Bioperation approach to Przemski's decomposition theorems

Przemski introduced D(?, s)-set, D(?, b)-set, D(p, sp)-set, D(p, b)- set and D(b, sp)-set to obtain several decompositions of continuity. In this paper, we extend these sets via bioperation and obtain new decompositions of continuity.

Autores:
Carpintero, Carlos
Nirmala, Rajendren
Rajesh, N.
ROSAS, ENNIS
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7141
Acceso en línea:
https://hdl.handle.net/11323/7141
https://doi.org/10.22199/issn.0717-6279-2020-05-0073
https://repositorio.cuc.edu.co/
Palabra clave:
Topological spaces
γ ∨ γ'-open set
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_415e7d1d148c6dadbb3f5164ace5ae46
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7141
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Bioperation approach to Przemski's decomposition theorems
title Bioperation approach to Przemski's decomposition theorems
spellingShingle Bioperation approach to Przemski's decomposition theorems
Topological spaces
γ ∨ γ'-open set
title_short Bioperation approach to Przemski's decomposition theorems
title_full Bioperation approach to Przemski's decomposition theorems
title_fullStr Bioperation approach to Przemski's decomposition theorems
title_full_unstemmed Bioperation approach to Przemski's decomposition theorems
title_sort Bioperation approach to Przemski's decomposition theorems
dc.creator.fl_str_mv Carpintero, Carlos
Nirmala, Rajendren
Rajesh, N.
ROSAS, ENNIS
dc.contributor.author.spa.fl_str_mv Carpintero, Carlos
Nirmala, Rajendren
Rajesh, N.
ROSAS, ENNIS
dc.subject.spa.fl_str_mv Topological spaces
γ ∨ γ'-open set
topic Topological spaces
γ ∨ γ'-open set
description Przemski introduced D(?, s)-set, D(?, b)-set, D(p, sp)-set, D(p, b)- set and D(b, sp)-set to obtain several decompositions of continuity. In this paper, we extend these sets via bioperation and obtain new decompositions of continuity.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-14T23:29:58Z
dc.date.available.none.fl_str_mv 2020-10-14T23:29:58Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0717-6279
0716-0917
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7141
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.22199/issn.0717-6279-2020-05-0073
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0717-6279
0716-0917
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7141
https://doi.org/10.22199/issn.0717-6279-2020-05-0073
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] S. Kasahara, “Operation-compact spaces”, Mathematics japonica, vol. 24, pp. 97-105, 1979.
[2] R. Nirmala and N. Rajesh, “Bioperation-regular open sets”, Aryabhata journal mathematics informatics, vol. 8, no. 1, pp. 53-62, 2016.
[3] R. Nirmala and N. Rajesh, “Generalization of semiopen sets via bioperation”(under preparation).
[4] H. Ogata and H. Maki, “Bioperation on topological spaces”, Mathematics japonica, vol. 38, no. 5, pp. 981-985, 1993.
[5] M. Perzemshi, “A decomposition of continuity and α-continuity”, Acta mathematica hungarica, vol. 61, no. 1/2), pp. 93-98, 1993, doi: 10.1007/BF01872101
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Proyecciones
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3675
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f2a5938d-ad78-4d30-b1ae-b8f670e6c823/download
https://repositorio.cuc.edu.co/bitstreams/4719b030-e854-47f2-b5de-36419d2c2663/download
https://repositorio.cuc.edu.co/bitstreams/f4c4618c-af05-4922-9e63-dee8a5e81052/download
https://repositorio.cuc.edu.co/bitstreams/5ec52d80-ea2c-40df-9cca-2b495fc36d8f/download
https://repositorio.cuc.edu.co/bitstreams/c6528d61-957c-446b-a252-4b6189b5398d/download
bitstream.checksum.fl_str_mv 819d82060a10640dfa7dbac75c806387
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
2821cc65ca7e6b7398fb514a0798fa03
668cb033a118ee1dd86401386e623093
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760778264444928
spelling Carpintero, CarlosNirmala, RajendrenRajesh, N.ROSAS, ENNIS2020-10-14T23:29:58Z2020-10-14T23:29:58Z20200717-62790716-0917https://hdl.handle.net/11323/7141https://doi.org/10.22199/issn.0717-6279-2020-05-0073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Przemski introduced D(?, s)-set, D(?, b)-set, D(p, sp)-set, D(p, b)- set and D(b, sp)-set to obtain several decompositions of continuity. In this paper, we extend these sets via bioperation and obtain new decompositions of continuity.Carpintero, Carlos-will be generated-orcid-0000-0003-3831-952X-600Nirmala, Rajendren-will be generated-orcid-0000-0003-0114-6370-600Rajesh, N.ROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Proyeccioneshttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3675Topological spacesγ ∨ γ'-open setBioperation approach to Przemski's decomposition theoremsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] S. Kasahara, “Operation-compact spaces”, Mathematics japonica, vol. 24, pp. 97-105, 1979.[2] R. Nirmala and N. Rajesh, “Bioperation-regular open sets”, Aryabhata journal mathematics informatics, vol. 8, no. 1, pp. 53-62, 2016.[3] R. Nirmala and N. Rajesh, “Generalization of semiopen sets via bioperation”(under preparation).[4] H. Ogata and H. Maki, “Bioperation on topological spaces”, Mathematics japonica, vol. 38, no. 5, pp. 981-985, 1993.[5] M. Perzemshi, “A decomposition of continuity and α-continuity”, Acta mathematica hungarica, vol. 61, no. 1/2), pp. 93-98, 1993, doi: 10.1007/BF01872101PublicationORIGINALBioperation approach to Przemski's decomposition theorems.pdfBioperation approach to Przemski's decomposition theorems.pdfapplication/pdf626734https://repositorio.cuc.edu.co/bitstreams/f2a5938d-ad78-4d30-b1ae-b8f670e6c823/download819d82060a10640dfa7dbac75c806387MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/4719b030-e854-47f2-b5de-36419d2c2663/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f4c4618c-af05-4922-9e63-dee8a5e81052/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILBioperation approach to Przemski's decomposition theorems.pdf.jpgBioperation approach to Przemski's decomposition theorems.pdf.jpgimage/jpeg47823https://repositorio.cuc.edu.co/bitstreams/5ec52d80-ea2c-40df-9cca-2b495fc36d8f/download2821cc65ca7e6b7398fb514a0798fa03MD54TEXTBioperation approach to Przemski's decomposition theorems.pdf.txtBioperation approach to Przemski's decomposition theorems.pdf.txttext/plain17043https://repositorio.cuc.edu.co/bitstreams/c6528d61-957c-446b-a252-4b6189b5398d/download668cb033a118ee1dd86401386e623093MD5511323/7141oai:repositorio.cuc.edu.co:11323/71412024-09-17 11:06:34.969http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==