Controller DSPIC33FJ202MC. The acquired data are compared with a mathematical algorithm to calculate sun's position and set the control action to orient the panel. An embedded system with real-time sampling was developed. It does not rely on external databases and takes into account the relative position between the radiation sensor and solar panel to improve the efficiency of the system.Mejorar la eficiencia de conversión de los paneles solares se ha convertido en un área de estudio desafiante para los investigadores. Los seguidores solares son una alternativa para alcanzar este objetivo, como se ha demostrado en muchos casos, al rastrear la posición de los cambios del sol, aumenta la productividad del panel. Este documento presenta un nuevo diseño de un sistema de seguimiento solar de doble eje basado en una medición en tiempo real de la radiación solar para mejorar la eficiencia de conversión. Como primera etapa de diseño, los modelos dinámicos para radiación solar, panel solar y sistema electromecánico, se obtuvieron utilizando Matlab-Simulink. Luego se implementó una unidad de control para capturar las señales de los sensores de radiación y una unidad de medición inercial en un controlador de señal digital de alto rendimiento de 16 bits DSPIC33FJ202MC. Los datos adquiridos se comparan con un algoritmo matemático para calcular la posición del sol y configurar la acción de control para orientar el panel. Se desarrolló un sistema embebido con muestreo en tiempo real. No se basa en bases de datos externas y tiene en cuenta la posición relativa entre el sensor de radiación y el panel solar para mejorar la eficiencia del sistema.engInternational Journal Of Renewable Energy ResearchAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Digital signal processorDual-axis solar trackerInertial measurement unitSolar panelSolar radiationProcesador de señal digitalSeguidor solar de doble ejeUnidad de medida inercialPanel solarRadiación solarDual-axis solar tracker for using in photovoltaic systemsRastreador solar de doble eje para uso en sistemas fotovoltaicos.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] A. Rezaee, “Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 65, pp. 1127-1138, November 2016. [2] M. Saadsaoud, H. Abbassi, S. Kermiche, and M. Ouada, “Study of Partial Shading Effects on Photovoltaic Arrays with Comprehensive Simulator for Global MPPT Control”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 413-420, 2016. [3] M. Amine, M. Ouassaid, and M. Maaroufi, “Single-Sensor Based MPPT for Photovoltaic Systems”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 570-576, 2016. [4] H. Bounechba, A. Bouzid, H. Snani, and A. Lashab, “Real time simulation of MPPT algorithms for PV energy system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 83, pp. 67-78, December 2016. [5] P. Kofinas, A. Dounis, G. Papadakis, and M. Assimakopoulos, “An Intelligent MPPT controller based on direct neural control for partially shaded PV system”, Energy and Buildings. Netherlands, vol. 90, pp. 51-64, March 2015. [6] Y. Chen, Y Jhang, and R. Liang, “A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems”, Solar Energy. United Kingdom, vol. 126, pp. 53- 63, March 2016. [7] A. Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions”, Applied Soft Computing. Netherlands, vol. 32, pp. 38-48, July 2015. [8] R. Pradhan, and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 64, pp. 792-803, January 2015. [9] L. Jiang, D. Maskell, and J. Patra, “A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions”, Energy and Buildings. Netherlands, vol. 58, pp. 227-236, March 2013. [10] F. Chen, and H. Yin, “Fabrication and laboratory-based performance testing of a building-integrated photovoltaicthermal roofing panel”, Applied Energy. United Kingdom, vol. 177, pp. 271-284, September 2016. [11] C. Lamnatou, J. Mondol, D. Chemisana, and C. Maurer, “Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 48, pp. 178-191, August 2015. [12] M. Buker, and S. Riffat, “Building integrated solar thermal collectors – A review”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 51, pp. 327-346, November 2015. [13] T. Yang, and A. Athienitis, “Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system”, Applied Energy. United Kingdom, vol. 159, pp. 70-79, December 2015. [14] J. Wu, B. Zhang, and L. Wang, “Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart”, Solar Energy. United Kingdom, vol. 127, pp. 36-47, April 2016. [15] I. Stamatescu, I. Făgărăşan, G. Stamatescu, N. Arghira, and S. Iliescu, “Design and Implementation of a Solartracking Algorithm”, Procedia Engineering. United Kingdom, vol. 69, pp. 500-507. [16] R. Vieira, F. Guerra, M. Vale, and M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 64, pp. 672-681, October 2016. [17] H. Fathabadi, “Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators”, Renewable Energy. United Kingdom, vol. 95, pp. 485-494, September 2016. [18] V. Poulek, A. Khudysh, and M. Libra, “Self powered solar tracker for Low Concentration PV (LCPV) systems”, Solar Energy. United Kingdom, vol. 127, pp. 109-112, April 2016. [19] Y. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies”, Renewable Energy. United Kingdom, vol. 72, pp. 88-98, December 2014. [20] H. Njoku, “Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria”, Energy. United Kingdom, vol. 95, pp. 504-516, January 2016. [21] W. Batayneh, A. Owais, and M. Nairoukh, “An intelligent fuzzy based tracking controller for a dual-axis solar PV system”, Automation in Construction. Netherlands, vol. 29, pp. 100-106, January 2013. [22] S. Yilmaz, H. Ozcalik, O. Dogmus, F. Dincer, O. Akgol, and M. Karaaslan, “Design of two axes sun tracking controller with analytically solar radiation calculations”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 43, pp. 997-1005, March 2015. [23] Y. El Mghouchi, A. El Bouardi, Z. Choulli, and T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment. Qatar, vol. 3, pp. 225-234, December 2014. [24] Ortiz E., “Approximation of a photovoltaic module model using fractional and integral polynomials”, 38 IEEE Photovoltaic Specialists Conference, Austin, pp. 2927- 2931, 3-8 June 2012.ORIGINALDual-Axis Solar Tracker.pdfDual-Axis Solar Tracker.pdfapplication/pdf577428https://repositorio.cuc.edu.co/bitstream/11323/4606/1/Dual-Axis%20Solar%20Tracker.pdfbb2d37afe62983bbdbd7a7da932868c1MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstream/11323/4606/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/4606/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILDual-Axis Solar Tracker.pdf.jpgDual-Axis Solar Tracker.pdf.jpgimage/jpeg70532https://repositorio.cuc.edu.co/bitstream/11323/4606/5/Dual-Axis%20Solar%20Tracker.pdf.jpg5b2864bfb5964efc8c6e9ca69852b4beMD55open accessTEXTDual-Axis Solar Tracker.pdf.txtDual-Axis Solar Tracker.pdf.txttext/plain26933https://repositorio.cuc.edu.co/bitstream/11323/4606/6/Dual-Axis%20Solar%20Tracker.pdf.txt15707b8373aa5bf7b52433ea2883dd22MD56open access11323/4606oai:repositorio.cuc.edu.co:11323/46062023-12-14 17:12:32.197Attribution-NonCommercial-ShareAlike 4.0 International|||http://creativecommons.org/licenses/by-nc-sa/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=