Dual-axis solar tracker for using in photovoltaic systems
Improving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents...
- Autores:
-
Robles Algarin, Carlos Arturo
Ospino Castro, Adalberto Jose
Naranjo Casas, Jose
Ospino C., Adalberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4606
- Acceso en línea:
- https://hdl.handle.net/11323/4606
https://repositorio.cuc.edu.co/
- Palabra clave:
- Digital signal processor
Dual-axis solar tracker
Inertial measurement unit
Solar panel
Solar radiation
Procesador de señal digital
Seguidor solar de doble eje
Unidad de medida inercial
Panel solar
Radiación solar
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_420116159a2de6171b8125658776ea03 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4606 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dual-axis solar tracker for using in photovoltaic systems |
dc.title.translated.spa.fl_str_mv |
Rastreador solar de doble eje para uso en sistemas fotovoltaicos. |
title |
Dual-axis solar tracker for using in photovoltaic systems |
spellingShingle |
Dual-axis solar tracker for using in photovoltaic systems Digital signal processor Dual-axis solar tracker Inertial measurement unit Solar panel Solar radiation Procesador de señal digital Seguidor solar de doble eje Unidad de medida inercial Panel solar Radiación solar |
title_short |
Dual-axis solar tracker for using in photovoltaic systems |
title_full |
Dual-axis solar tracker for using in photovoltaic systems |
title_fullStr |
Dual-axis solar tracker for using in photovoltaic systems |
title_full_unstemmed |
Dual-axis solar tracker for using in photovoltaic systems |
title_sort |
Dual-axis solar tracker for using in photovoltaic systems |
dc.creator.fl_str_mv |
Robles Algarin, Carlos Arturo Ospino Castro, Adalberto Jose Naranjo Casas, Jose Ospino C., Adalberto |
dc.contributor.author.spa.fl_str_mv |
Robles Algarin, Carlos Arturo Ospino Castro, Adalberto Jose Naranjo Casas, Jose |
dc.contributor.author.none.fl_str_mv |
Ospino C., Adalberto |
dc.subject.spa.fl_str_mv |
Digital signal processor Dual-axis solar tracker Inertial measurement unit Solar panel Solar radiation Procesador de señal digital Seguidor solar de doble eje Unidad de medida inercial Panel solar Radiación solar |
topic |
Digital signal processor Dual-axis solar tracker Inertial measurement unit Solar panel Solar radiation Procesador de señal digital Seguidor solar de doble eje Unidad de medida inercial Panel solar Radiación solar |
description |
Improving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents a new design of a dual-axis solar tracker system based on a real-time measurement of solar radiation in order to improve the conversion efficiency. As a first design stage, the dynamic models for solar radiation, solar panel and electromechanic system, were obtained using Matlab-Simulink. Then a control unit for capturing the signals from radiation sensors and an inertial measurement unit, was implemented in a High-Performance 16-Bit Digital Signal Controller DSPIC33FJ202MC. The acquired data are compared with a mathematical algorithm to calculate sun's position and set the control action to orient the panel. An embedded system with real-time sampling was developed. It does not rely on external databases and takes into account the relative position between the radiation sensor and solar panel to improve the efficiency of the system. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2019-05-21T13:29:00Z |
dc.date.available.none.fl_str_mv |
2019-05-21T13:29:00Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
13090127 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4606 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
