Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues

The present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from thermus thermophilus hb8 (ttaprt2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric ttaprt2 was immobil...

Full description

Autores:
Del Arco, Jon
Pérez, Elena
Naitow, Hisashi
Matsuura, Yoshinori
Kunishima, Naoki
Fernández-Lucas, Jesús
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3330
Acceso en línea:
https://hdl.handle.net/11323/3330
https://repositorio.cuc.edu.co/
Palabra clave:
Thermophiles
Biocatalysis
Enzyme immobilization
Protein crystallography
Termofilos
Biocatálisis
Inmovilización de enzimas
Cristalografia de proteinas
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_412d42ad42f84b77a38c11ffc802dbae
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3330
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
dc.title.translated.spa.fl_str_mv Caracterización estructural y funcional de biocatalizadores termoestables para la síntesis de análogos del nucleósido 5'-monofosfato de 6-aminopurina.
title Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
spellingShingle Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
Thermophiles
Biocatalysis
Enzyme immobilization
Protein crystallography
Termofilos
Biocatálisis
Inmovilización de enzimas
Cristalografia de proteinas
title_short Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
title_full Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
title_fullStr Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
title_full_unstemmed Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
title_sort Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues
dc.creator.fl_str_mv Del Arco, Jon
Pérez, Elena
Naitow, Hisashi
Matsuura, Yoshinori
Kunishima, Naoki
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Del Arco, Jon
Pérez, Elena
Naitow, Hisashi
Matsuura, Yoshinori
Kunishima, Naoki
Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Thermophiles
Biocatalysis
Enzyme immobilization
Protein crystallography
Termofilos
Biocatálisis
Inmovilización de enzimas
Cristalografia de proteinas
topic Thermophiles
Biocatalysis
Enzyme immobilization
Protein crystallography
Termofilos
Biocatálisis
Inmovilización de enzimas
Cristalografia de proteinas
description The present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from thermus thermophilus hb8 (ttaprt2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric ttaprt2 was immobilized onto glutaraldehydeactivated magresyn®amine magnetic iron oxide porous microparticles by two different strategies: a) an enzyme immobilization at ph 8.5 to encourage the immobilization process by n-termini (mttaprt2a, mttaprt2b, mttaprt2c) or b) an enzyme immobilization at ph 10.0 to encourage the immobilization process through surface exposed lysine residues (mttaprt2d, mttaprt2e, mttaprt2f). According to catalyst load experiments, mttaprt2b (activity: 480 iu g−1 biocatalyst, activity recovery: 52%) and mttaprt2f (activity: 507 iu g−1 biocatalyst, activity recovery: 44%) were chosen as optimal derivatives. The biochemical characterization studies demonstrated that immobilization process improved the thermostability of ttaprt2. Moreover, the potential reusability of mttaprt2b and mttaprt2f was also tested. Finally, mttaprt2f was employed in the synthesis of nucleoside-5′-monophosphate analogues.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-05-15T12:59:05Z
dc.date.available.none.fl_str_mv 2019-05-15T12:59:05Z
dc.date.issued.none.fl_str_mv 2019-01-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3330
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/3330
