Nanoparticles from construction wastes: A problem to health and the environment

The present study deals with the nano-mineralogy and geochemistry of ultrafine particles in construction waste from the Porto Alegre region in Southern Brazil. Uncontrolled construction waste dumps and poor management practices in formal disposal sites in the area may increase exposure risks to popu...

Full description

Autores:
L.S. Oliveira, Marcos
Izquierdo, Maria
Querol, Xavier
Lieberman, Roy N.
K. Saikia, Binoy
F.O. Silva, Luis
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2551
Acceso en línea:
https://hdl.handle.net/11323/2551
https://repositorio.cuc.edu.co/
Palabra clave:
Nanoparticles
Hazardous elements
Environmental impacts
Civil construction waste
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_4153efc4caa509c8e88908c05397fe51
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2551
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Nanoparticles from construction wastes: A problem to health and the environment
title Nanoparticles from construction wastes: A problem to health and the environment
spellingShingle Nanoparticles from construction wastes: A problem to health and the environment
Nanoparticles
Hazardous elements
Environmental impacts
Civil construction waste
title_short Nanoparticles from construction wastes: A problem to health and the environment
title_full Nanoparticles from construction wastes: A problem to health and the environment
title_fullStr Nanoparticles from construction wastes: A problem to health and the environment
title_full_unstemmed Nanoparticles from construction wastes: A problem to health and the environment
title_sort Nanoparticles from construction wastes: A problem to health and the environment
dc.creator.fl_str_mv L.S. Oliveira, Marcos
Izquierdo, Maria
Querol, Xavier
Lieberman, Roy N.
K. Saikia, Binoy
F.O. Silva, Luis
dc.contributor.author.spa.fl_str_mv L.S. Oliveira, Marcos
Izquierdo, Maria
Querol, Xavier
Lieberman, Roy N.
K. Saikia, Binoy
F.O. Silva, Luis
dc.subject.spa.fl_str_mv Nanoparticles
Hazardous elements
Environmental impacts
Civil construction waste
topic Nanoparticles
Hazardous elements
Environmental impacts
Civil construction waste
description The present study deals with the nano-mineralogy and geochemistry of ultrafine particles in construction waste from the Porto Alegre region in Southern Brazil. Uncontrolled construction waste dumps and poor management practices in formal disposal sites in the area may increase exposure risks to population. Whilst the physicochemical properties of construction wastes are well documented in the literature, the characteristics of nanoparticles in their formulations are not well known. Given that degradation of construction materials may unlock and enable further release of nano-particulates present, we focused on the <63 mm fraction to examine the geochemistry of inhalable nano-particulates that could cause adverse health impacts on local communities. A particular feature across the studied wastes are the numerous aerodynamically favourable, spherical-shaped nanoparticles of magnetite, rutile and anatase. The detected nanoparticles contained a number of elements including Al, As, Au, Ca, Cd, Co, Cr, Cu, Hg, Na, Fe, K, S, Sn, Si and. An enrichment in metals and metalloids such as As, Co, Cr, Cu, Hg, Fe, Sn or Ta in particles in the nano-scale range in relation to larger particles was observed. The presence of carbon nanotubes was also noted. The leaching tests showed that the construction wastes did not reach the limits for their disposal as hazardous waste according the European Directive. Whilst the majority of trace elements were highly immobile, the water extractability for oxyanionic-forming metalloids suggests possible migration to surface and groundwater bodies. This work seeks to bring awareness on the impacts of unsustainable construction waste management, and the relevance of improved regulations regarding their final disposal.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-02-15T19:45:21Z