13090127 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4606 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] A. Rezaee, “Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 65, pp. 1127-1138, November 2016. [2] M. Saadsaoud, H. Abbassi, S. Kermiche, and M. Ouada, “Study of Partial Shading Effects on Photovoltaic Arrays with Comprehensive Simulator for Global MPPT Control”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 413-420, 2016. [3] M. Amine, M. Ouassaid, and M. Maaroufi, “Single-Sensor Based MPPT for Photovoltaic Systems”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 570-576, 2016. [4] H. Bounechba, A. Bouzid, H. Snani, and A. Lashab, “Real time simulation of MPPT algorithms for PV energy system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 83, pp. 67-78, December 2016. [5] P. Kofinas, A. Dounis, G. Papadakis, and M. Assimakopoulos, “An Intelligent MPPT controller based on direct neural control for partially shaded PV system”, Energy and Buildings. Netherlands, vol. 90, pp. 51-64, March 2015. [6] Y. Chen, Y Jhang, and R. Liang, “A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems”, Solar Energy. United Kingdom, vol. 126, pp. 53- 63, March 2016. [7] A. Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions”, Applied Soft Computing. Netherlands, vol. 32, pp. 38-48, July 2015. [8] R. Pradhan, and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 64, pp. 792-803, January 2015. [9] L. Jiang, D. Maskell, and J. Patra, “A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions”, Energy and Buildings. Netherlands, vol. 58, pp. 227-236, March 2013. [10] F. Chen, and H. Yin, “Fabrication and laboratory-based performance testing of a building-integrated photovoltaicthermal roofing panel”, Applied Energy. United Kingdom, vol. 177, pp. 271-284, September 2016. [11] C. Lamnatou, J. Mondol, D. Chemisana, and C. Maurer, “Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 48, pp. 178-191, August 2015. [12] M. Buker, and S. Riffat, “Building integrated solar thermal collectors – A review”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 51, pp. 327-346, November 2015. [13] T. Yang, and A. Athienitis, “Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system”, Applied Energy. United Kingdom, vol. 159, pp. 70-79, December 2015. [14] J. Wu, B. Zhang, and L. Wang, “Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart”, Solar Energy. United Kingdom, vol. 127, pp. 36-47, April 2016. [15] I. Stamatescu, I. Făgărăşan, G. Stamatescu, N. Arghira, and S. Iliescu, “Design and Implementation of a Solartracking Algorithm”, Procedia Engineering. United Kingdom, vol. 69, pp. 500-507. [16] R. Vieira, F. Guerra, M. Vale, and M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 64, pp. 672-681, October 2016. [17] H. Fathabadi, “Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators”, Renewable Energy. United Kingdom, vol. 95, pp. 485-494, September 2016. [18] V. Poulek, A. Khudysh, and M. Libra, “Self powered solar tracker for Low Concentration PV (LCPV) systems”, Solar Energy. United Kingdom, vol. 127, pp. 109-112, April 2016. [19] Y. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies”, Renewable Energy. United Kingdom, vol. 72, pp. 88-98, December 2014. [20] H. Njoku, “Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria”, Energy. United Kingdom, vol. 95, pp. 504-516, January 2016. [21] W. Batayneh, A. Owais, and M. Nairoukh, “An intelligent fuzzy based tracking controller for a dual-axis solar PV system”, Automation in Construction. Netherlands, vol. 29, pp. 100-106, January 2013. [22] S. Yilmaz, H. Ozcalik, O. Dogmus, F. Dincer, O. Akgol, and M. Karaaslan, “Design of two axes sun tracking controller with analytically solar radiation calculations”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 43, pp. 997-1005, March 2015. [23] Y. El Mghouchi, A. El Bouardi, Z. Choulli, and T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment. Qatar, vol. 3, pp. 225-234, December 2014. [24] Ortiz E., “Approximation of a photovoltaic module model using fractional and integral polynomials”, 38 IEEE Photovoltaic Specialists Conference, Austin, pp. 2927- 2931, 3-8 June 2012. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Journal Of Renewable Energy Research |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/55e1a39a-8995-4e6b-9a8c-a9ff6dfe9f8a/download https://repositorio.cuc.edu.co/bitstreams/9f15cd6f-a65c-452a-bef9-d2d35090641a/download https://repositorio.cuc.edu.co/bitstreams/58b6cdf0-c45f-4d73-a25e-44dbe822af72/download https://repositorio.cuc.edu.co/bitstreams/5b5f7f54-f5c8-4d21-8097-9f2c471ea97c/download https://repositorio.cuc.edu.co/bitstreams/4a3c26e6-8787-49e6-b4c8-219b6e1c2742/download |
bitstream.checksum.fl_str_mv |
bb2d37afe62983bbdbd7a7da932868c1 934f4ca17e109e0a05eaeaba504d7ce4 8a4605be74aa9ea9d79846c1fba20a33 5b2864bfb5964efc8c6e9ca69852b4be 15707b8373aa5bf7b52433ea2883dd22 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166857814704128 |
spelling |