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., Terwilliger, T.C., 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954. Baba, S., Hoshino, T., Ito, L., Kumasaka, T., 2013. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments. Acta Crystallogr. D Biol. Crystallogr. 69, 1839–1849. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Berendsen, W.R., Lapin, A., Reuss, M., 2006. Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol. Prog. 22 (5), 1305–1312. Chapman, J., Ismail, A., Dinu, C., 2018. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8 (6), 238. De Clercq, E., 2005. Recent highlights in the development of new antiviral drugs. Curr. Opin. Microbiol. 8 (5), 552–560. Del Arco, J., Fernández-Lucas, J., 2017. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5'-monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Suárez, V.J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2017. Enzymatic production of dietary nucleotides from lowsoluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. Del Arco, J., Fernández-Lucas, J., 2018. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 102 (18), 7805–7820. Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fernández-Lucas, J., 2018a. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10 (2), 439–448. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernández-Lucas, J., 2018c. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from Thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Available online. http:// www.pymol.org. Dumorne, K., Córdova, D.C., Astorga-Eló, M., Renganathan, P., 2017. Extremozymes: a potential source for industrial applications. J. Microbiol. Biotechnol. 27 (4), 649–659. Elleuche, S., Schroder, C., Sahm, K., Antranikian, G., 2014. Extremozymes-biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29, 116–123. Emsley, P., Cowtan, K., 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132. Esipov, R.S., Timofeev, V.I., Sinitsyna, E.V., Tuzova, E.S., Esipova, L.V., Kostromina, M.A., Kuranova, I.P., Miroshnikov, A.I., 2018. Three-dimensional structure of recombinant adenine phosphoribosyltransferase from thermophilic bacterial strain Thermus thermophilus HB27. Russ. J. Bioorg. Chem. 44, 504–510. Galmarini, C.M., Mackey, J.R., Dumontet, C., 2002. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3 (7), 415–424. Gill, S.C., Von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326. Inouye, K., Kuzuya, K., Tonomura, B.I., 1998. Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 1388 (1), 209–214. Jemli, S., Ayadi-Zouari, D., Hlima, H.B., Bejar, S., 2016. Biocatalysts: application and engineering for industrial purposes. Crit. Rev. Biotechnol. 36 (2), 246–258. Kabsch, W., 1976. A solution for best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923. Klein, M.P., Nunes, M.R., Rodrigues, R.C., Benvenutti, E.V., Costa, T.M., Hertz, P.F., Ninow, J.L., 2012. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13 (8), 2456–2464. Li, S., Chen, L., Hu, Y., Fang, G., Zhao, M., Guo, Y., Pang, Z., 2017. Enzymatic production of 5′-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae. Food Chem. 216, 275–281. Liu, C., Saeki, D., Matsuyama, H., 2017. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv. 7 (76), 48199–48207. Liu, Z.Q., Zhang, L., Sun, L.H., Li, X.J., Wan, N.W., Zheng, Y.G., 2012. Enzymatic production of 5′-inosinic acid by a newly synthesised acid phosphatase/phosphotransferase. Food Chem. 134 (2), 948–956. Mateo, C., Palomo, J.M., Fernández-Lorente, G., Guisán, J.M., Fernández-Lafuente, R., 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40 (6), 1451–1463. Murakami, Y., Hoshi, R., Hirata, A., 2003. Characterization of polymer–enzyme complex as a novel biocatalyst for nonaqueous enzymology. J. Mol. Catal. B Enzym. 22 (1–2), 79–88. Nagy, M., Ribet, A.M., 1977. Purification and comparative study of adenine and guanine phosphoribosyltransferases from Schizosaccharomyces pombe. Eur. J. Biochem. 77 (1), 77–85. Otwinowski, Z., Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326. Parker, W.B., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109 (7), 2880–2893. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., Fava, F., 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 99 (19), 7907–7913. Rathinam, N.K., Sani, R.K., 2018. Bioprospecting of extremophiles for biotechnology applications. In: Sani, R.K., Rathinam, N.K. (Eds.), Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Berlin, pp. 1–23. Rehse, P.H., Tahirov, T.H., 2005. Crystal structure of a purine/pyrimidine phosphoribosyltransferase-related protein from Thermus thermophilus HB8. Proteins 61,658–665. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. Serra, I., Conti, S., Piškur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2–3), 563–570. Shi, W., Tanaka, K.S., Crother, T.R., Taylor, M.W., Almo, S.C., Schramm, V.L., 2001. Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry 40 (36), 10800–10809. Shi, W., Sarver, A.E., Wang, C.C., Tanaka, K.S., Almo, S.C., Schramm, V.L., 2002. Closedsite complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration. J. Biol. Chem. 277 (42), 39981–39988. Shrestha, N., Chilkoor, G., Vemuri, B., Rathinam, N., Sani, R.K., Gadhamshetty, V., 2018. Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour. Technol. 255, 318–330. Silva, M., Silva, C.H., Iulek, J., 2004. Thiemann OH. Three-dimensional structure of human adenine phosphoribosyltransferase and its relation to DHA-urolithiasis. Biochemistry 43 (24), 7663–7671. Sin, I.L., Finch, L.R., 1972. Adenine phosphoribosyltransferase in Mycoplasma mycoides and Escherichia coli. J. Bacteriol. 112 (1), 439–444. Tuttle, J.V., Krenitsky, T.A., 1980. Purine phosphoribosyltransferases from Leishmania donovani. J. Biol. Chem. 235 (3), 909–916. Winn, M., Ballard, C., Cowtan, K., Dodson, E., Emsley, P., Evans, P., Keegan, R., Krissinel, E., Leslie, A., McCoy, A., McNicholas, S., Murshudov, G., Pannu, N., Potterton, E., Powell, H., Read, R., Vagin, A., Wilson, K., 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242. Zhao, X.S., Bao, X.Y., Guo, W., Lee, F.Y., 2006. Immobilizing catalysts on porous materials. Mater. Today 9 (3), 32–39. Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′-phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. Zucca, P., Sanjust, E., 2014. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 19 (9), 14139–14194
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f8b50053-9560-48f1-9eee-228eb09bd576/download
https://repositorio.cuc.edu.co/bitstreams/4ae66a11-1287-4d1b-910b-27194d6ca3f4/download
https://repositorio.cuc.edu.co/bitstreams/d899bdcd-347d-4e7a-8235-07e05121ac17/download
https://repositorio.cuc.edu.co/bitstreams/d14e6637-9d91-40da-8666-d56ba86c3191/download
https://repositorio.cuc.edu.co/bitstreams/182f9271-35fd-4b8f-93d6-24781c269d0c/download
bitstream.checksum.fl_str_mv 81cae16ac6ea3a61f824ef398ddbe706
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
889ad198dc1ab8e3e4ba2493c5eb746a
c72c50754bbb4609952cf2787deda2ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760820656275456
spelling Del Arco, JonPérez, ElenaNaitow, HisashiMatsuura, YoshinoriKunishima, NaokiFernández-Lucas, Jesús2019-05-15T12:59:05Z2019-05-15T12:59:05Z2019-01-03https://hdl.handle.net/11323/3330Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from thermus thermophilus hb8 (ttaprt2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric ttaprt2 was immobilized onto glutaraldehydeactivated magresyn®amine magnetic iron oxide porous microparticles by two different strategies: a) an enzyme immobilization at ph 8.5 to encourage the immobilization process by n-termini (mttaprt2a, mttaprt2b, mttaprt2c) or b) an enzyme immobilization at ph 10.0 to encourage the immobilization process through surface exposed lysine residues (mttaprt2d, mttaprt2e, mttaprt2f). According to catalyst load experiments, mttaprt2b (activity: 480 iu g−1 biocatalyst, activity recovery: 52%) and mttaprt2f (activity: 507 iu g−1 biocatalyst, activity recovery: 44%) were chosen as optimal derivatives. The biochemical characterization studies demonstrated that immobilization process improved the thermostability of ttaprt2. Moreover, the potential reusability of mttaprt2b and mttaprt2f was also tested. Finally, mttaprt2f was employed in the synthesis of nucleoside-5′-monophosphate analogues.El presente trabajo describe la caracterización funcional y estructural de la adenina fosforribosiltransferasa 2 de thermus thermophilus hb8 (ttaprt2). La combinación de datos de especificidad estructural y de sustrato proporcionó información valiosa para los estudios de inmovilización. El ttaprt2 dimérico se inmovilizó en micropartículas porosas de óxido de hierro magnético magresyn®amine activado con glutaraldehido mediante dos estrategias diferentes: a) una inmovilización de enzima a ph 8.5 para alentar el proceso de inmovilización por n-termini (mttaprt2a, mttaprt2c) o bttaprt2c) o b) ph 10.0 para fomentar el proceso de inmovilización a través de residuos de lisina expuestos en la superficie (mttaprt2d, mttaprt2e, mttaprt2f). De acuerdo con los experimentos de carga de catalizador, mttaprt2b (actividad: 480 iu g − 1 biocatalizador, recuperación de actividad: 52%) y mttaprt2f (actividad: 507 iu g − 1 biocatalizador, recuperación de actividad: 44%) fueron elegidos como derivados óptimos. Los estudios de caracterización bioquímica demostraron que el proceso de inmovilización mejoró la termoestabilidad de ttaprt2. Además, también se probó la reutilización potencial de mttaprt2b y mttaprt2f. Finalmente, mttaprt2f se empleó en la síntesis de análogos de nucleósido-5'-monofosfato.Del Arco, Jon-c5ed68af-857c-4b28-99a7-33a4254ed926-0Pérez, Elena-e0e56b28-2fe8-4d52-bb25-104505765b55-0Naitow, Hisashi-e516c1df-173a-440b-a5c0-570c4e8faffd-0Matsuura, Yoshinori-39696af8-8ded-4e90-b8e0-c840a19ce1f9-0Kunishima, Naoki-6baf4ae0-b84a-4faf-b26f-66d30cc43d7a-0Fernández-Lucas, Jesús-454d03d3-2cec-45b1-a796-51012f85b786-0engUniversidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ThermophilesBiocatalysisEnzyme immobilizationProtein crystallographyTermofilosBiocatálisisInmovilización de enzimasCristalografia de proteinasStructural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analoguesCaracterización estructural y funcional de biocatalizadores termoestables para la síntesis de análogos del nucleósido 5'-monofosfato de 6-aminopurina.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAdams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., Terwilliger, T.C., 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954. Baba, S., Hoshino, T., Ito, L., Kumasaka, T., 2013. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments. Acta Crystallogr. D Biol. Crystallogr. 69, 1839–1849. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2014. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4, 1583–1600. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., FernandezLafuente, R., 2015. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33 (5), 435–456. Berendsen, W.R., Lapin, A., Reuss, M., 2006. Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol. Prog. 22 (5), 1305–1312. Chapman, J., Ismail, A., Dinu, C., 2018. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8 (6), 238. De Clercq, E., 2005. Recent highlights in the development of new antiviral drugs. Curr. Opin. Microbiol. 8 (5), 552–560. Del Arco, J., Fernández-Lucas, J., 2017. Purine and pyrimidine phosphoribosyltransferases: a versatile tool for enzymatic synthesis of nucleoside-5'-monophosphates. Curr. Pharm. Des. 23 (45), 6898–6912. Del Arco, J., Cejudo-Sanches, J., Esteban, I., Clemente-Suárez, V.J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2017. Enzymatic production of dietary nucleotides from lowsoluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem. 237, 605–611. Del Arco, J., Fernández-Lucas, J., 2018. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl. Microbiol. Biotechnol. 102 (18), 7805–7820. Del Arco, J., Acosta, J., Pereira, H.M., Perona, A., Lokanath, N.K., Kunishima, N., Fernández-Lucas, J., 2018a. Enzymatic production of non-natural nucleoside-5’- monophosphates by a novel thermostable uracil phosphoribosyltransferase. ChemCatChem 10 (2), 439–448. Del Arco, J., Martínez-Pascual, S., Clemente-Suárez, V.J., Corral, O.J., Jordaan, J., Hormigo, D., Perona, A., Fernández-Lucas, J., 2018b. One-pot, one-step production of dietary nucleotides by magnetic biocatalysts. Catalysts 8 (5), 184. Del Arco, J., Martinez, M., Donday, M., Clemente-Suarez, V.J., Fernández-Lucas, J., 2018c. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from Thermus thermophilus HB8. Biocatal. Biotransform. 36 (3), 216–223. DeLano, W.L., 2002. The PyMOL Molecular Graphics System. Available online. http:// www.pymol.org. Dumorne, K., Córdova, D.C., Astorga-Eló, M., Renganathan, P., 2017. Extremozymes: a potential source for industrial applications. J. Microbiol. Biotechnol. 27 (4), 649–659. Elleuche, S., Schroder, C., Sahm, K., Antranikian, G., 2014. Extremozymes-biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29, 116–123. Emsley, P., Cowtan, K., 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132. Esipov, R.S., Timofeev, V.I., Sinitsyna, E.V., Tuzova, E.S., Esipova, L.V., Kostromina, M.A., Kuranova, I.P., Miroshnikov, A.I., 2018. Three-dimensional structure of recombinant adenine phosphoribosyltransferase from thermophilic bacterial strain Thermus thermophilus HB27. Russ. J. Bioorg. Chem. 44, 504–510. Galmarini, C.M., Mackey, J.R., Dumontet, C., 2002. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3 (7), 415–424. Gill, S.C., Von Hippel, P.H., 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326. Inouye, K., Kuzuya, K., Tonomura, B.I., 1998. Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 1388 (1), 209–214. Jemli, S., Ayadi-Zouari, D., Hlima, H.B., Bejar, S., 2016. Biocatalysts: application and engineering for industrial purposes. Crit. Rev. Biotechnol. 36 (2), 246–258. Kabsch, W., 1976. A solution for best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923. Klein, M.P., Nunes, M.R., Rodrigues, R.C., Benvenutti, E.V., Costa, T.M., Hertz, P.F., Ninow, J.L., 2012. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13 (8), 2456–2464. Li, S., Chen, L., Hu, Y., Fang, G., Zhao, M., Guo, Y., Pang, Z., 2017. Enzymatic production of 5′-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae. Food Chem. 216, 275–281. Liu, C., Saeki, D., Matsuyama, H., 2017. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv. 7 (76), 48199–48207. Liu, Z.Q., Zhang, L., Sun, L.H., Li, X.J., Wan, N.W., Zheng, Y.G., 2012. Enzymatic production of 5′-inosinic acid by a newly synthesised acid phosphatase/phosphotransferase. Food Chem. 134 (2), 948–956. Mateo, C., Palomo, J.M., Fernández-Lorente, G., Guisán, J.M., Fernández-Lafuente, R., 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40 (6), 1451–1463. Murakami, Y., Hoshi, R., Hirata, A., 2003. Characterization of polymer–enzyme complex as a novel biocatalyst for nonaqueous enzymology. J. Mol. Catal. B Enzym. 22 (1–2), 79–88. Nagy, M., Ribet, A.M., 1977. Purification and comparative study of adenine and guanine phosphoribosyltransferases from Schizosaccharomyces pombe. Eur. J. Biochem. 77 (1), 77–85. Otwinowski, Z., Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326. Parker, W.B., 2009. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109 (7), 2880–2893. Pérez, E., Sánchez-Murcia, P.A., Jordaan, J., Blanco, M.D., Mancheño, J.M., Gago, F., Fernández-Lucas, J., 2018. Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-deoxyribosyltransferase from Trypanosoma brucei. ChemCatChem 10 (19), 4406–4416. Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., Fava, F., 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 99 (19), 7907–7913. Rathinam, N.K., Sani, R.K., 2018. Bioprospecting of extremophiles for biotechnology applications. In: Sani, R.K., Rathinam, N.K. (Eds.), Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Berlin, pp. 1–23. Rehse, P.H., Tahirov, T.H., 2005. Crystal structure of a purine/pyrimidine phosphoribosyltransferase-related protein from Thermus thermophilus HB8. Proteins 61,658–665. Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernández-Lafuente, R., 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42 (15), 6290–6307. Scism, R.A., Stec, D.F., Bachmann, B.O., 2007. Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org. Lett. 9 (21), 4179–4182. Serra, I., Conti, S., Piškur, J., Clausen, A.R., Munch-Petersen, B., Terreni, M., Ubiali, D., 2014. Immobilized Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) as a high performing biocatalyst for the synthesis of purine arabinonucleotides. Adv. Synth. Catal. 356 (2–3), 563–570. Shi, W., Tanaka, K.S., Crother, T.R., Taylor, M.W., Almo, S.C., Schramm, V.L., 2001. Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry 40 (36), 10800–10809. Shi, W., Sarver, A.E., Wang, C.C., Tanaka, K.S., Almo, S.C., Schramm, V.L., 2002. Closedsite complexes of adenine phosphoribosyltransferase from Giardia lamblia reveal a mechanism of ribosyl migration. J. Biol. Chem. 277 (42), 39981–39988. Shrestha, N., Chilkoor, G., Vemuri, B., Rathinam, N., Sani, R.K., Gadhamshetty, V., 2018. Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour. Technol. 255, 318–330. Silva, M., Silva, C.H., Iulek, J., 2004. Thiemann OH. Three-dimensional structure of human adenine phosphoribosyltransferase and its relation to DHA-urolithiasis. Biochemistry 43 (24), 7663–7671. Sin, I.L., Finch, L.R., 1972. Adenine phosphoribosyltransferase in Mycoplasma mycoides and Escherichia coli. J. Bacteriol. 112 (1), 439–444. Tuttle, J.V., Krenitsky, T.A., 1980. Purine phosphoribosyltransferases from Leishmania donovani. J. Biol. Chem. 235 (3), 909–916. Winn, M., Ballard, C., Cowtan, K., Dodson, E., Emsley, P., Evans, P., Keegan, R., Krissinel, E., Leslie, A., McCoy, A., McNicholas, S., Murshudov, G., Pannu, N., Potterton, E., Powell, H., Read, R., Vagin, A., Wilson, K., 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242. Zhao, X.S., Bao, X.Y., Guo, W., Lee, F.Y., 2006. Immobilizing catalysts on porous materials. Mater. Today 9 (3), 32–39. Zou, H., Cai, G., Cai, W., Li, H., Gu, Y., Park, Y., Meng, F., 2008. Extraction and DNA digestion of 5′-phosphodiesterase from malt root. Tsinghua Sci. Technol. 13 (4), 480–484. Zucca, P., Sanjust, E., 2014. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 19 (9), 14139–14194PublicationORIGINALStructural and functional characterization of thermostable.pdfStructural and functional characterization of thermostable.pdfapplication/pdf185347https://repositorio.cuc.edu.co/bitstreams/f8b50053-9560-48f1-9eee-228eb09bd576/download81cae16ac6ea3a61f824ef398ddbe706MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/4ae66a11-1287-4d1b-910b-27194d6ca3f4/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d899bdcd-347d-4e7a-8235-07e05121ac17/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILStructural and functional characterization of thermostable.pdf.jpgStructural and functional characterization of thermostable.pdf.jpgimage/jpeg44483https://repositorio.cuc.edu.co/bitstreams/d14e6637-9d91-40da-8666-d56ba86c3191/download889ad198dc1ab8e3e4ba2493c5eb746aMD55TEXTStructural and functional characterization of thermostable.pdf.txtStructural and functional characterization of thermostable.pdf.txttext/plain1598https://repositorio.cuc.edu.co/bitstreams/182f9271-35fd-4b8f-93d6-24781c269d0c/downloadc72c50754bbb4609952cf2787deda2edMD5611323/3330oai:repositorio.cuc.edu.co:11323/33302024-09-17 12:50:31.704http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=