dc.date.available.none.fl_str_mv 2019-02-15T19:45:21Z
dc.date.issued.none.fl_str_mv 2019-02-08
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2551
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/2551
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agudelo-Castaneda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. ~ Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158e170. https://doi.org/10.1016/j.envpol.2017.01. 075. Akhtar, A., Sarmah, A.K., 2018. Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J. Clean. Prod. 186, 262e281. https://doi.org/10.1016/j.jclepro.2018.03.085. Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., Nowack, B., 2013. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ. Sci. Proc. Imp. 15, 2186e2193. https://doi.org/10.1039/ C3EM00331K. Ancion, P.Y., Lear, G., Lewis, G.D., 2010. Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ. Pollut. 158, 2738e2745. https://doi.org/10. 1016/j.envpol.2010.04.013. Araújo, I., Costa, D., de Moraes, R., 2014. Identification and characterization of particulate matter concentrations at construction jobsites. Sustainability 6, 7666e7688. https://doi.org/10.3390/su6117666. Arciello, M., Rotilio, G., Rossi, L., 2005. Copper-dependent toxicity in SHSY5Yneuroblastoma cells involves mitochondrial damage. Biochem. Biophys. Res. Commun. 327, 454e459. https://doi.org/10.1016/j.bbrc.2004.12.022. Baalousha, M., Yang, Y., Vance, M.E., Colman, B., McNeal, S., Xu, J., Blaszczak, J., Steele, M., Bernhardt, E., Hochella Jr., M.F., 2016. Outdoor urban nanomaterials: the emergence of a new, integrated, and critical field of study. Sci. Total Environ. 557e558, 740e753. https://doi.org/10.1016/j.scitotenv.2016.03.132. Butera, S., Christensen, T.H., Astrup, T.F., 2015. Life cycle assessment of construction and demolition waste management. Waste Manag. 44, 196e205. https://doi. org/10.1016/j.wasman.2015.07.011. Chen, Q., Chen, Q., Zhang, Q., Qi, C., Fourie, A., Xiao, C., 2018. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod. 186, 418e429. https://doi.org/10.1016/j. jclepro.2018.03.131. Civeira, M., Pinheiro, R.N., Gredilla, A., de Vallejuelo, S., Oliveira, M.L.S., Ramos, C.G., Taffarel, S.R., Kautzmann, R.M., Madariaga, J.M., Silva, L.F.O., 2016a. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892e900. https:// doi.org/10.1016/j.scitotenv.2015.12.026. Civeira, M., Ramos, C.G., Oliveira, M.L.S., Kautzmann, Rubens M., Taffarel, Silvio R., Teixeira, Elba C., Silva, Luis F.O., 2016b. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142e147. https://doi.org/10.1016/j.chemosphere.2015.11.059. Coleman, N.J., Lee, W.E., Slipper, I.J., 2005. Interactions of aqueous Cu2þ, Zn2þ and Pb2þ ions with crushed concrete fines. J. Hazard Mater. 121, 203e213. https:// doi.org/10.1016/j.jhazmat.2005.02.009. CONAMA, 2011. Resolution Number 431 Stablishes a New Classification for Gypsum. National Environmental Council, Brazil. De Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment. Chemosphere 169, 725e733. https://doi.org/10.1016/j. chemosphere.2016.09.125. Dorevitch, S., Demirtas, H., Perksy, V.W., Erdal, S., Conroy, L., Schoonover, T., Scheff, P.A., 2006. Demolition of high-rise public housing increases particulate matter air pollution in communities of high-risk asthmatics. J. Air Waste Manage. 56, 1022e1032. https://doi.org/10.1080/10473289.2006.10464504. EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook: Technical Report No. 9/2009. http://www.eea.europa.eu/publications/emep-eea-emissioninventoryguidebook-2009. Engelsen, C.J., van der Sloot, H.A., Wibetoe, G., Petkovic, G., Stoltenberg-Hansson, E., Lund, W., 2009. Release of major elements from recycled concrete aggregates and geochemical modelling. Cement Concr. Res. 39, 446e459. https://doi.org/ 10.1016/j.cemconres.2009.02.001. E"stokova, A., Pala ! "s"cakov ! a, L., Singovszk ! a, E., Holub, M., 2012. Analysis of the chro- ! mium concentrations in cement materials. Procedia Eng. 42, 123e130. https:// doi.org/10.1016/j.proeng.2012.07.402. European Committee for Standardisation, 2002. EN 12457-2:2002 Characterisation of Waste - Leaching - Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 Mm. G! alvez-Martos, J.-L., Styles, D., Schoenberger, H., Zeschmar-Lahl, B., 2018. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 136, 166e178. https://doi.org/10.1016/j.resconrec.2018.04.016. Galvín, A.P., Ayuso, J., García, I., Jimenez, J.R., Guti ! errez, F., 2014. The effect of ! compaction on the leaching and pollutant emission time of recycled aggregates from construction and demolition waste. J. Clean. Prod. 83, 294e304. https:// doi.org/10.1016/j.jclepro.2014.07.074. Geraldo, R.H., Pinheiro, S., Silva, J.S., Andrade, H.M.C., Dweck, J., Gonçalves, J.P., Camarini, G., 2017. Gypsum plaster waste recycling: a potential environmental and industrial solution. J. Clean. Prod. 164, 288e300. https://doi.org/10.1016/j. jclepro.2017.06.188. Giere, R., Blackford, M., Smith, K., 2006. TEM study of PM2.5 emitted from coal and ! tire combustion in a thermal power station. Environ. Sci. Technol. 40, 6235e6240. https://doi.org/10.1021/es060423m. Grazuleviciene, R., Nadisauskiene, R., Buinauskiene, J., Grazulevicius, T., 2009. Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol. J. Environ. Stud. 18, 819e825. Gredilla, A., de Vallejuelo, S.F.O., Gomez-Nubla, L., Carrero, J.A., de Leao, F.B., ~ Madariaga, J.M., Silva, L.F., 2017. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ. Sci. Pollut. Res. 24, 333e345. https://doi. org/10.1007/s11356-017-9831-6. Izquierdo, M., Querol, X., 2012. Leaching behaviour of elements from coal combustion fly ash: an overview. Int. J. Coal Geol. 94, 54e66. https://doi.org/10. 1016/j.coal.2011.10.006. Izquierdo, M., Lopez-Soler, A., Ramonich, E.V., Barra, M., Querol, X., 2002. Charac- ! terisation of bottom ash from municipal solid waste incineration in Catalonia. J. Chem. Technol. Biotechnol. 77, 576e583. https://doi.org/10.1002/jctb.605. Izquierdo, M., Querol, X., Josa, A., Vazquez, E., Lopez-Soler, A., 2008. Comparison ! between laboratory and field leachability of MSWI bottom ash as a road material. Sci. Total Environ. 389, 10e19. https://doi.org/10.1016/j.scitotenv.2007.08. 020. Jeli!c, I., " Sljivi!c-Ivanovi!c, M., Dimovi!c, S., Antonijevi!c, D., Jovi!c, M., Mirkovi!c, M., Smi"ciklas, I., 2018. The applicability of construction and demolition waste components for radionuclide sorption. J. Clean. Prod. 171, 322e332. https://doi. org/10.1016/j.jclepro.2017.09.220. Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., Burkhardt, M., 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158, 2900e2905. https://doi.org/10.1016/j.envpol.2010.06.009. Kan, A.T., Fu, G., Tomson, M.B., 2003. Effect of methanol and ethylene glycol on sulfates and halite scale formation. Ind. Eng. Chem. Res. 42, 2399e2408. https:// doi.org/10.1021/ie020724e. Lee, J., Mahendra, S., Alvarez, P.J.J., 2010. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4, 3580e3590. https://doi.org/589-599.10.1021/ nn100866w. Leon-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., ! Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589e599. https://doi.org/10.1016/j.scitotenv.2017.12.283. Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, Rubens M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470e471, 444e452. https://doi.org/10.1016/j. scitotenv.2013.10.007. McGee, J.K., Chen, L.C., Cohen, M.D., Chee, G.R., Prophete, C.M., Haykal-Coates, N., Wasson, S.J., Conner, T.L., Costa, D.L., Gavett, S.H., 2003. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ. Health Perspect. 111, 972e980. Oberdorster, G., Castranova, V., Asgharian, B., Sayre, P., 2015. Inhalation exposure to € carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J. Toxicol. Environ. Health B 18, 121e212. https://doi.org/10.1080/ 10937404.2015.1051611. Oliveira, M.L.S., da Boit, K., Pacheco, F., Teixeira, E.C., Schneider, I.L., Crissien, T.J., Pinto, D.C., Oyaga, R.M., Silva, L.F.O., 2018. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 160, 562e567. https://doi.org/10.1016/j.envres.2017.08.009. Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 14, 1e11. https://doi.org/10.1007/s11051-012-1109-9. Querol, X., Whateley, M.K.G., Fernandez-Turiel, J.L., Tuncali, E., 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 33, 255e271. https://doi.org/10.1016/S0166- 5162(96)00044-4. Silva, L.F.O., Moreno, T., Querol, X., 2009. An introductory TEM study of Fenanominerals within coal fly ash. Sci. Total Environ. 407, 4972e4974. https:// doi.org/10.1016%2Fj.scitotenv.2009.05.044. Stohs, S.J., Bagchi, D., 2005. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18, 321e336. https://doi.org/10.1016/0891-5849(94)00159-H. Suarez, S., Roca, X., Gasso, S., 2016. Product-speci ! fic life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the Spanish context. J. Clean. Prod. 117, 150e159. https://doi.org/ 10.1016/j.jclepro.2016.01.044. Tavira, J., Jimenez, J.R., Carvalho, M.T., Evangelista, L., de Brito, J., 2018. Recycling ! screening waste and recycled mixed aggregates from construction and demolition waste in paved bike lanes. J. Clean. Prod. 190, 211e220. https://doi.org/10. 1016/j.jclepro.2018.04.128. Tixier, G., Lafont, M., Grapentine, L., Rochfort, Q., Marsalek, J., 2011. Ecological risk assessment of urban stormwater ponds: literature review and proposal of a new conceptual approach providing ecological quality goals and the associated bioassessment tools. Ecol. Indicat. 11, 1497e1506. https://doi.org/10.1016/j. ecolind.2011.03.027. United Nations - Department of Economic and Social Affairs, 2014. World Urbanization Prospects. The 2014 Revision. ST/ESA/SER.A/352. 32p. U.S. Environmental Protection Agency (U.S. EPA), 1990. Clean Air Act Amendments of 1990, 1st Congress (1989.1990). U.S. EPA, Washington, DC. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N., 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242e2250. https://doi.org/10.1021/es204168d. Wilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, marcos M.L.S., Cutruneo, C.M.N.L., Taffarel, S.R., Silva, L.F.O., Hopps, S.D., Thomas, G.A., Hower, J.C., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy Fuel. 29, 7168e7177. https://doi.org/10.1021/acs.energyfuels.5b02033. Yang, J.P., Zhao, Y.C., Zhang, J.Y., Zheng, C.G., 2016. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 164, 419e428. https://doi.org/10.1016/j.fuel.2015.08.012.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e63269c0-012b-4605-8ad9-3a17039989a9/download
https://repositorio.cuc.edu.co/bitstreams/f2f6e6ee-3569-41b9-9547-4dd6179fa224/download
https://repositorio.cuc.edu.co/bitstreams/9affc69f-897a-4350-a424-0a37932e8e75/download
https://repositorio.cuc.edu.co/bitstreams/107753f0-7fdf-47db-b9d6-7a9c12f54f0b/download
bitstream.checksum.fl_str_mv e851e222a64abd7fe609a60ccda36f24
8a4605be74aa9ea9d79846c1fba20a33
7dcd862370fbcd98b6a417c1f5872cec
983bcbd507acb32764a48196d3f6886a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166904318001152
spelling L.S. Oliveira, MarcosIzquierdo, MariaQuerol, XavierLieberman, Roy N.K. Saikia, BinoyF.O. Silva, Luis2019-02-15T19:45:21Z2019-02-15T19:45:21Z2019-02-08https://hdl.handle.net/11323/2551Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present study deals with the nano-mineralogy and geochemistry of ultrafine particles in construction waste from the Porto Alegre region in Southern Brazil. Uncontrolled construction waste dumps and poor management practices in formal disposal sites in the area may increase exposure risks to population. Whilst the physicochemical properties of construction wastes are well documented in the literature, the characteristics of nanoparticles in their formulations are not well known. Given that degradation of construction materials may unlock and enable further release of nano-particulates present, we focused on the <63 mm fraction to examine the geochemistry of inhalable nano-particulates that could cause adverse health impacts on local communities. A particular feature across the studied wastes are the numerous aerodynamically favourable, spherical-shaped nanoparticles of magnetite, rutile and anatase. The detected nanoparticles contained a number of elements including Al, As, Au, Ca, Cd, Co, Cr, Cu, Hg, Na, Fe, K, S, Sn, Si and. An enrichment in metals and metalloids such as As, Co, Cr, Cu, Hg, Fe, Sn or Ta in particles in the nano-scale range in relation to larger particles was observed. The presence of carbon nanotubes was also noted. The leaching tests showed that the construction wastes did not reach the limits for their disposal as hazardous waste according the European Directive. Whilst the majority of trace elements were highly immobile, the water extractability for oxyanionic-forming metalloids suggests possible migration to surface and groundwater bodies. This work seeks to bring awareness on the impacts of unsustainable construction waste management, and the relevance of improved regulations regarding their final disposal.L.S. Oliveira, Marcos-2471cb5e-f31c-4ffa-ba13-39117a40fbbd-600Izquierdo, Maria-77676277-dfef-4821-acd3-17432fc4fc75-600Querol, Xavier-029b7449-3868-48bd-95f9-2d7890aba7a0-600Lieberman, Roy N.-5824ea29-84ba-4119-ad45-7cd4f1312056-600K. Saikia, Binoy-6b44536c-b3fb-4e94-8340-750845444a28-600F.O. Silva, Luis-195c5ec3-0632-432d-9db0-a6654d3642dd-600engUniversidad de la CostaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NanoparticlesHazardous elementsEnvironmental impactsCivil construction wasteNanoparticles from construction wastes: A problem to health and the environmentPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionAgudelo-Castaneda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. ~ Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158e170. https://doi.org/10.1016/j.envpol.2017.01. 075. Akhtar, A., Sarmah, A.K., 2018. Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J. Clean. Prod. 186, 262e281. https://doi.org/10.1016/j.jclepro.2018.03.085. Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., Nowack, B., 2013. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ. Sci. Proc. Imp. 15, 2186e2193. https://doi.org/10.1039/ C3EM00331K. Ancion, P.Y., Lear, G., Lewis, G.D., 2010. Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ. Pollut. 158, 2738e2745. https://doi.org/10. 1016/j.envpol.2010.04.013. Araújo, I., Costa, D., de Moraes, R., 2014. Identification and characterization of particulate matter concentrations at construction jobsites. Sustainability 6, 7666e7688. https://doi.org/10.3390/su6117666. Arciello, M., Rotilio, G., Rossi, L., 2005. Copper-dependent toxicity in SHSY5Yneuroblastoma cells involves mitochondrial damage. Biochem. Biophys. Res. Commun. 327, 454e459. https://doi.org/10.1016/j.bbrc.2004.12.022. Baalousha, M., Yang, Y., Vance, M.E., Colman, B., McNeal, S., Xu, J., Blaszczak, J., Steele, M., Bernhardt, E., Hochella Jr., M.F., 2016. Outdoor urban nanomaterials: the emergence of a new, integrated, and critical field of study. Sci. Total Environ. 557e558, 740e753. https://doi.org/10.1016/j.scitotenv.2016.03.132. Butera, S., Christensen, T.H., Astrup, T.F., 2015. Life cycle assessment of construction and demolition waste management. Waste Manag. 44, 196e205. https://doi. org/10.1016/j.wasman.2015.07.011. Chen, Q., Chen, Q., Zhang, Q., Qi, C., Fourie, A., Xiao, C., 2018. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod. 186, 418e429. https://doi.org/10.1016/j. jclepro.2018.03.131. Civeira, M., Pinheiro, R.N., Gredilla, A., de Vallejuelo, S., Oliveira, M.L.S., Ramos, C.G., Taffarel, S.R., Kautzmann, R.M., Madariaga, J.M., Silva, L.F.O., 2016a. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892e900. https:// doi.org/10.1016/j.scitotenv.2015.12.026. Civeira, M., Ramos, C.G., Oliveira, M.L.S., Kautzmann, Rubens M., Taffarel, Silvio R., Teixeira, Elba C., Silva, Luis F.O., 2016b. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142e147. https://doi.org/10.1016/j.chemosphere.2015.11.059. Coleman, N.J., Lee, W.E., Slipper, I.J., 2005. Interactions of aqueous Cu2þ, Zn2þ and Pb2þ ions with crushed concrete fines. J. Hazard Mater. 121, 203e213. https:// doi.org/10.1016/j.jhazmat.2005.02.009. CONAMA, 2011. Resolution Number 431 Stablishes a New Classification for Gypsum. National Environmental Council, Brazil. De Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: environmental impact and risk assessment. Chemosphere 169, 725e733. https://doi.org/10.1016/j. chemosphere.2016.09.125. Dorevitch, S., Demirtas, H., Perksy, V.W., Erdal, S., Conroy, L., Schoonover, T., Scheff, P.A., 2006. Demolition of high-rise public housing increases particulate matter air pollution in communities of high-risk asthmatics. J. Air Waste Manage. 56, 1022e1032. https://doi.org/10.1080/10473289.2006.10464504. EMEP/EEA, 2009. Air Pollutant Emission Inventory Guidebook: Technical Report No. 9/2009. http://www.eea.europa.eu/publications/emep-eea-emissioninventoryguidebook-2009. Engelsen, C.J., van der Sloot, H.A., Wibetoe, G., Petkovic, G., Stoltenberg-Hansson, E., Lund, W., 2009. Release of major elements from recycled concrete aggregates and geochemical modelling. Cement Concr. Res. 39, 446e459. https://doi.org/ 10.1016/j.cemconres.2009.02.001. E"stokova, A., Pala ! "s"cakov ! a, L., Singovszk ! a, E., Holub, M., 2012. Analysis of the chro- ! mium concentrations in cement materials. Procedia Eng. 42, 123e130. https:// doi.org/10.1016/j.proeng.2012.07.402. European Committee for Standardisation, 2002. EN 12457-2:2002 Characterisation of Waste - Leaching - Compliance Test for Leaching of Granular Waste Materials and Sludges - Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 Mm. G! alvez-Martos, J.-L., Styles, D., Schoenberger, H., Zeschmar-Lahl, B., 2018. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 136, 166e178. https://doi.org/10.1016/j.resconrec.2018.04.016. Galvín, A.P., Ayuso, J., García, I., Jimenez, J.R., Guti ! errez, F., 2014. The effect of ! compaction on the leaching and pollutant emission time of recycled aggregates from construction and demolition waste. J. Clean. Prod. 83, 294e304. https:// doi.org/10.1016/j.jclepro.2014.07.074. Geraldo, R.H., Pinheiro, S., Silva, J.S., Andrade, H.M.C., Dweck, J., Gonçalves, J.P., Camarini, G., 2017. Gypsum plaster waste recycling: a potential environmental and industrial solution. J. Clean. Prod. 164, 288e300. https://doi.org/10.1016/j. jclepro.2017.06.188. Giere, R., Blackford, M., Smith, K., 2006. TEM study of PM2.5 emitted from coal and ! tire combustion in a thermal power station. Environ. Sci. Technol. 40, 6235e6240. https://doi.org/10.1021/es060423m. Grazuleviciene, R., Nadisauskiene, R., Buinauskiene, J., Grazulevicius, T., 2009. Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol. J. Environ. Stud. 18, 819e825. Gredilla, A., de Vallejuelo, S.F.O., Gomez-Nubla, L., Carrero, J.A., de Leao, F.B., ~ Madariaga, J.M., Silva, L.F., 2017. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ. Sci. Pollut. Res. 24, 333e345. https://doi. org/10.1007/s11356-017-9831-6. Izquierdo, M., Querol, X., 2012. Leaching behaviour of elements from coal combustion fly ash: an overview. Int. J. Coal Geol. 94, 54e66. https://doi.org/10. 1016/j.coal.2011.10.006. Izquierdo, M., Lopez-Soler, A., Ramonich, E.V., Barra, M., Querol, X., 2002. Charac- ! terisation of bottom ash from municipal solid waste incineration in Catalonia. J. Chem. Technol. Biotechnol. 77, 576e583. https://doi.org/10.1002/jctb.605. Izquierdo, M., Querol, X., Josa, A., Vazquez, E., Lopez-Soler, A., 2008. Comparison ! between laboratory and field leachability of MSWI bottom ash as a road material. Sci. Total Environ. 389, 10e19. https://doi.org/10.1016/j.scitotenv.2007.08. 020. Jeli!c, I., " Sljivi!c-Ivanovi!c, M., Dimovi!c, S., Antonijevi!c, D., Jovi!c, M., Mirkovi!c, M., Smi"ciklas, I., 2018. The applicability of construction and demolition waste components for radionuclide sorption. J. Clean. Prod. 171, 322e332. https://doi. org/10.1016/j.jclepro.2017.09.220. Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., Burkhardt, M., 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158, 2900e2905. https://doi.org/10.1016/j.envpol.2010.06.009. Kan, A.T., Fu, G., Tomson, M.B., 2003. Effect of methanol and ethylene glycol on sulfates and halite scale formation. Ind. Eng. Chem. Res. 42, 2399e2408. https:// doi.org/10.1021/ie020724e. Lee, J., Mahendra, S., Alvarez, P.J.J., 2010. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4, 3580e3590. https://doi.org/589-599.10.1021/ nn100866w. Leon-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., ! Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589e599. https://doi.org/10.1016/j.scitotenv.2017.12.283. Martinello, K., Oliveira, M.L.S., Molossi, F.A., Ramos, C.G., Teixeira, E.C., Kautzmann, Rubens M., Silva, L.F.O., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470e471, 444e452. https://doi.org/10.1016/j. scitotenv.2013.10.007. McGee, J.K., Chen, L.C., Cohen, M.D., Chee, G.R., Prophete, C.M., Haykal-Coates, N., Wasson, S.J., Conner, T.L., Costa, D.L., Gavett, S.H., 2003. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ. Health Perspect. 111, 972e980. Oberdorster, G., Castranova, V., Asgharian, B., Sayre, P., 2015. Inhalation exposure to € carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J. Toxicol. Environ. Health B 18, 121e212. https://doi.org/10.1080/ 10937404.2015.1051611. Oliveira, M.L.S., da Boit, K., Pacheco, F., Teixeira, E.C., Schneider, I.L., Crissien, T.J., Pinto, D.C., Oyaga, R.M., Silva, L.F.O., 2018. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 160, 562e567. https://doi.org/10.1016/j.envres.2017.08.009. Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 14, 1e11. https://doi.org/10.1007/s11051-012-1109-9. Querol, X., Whateley, M.K.G., Fernandez-Turiel, J.L., Tuncali, E., 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 33, 255e271. https://doi.org/10.1016/S0166- 5162(96)00044-4. Silva, L.F.O., Moreno, T., Querol, X., 2009. An introductory TEM study of Fenanominerals within coal fly ash. Sci. Total Environ. 407, 4972e4974. https:// doi.org/10.1016%2Fj.scitotenv.2009.05.044. Stohs, S.J., Bagchi, D., 2005. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18, 321e336. https://doi.org/10.1016/0891-5849(94)00159-H. Suarez, S., Roca, X., Gasso, S., 2016. Product-speci ! fic life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the Spanish context. J. Clean. Prod. 117, 150e159. https://doi.org/ 10.1016/j.jclepro.2016.01.044. Tavira, J., Jimenez, J.R., Carvalho, M.T., Evangelista, L., de Brito, J., 2018. Recycling ! screening waste and recycled mixed aggregates from construction and demolition waste in paved bike lanes. J. Clean. Prod. 190, 211e220. https://doi.org/10. 1016/j.jclepro.2018.04.128. Tixier, G., Lafont, M., Grapentine, L., Rochfort, Q., Marsalek, J., 2011. Ecological risk assessment of urban stormwater ponds: literature review and proposal of a new conceptual approach providing ecological quality goals and the associated bioassessment tools. Ecol. Indicat. 11, 1497e1506. https://doi.org/10.1016/j. ecolind.2011.03.027. United Nations - Department of Economic and Social Affairs, 2014. World Urbanization Prospects. The 2014 Revision. ST/ESA/SER.A/352. 32p. U.S. Environmental Protection Agency (U.S. EPA), 1990. Clean Air Act Amendments of 1990, 1st Congress (1989.1990). U.S. EPA, Washington, DC. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N., 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242e2250. https://doi.org/10.1021/es204168d. Wilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, marcos M.L.S., Cutruneo, C.M.N.L., Taffarel, S.R., Silva, L.F.O., Hopps, S.D., Thomas, G.A., Hower, J.C., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy Fuel. 29, 7168e7177. https://doi.org/10.1021/acs.energyfuels.5b02033. Yang, J.P., Zhao, Y.C., Zhang, J.Y., Zheng, C.G., 2016. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 164, 419e428. https://doi.org/10.1016/j.fuel.2015.08.012.PublicationORIGINALNanoparticles from construction wastes A problem to health and the environment.pdfNanoparticles from construction wastes A problem to health and the environment.pdfapplication/pdf179977https://repositorio.cuc.edu.co/bitstreams/e63269c0-012b-4605-8ad9-3a17039989a9/downloade851e222a64abd7fe609a60ccda36f24MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f2f6e6ee-3569-41b9-9547-4dd6179fa224/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILNanoparticles from construction wastes A problem to health and the environment.pdf.jpgNanoparticles from construction wastes A problem to health and the environment.pdf.jpgimage/jpeg49364https://repositorio.cuc.edu.co/bitstreams/9affc69f-897a-4350-a424-0a37932e8e75/download7dcd862370fbcd98b6a417c1f5872cecMD54TEXTNanoparticles from construction wastes A problem to health and the environment.pdf.txtNanoparticles from construction wastes A problem to health and the environment.pdf.txttext/plain2078https://repositorio.cuc.edu.co/bitstreams/107753f0-7fdf-47db-b9d6-7a9c12f54f0b/download983bcbd507acb32764a48196d3f6886aMD5511323/2551oai:repositorio.cuc.edu.co:11323/25512024-09-17 14:24:15.423open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=