Robles Algarin, Carlos ArturoOspino Castro, Adalberto JoseNaranjo Casas, JoseOspino C., Adalbertovirtual::890-12019-05-21T13:29:00Z2019-05-21T13:29:00Z201713090127https://hdl.handle.net/11323/4606Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Improving the conversion efficiency of solar panels has become a challenging area of study for researchers. Solar trackers are an alternative to reach this goal, as has been shown in many cases, by tracking the position of the sun changes, the productivity of the panel increases. This paper presents a new design of a dual-axis solar tracker system based on a real-time measurement of solar radiation in order to improve the conversion efficiency. As a first design stage, the dynamic models for solar radiation, solar panel and electromechanic system, were obtained using Matlab-Simulink. Then a control unit for capturing the signals from radiation sensors and an inertial measurement unit, was implemented in a High-Performance 16-Bit Digital Signal Controller DSPIC33FJ202MC. The acquired data are compared with a mathematical algorithm to calculate sun's position and set the control action to orient the panel. An embedded system with real-time sampling was developed. It does not rely on external databases and takes into account the relative position between the radiation sensor and solar panel to improve the efficiency of the system.Mejorar la eficiencia de conversión de los paneles solares se ha convertido en un área de estudio desafiante para los investigadores. Los seguidores solares son una alternativa para alcanzar este objetivo, como se ha demostrado en muchos casos, al rastrear la posición de los cambios del sol, aumenta la productividad del panel. Este documento presenta un nuevo diseño de un sistema de seguimiento solar de doble eje basado en una medición en tiempo real de la radiación solar para mejorar la eficiencia de conversión. Como primera etapa de diseño, los modelos dinámicos para radiación solar, panel solar y sistema electromecánico, se obtuvieron utilizando Matlab-Simulink. Luego se implementó una unidad de control para capturar las señales de los sensores de radiación y una unidad de medición inercial en un controlador de señal digital de alto rendimiento de 16 bits DSPIC33FJ202MC. Los datos adquiridos se comparan con un algoritmo matemático para calcular la posición del sol y configurar la acción de control para orientar el panel. Se desarrolló un sistema embebido con muestreo en tiempo real. No se basa en bases de datos externas y tiene en cuenta la posición relativa entre el sensor de radiación y el panel solar para mejorar la eficiencia del sistema.Robles Algarin, Carlos Arturo-9289f664-b72e-4d79-98c9-4f5d2aa70c08-0Ospino Castro, Adalberto Jose-0000-0003-1466-0424-600Naranjo Casas, Jose-e9cec470-88af-44f8-a8f0-eb3ba63e2a54-0engInternational Journal Of Renewable Energy ResearchAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Digital signal processorDual-axis solar trackerInertial measurement unitSolar panelSolar radiationProcesador de señal digitalSeguidor solar de doble ejeUnidad de medida inercialPanel solarRadiación solarDual-axis solar tracker for using in photovoltaic systemsRastreador solar de doble eje para uso en sistemas fotovoltaicos.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] A. Rezaee, “Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 65, pp. 1127-1138, November 2016. [2] M. Saadsaoud, H. Abbassi, S. Kermiche, and M. Ouada, “Study of Partial Shading Effects on Photovoltaic Arrays with Comprehensive Simulator for Global MPPT Control”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 413-420, 2016. [3] M. Amine, M. Ouassaid, and M. Maaroufi, “Single-Sensor Based MPPT for Photovoltaic Systems”, International Journal of Renewable Energy Research. Turkey, vol. 6, no. 2, pp. 570-576, 2016. [4] H. Bounechba, A. Bouzid, H. Snani, and A. Lashab, “Real time simulation of MPPT algorithms for PV energy system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 83, pp. 67-78, December 2016. [5] P. Kofinas, A. Dounis, G. Papadakis, and M. Assimakopoulos, “An Intelligent MPPT controller based on direct neural control for partially shaded PV system”, Energy and Buildings. Netherlands, vol. 90, pp. 51-64, March 2015. [6] Y. Chen, Y Jhang, and R. Liang, “A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems”, Solar Energy. United Kingdom, vol. 126, pp. 53- 63, March 2016. [7] A. Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions”, Applied Soft Computing. Netherlands, vol. 32, pp. 38-48, July 2015. [8] R. Pradhan, and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system”, International Journal of Electrical Power & Energy Systems. United Kingdom, vol. 64, pp. 792-803, January 2015. [9] L. Jiang, D. Maskell, and J. Patra, “A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions”, Energy and Buildings. Netherlands, vol. 58, pp. 227-236, March 2013. [10] F. Chen, and H. Yin, “Fabrication and laboratory-based performance testing of a building-integrated photovoltaicthermal roofing panel”, Applied Energy. United Kingdom, vol. 177, pp. 271-284, September 2016. [11] C. Lamnatou, J. Mondol, D. Chemisana, and C. Maurer, “Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 48, pp. 178-191, August 2015. [12] M. Buker, and S. Riffat, “Building integrated solar thermal collectors – A review”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 51, pp. 327-346, November 2015. [13] T. Yang, and A. Athienitis, “Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system”, Applied Energy. United Kingdom, vol. 159, pp. 70-79, December 2015. [14] J. Wu, B. Zhang, and L. Wang, “Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart”, Solar Energy. United Kingdom, vol. 127, pp. 36-47, April 2016. [15] I. Stamatescu, I. Făgărăşan, G. Stamatescu, N. Arghira, and S. Iliescu, “Design and Implementation of a Solartracking Algorithm”, Procedia Engineering. United Kingdom, vol. 69, pp. 500-507. [16] R. Vieira, F. Guerra, M. Vale, and M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 64, pp. 672-681, October 2016. [17] H. Fathabadi, “Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators”, Renewable Energy. United Kingdom, vol. 95, pp. 485-494, September 2016. [18] V. Poulek, A. Khudysh, and M. Libra, “Self powered solar tracker for Low Concentration PV (LCPV) systems”, Solar Energy. United Kingdom, vol. 127, pp. 109-112, April 2016. [19] Y. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies”, Renewable Energy. United Kingdom, vol. 72, pp. 88-98, December 2014. [20] H. Njoku, “Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria”, Energy. United Kingdom, vol. 95, pp. 504-516, January 2016. [21] W. Batayneh, A. Owais, and M. Nairoukh, “An intelligent fuzzy based tracking controller for a dual-axis solar PV system”, Automation in Construction. Netherlands, vol. 29, pp. 100-106, January 2013. [22] S. Yilmaz, H. Ozcalik, O. Dogmus, F. Dincer, O. Akgol, and M. Karaaslan, “Design of two axes sun tracking controller with analytically solar radiation calculations”, Renewable and Sustainable Energy Reviews. United Kingdom, vol. 43, pp. 997-1005, March 2015. [23] Y. El Mghouchi, A. El Bouardi, Z. Choulli, and T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment. Qatar, vol. 3, pp. 225-234, December 2014. [24] Ortiz E., “Approximation of a photovoltaic module model using fractional and integral polynomials”, 38 IEEE Photovoltaic Specialists Conference, Austin, pp. 2927- 2931, 3-8 June 2012.Publicationaf89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::890-1af89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::890-1https://scholar.google.es/citations?user=ODmDjToAAAAJ&hl=esvirtual::890-10000-0003-1466-0424virtual::890-1ORIGINALDual-Axis Solar Tracker.pdfDual-Axis Solar Tracker.pdfapplication/pdf577428https://repositorio.cuc.edu.co/bitstreams/55e1a39a-8995-4e6b-9a8c-a9ff6dfe9f8a/downloadbb2d37afe62983bbdbd7a7da932868c1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/9f15cd6f-a65c-452a-bef9-d2d35090641a/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/58b6cdf0-c45f-4d73-a25e-44dbe822af72/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDual-Axis Solar Tracker.pdf.jpgDual-Axis Solar Tracker.pdf.jpgimage/jpeg70532https://repositorio.cuc.edu.co/bitstreams/5b5f7f54-f5c8-4d21-8097-9f2c471ea97c/download5b2864bfb5964efc8c6e9ca69852b4beMD55TEXTDual-Axis Solar Tracker.pdf.txtDual-Axis Solar Tracker.pdf.txttext/plain26933https://repositorio.cuc.edu.co/bitstreams/4a3c26e6-8787-49e6-b4c8-219b6e1c2742/download15707b8373aa5bf7b52433ea2883dd22MD5611323/4606oai:repositorio.cuc.edu.co:11323/46062025-02-25 11:44:41.852http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |